Skip to main content

Boundary Behavior of Nonparametric Minimal Surfaces—Some Theorems and Conjectures

  • Chapter
Variational Methods for Free Surface Interfaces

Abstract

Suppose D is a domain in the plane which is locally convex at every point of its boundary except possibly one, say (0,0), and φ is continuous on ∂D except possibly at (0,0), where it might have a jump discontinuity. Then for all directions from (0,0) into D, the radial limits of f exist, where f is the solution of the minimal surface equation in D or of an equation of prescribed (bounded) mean curvature in D with \(f\,\epsilon\,C^0\,(\bar D\,\backslash\{(0,0)\})\) and \(f=\phi\,\text{on}\,\partial D\backslash\{(0,0)\})\). Some conjectures which would generalize this result are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Beeson, The Behavior of a Minimal Surface in a Corner, Arch. Rat. Mech. Anal. 65(4), (1977), 379–393.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Dziuk, Über quasilinear elliptische Systeme mit isotherman Parametern on Ecken der Randkurve, Analysis 1, (1981), 63–81.

    MathSciNet  MATH  Google Scholar 

  3. A. Elcrat and K. Lancaster, Boundary Behavior of a Non-Parametric Surface of Prescribed Mean Curvature Near a Reentrant Corner Tran. Amer. Math. Soc. 297 (1986), 645–650.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Finn, Remarks Relevant to Minimal Surfaces, and to Surfaces of Prescribed Mean Curvature, J. d’Anal. Math. 14, (1965), 139–160.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Jenkins and J. Serrin, The Dirichlet Problem for the Minimal Surface Equation in Higher Dimensions, J. Reine Angew. Math. 229, (1968), 170–187.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Lancaster, Boundary Behavior of a Non-Parametric Minimal Surface in3 at a Non-Convex Point, Analysis 5, (1985), 61–69.

    MathSciNet  MATH  Google Scholar 

  7. K. Lancaster, Nonparametric Minimal Surfaces in3 whose Boundaries have a Jump Discontinuity (to appear).

    Google Scholar 

  8. J.C.C. Nitsche, On the Nonsolvability of Dirichlet’s Problem for the Minimal Surface Equation, J. Math. Mech. 14, (1965), 779–788.

    MathSciNet  MATH  Google Scholar 

  9. T. Radó, Contributions to the Theory of Minimal Surfaces, Acta. Litt. Scient. Univ. Szeged 6, (1932), 1–20.

    MATH  Google Scholar 

  10. L. Simon, Boundary Behavior of Solutions of the Non-Parametric Least Area Problem, Bull. Austral. Math. Soc. 26, (1982), 17–27.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Lancaster, K.E. (1987). Boundary Behavior of Nonparametric Minimal Surfaces—Some Theorems and Conjectures. In: Concus, P., Finn, R. (eds) Variational Methods for Free Surface Interfaces. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4656-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4656-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9101-5

  • Online ISBN: 978-1-4612-4656-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics