Advertisement

Synthesis and Biological Activity of Agonists for the Neuronal Tachykinin Receptor in Guinea Pig Ileum

  • D. Ron
  • R. Laufer
  • J. Frey
  • C. Gilon
  • Z. Selinger
  • M. Chorev
Conference paper

Abstract

The classification of tachykinin receptors into two subclasses, the SP-P and the SP-E receptors has been well established (1). Recently Laufer et. al. (2) characterized, in the guinea pig ileum, a third tachykinin receptor subclass, designated as SP-N receptor. The SP-N receptor is located on the enteric cholinergic neurons, and madiates the release of acetylcholine. We found that the SP analog (pGlu6,(N-Me)Phe8) SP6-11 acts as a selective potent agonist for the SP-N receptor (EC50=0.5 nM) while its potency for the SP-P receptor is much lower (EC50=500 nM). Conceivably N-methylation of Phe8 in the hexapeptide sequence of substance P (SP), induces selectivity toward the SP-N receptor. Therefore we set to probe the constraints at the nitrogen of Phe7-Phe8 amide bond by changing the alkyl group at this site.

Keywords

Fast Atom Bombardment Selective Agonist Solid Phase Peptide Synthesis Fast Atom Bombardment Mass Spectrometry Amino Acid Constituants 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lee C.M., Iverson L.L., Hanley M.R. and Sandberg B.E.B. (1982). The possible existence of multiple receptors for substance P. Naunyn-Schmiedeberg’s Arch. Pharmacol. 31: 281–287.Google Scholar
  2. 2.
    Laufer R., Wormser U., Friedman Z.Y., Gilon C. Chorev M. and Selinger Z. (1985) Neurokinin Bis a preferred agonist for a neuronal substance Preceptor and its action is antagonized by enkephalin. Proc. Nat. Acad. Sci. USA 82: 7444–7448.PubMedCrossRefGoogle Scholar
  3. 3.
    Schuman R.T., Smitwick E.L., Smiley D.L., Brooke G.S., Gesellchen P.D. (1983). A general procedure for the preparation of N-t-Boc N-alkylamino acids. In: Hruby J.V. and Rich D. H. (eds) Peptides, structure and function, Pierce Chern. Co. Rockford Ill.: 143–146.Google Scholar
  4. 4.
    Cheung S.T. and Benoiton, N.L. (1977). N-Methylamino acids in peptide synthesis. V. The synthesis of N-tert-Butyloxycarbonyl, N-methylamino acids by N-methylation. Can. J. Chern. 55: 906–910.CrossRefGoogle Scholar
  5. 5.
    Ohfune Y., Kurokawa, N., Higuche, N., Saito, M., Hashimoto, M. and Tanaka T. (1984). An efficiant one step reductive N-mono alkylation of amino acids. Chern. Lett. 441–444.Google Scholar
  6. 6.
    Eckart K., Schwarz H., Chorev M. and Gilon C. (1986) Sequence determination of C- and N-terminal blocked peptides containing Nalkylated amino acids (pseudopeptides) and structure determination of the amino acid constituants by using fast atom bombardment (FAB)/Tandem mass spectrometry. Enr. J. Biochem. 157: 209–216.CrossRefGoogle Scholar
  7. 7.
    Wormser U., Chorev M., Gilon C., Laufer R., Friedman Z.Y. and Selinger Z. (1984). Substance P degrading systems of rat parotid and hypothalamus. Biochim. Biophys. Acta 798: 28–36.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • D. Ron
    • 1
  • R. Laufer
    • 2
  • J. Frey
    • 2
  • C. Gilon
    • 3
  • Z. Selinger
    • 2
  • M. Chorev
    • 1
  1. 1.Dept. of PharmaceuticalThe Hebrew UniversityJerusalemIsrael
  2. 2.Dept. of BiologicalThe Hebrew UniversityJerusalemIsrael
  3. 3.Dept. of Organic ChemistryThe Hebrew UniversityJerusalemIsrael

Personalised recommendations