Skip to main content

Abstract

In many physical problems, a key aspect is the motion of a propagating front separating two components. As fundamental as this may be, the development of a numerical algorithm to track the moving front accurately is difficult. In this report, we describe some previous theoretical and numerical work. We begin with two examples to motivate the problem, followed by some analytical results. These theoretical results are then used as a foundation for two different types of numerical schemes. Finally, we describe the application of one of these schemes to our work in combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.A. Brakke, The motion of a surface by its mean curvature, Princeton University Press, Princeton, New Jersey (1978).

    MATH  Google Scholar 

  2. A.J. Chorin, Curvature and solidification, J. Comp. Phys. (to appear).

    Google Scholar 

  3. A.J. Chorin, Flame advection and propagation algorithms, J. Comp. Phys. 35 (1980), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  4. M.L. Frankel and G.I. Sivashinsky, The effect of viscosity on hydrodynamic stability of a plane flame front, Comb. Sci. Tech. 29 (1982), 207–224.

    Article  Google Scholar 

  5. P.R. Garabedian, Partial differential equations. John Wiley and Sons, New York (1961).

    Google Scholar 

  6. E. Hopf, The partial differential equation u t + uu x = μu xx , Comm. Pure Appl. Math. 3 (1950), 201.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Huisken, Flow by mean curvature of convex surfaces into spheres, Preprint (1984).

    Google Scholar 

  8. L. Landau, On the theory of slow combustion, ACTA Physiocochimica, URSS 19 (1944), 77–85.

    Google Scholar 

  9. J.S. Langer, Instabilities and patternformation in crystal growth, Rev. Mod. Phys. 52(1980), 1–28.

    Article  Google Scholar 

  10. J.S. Langer and H. Muller-Krumhaar, Mode selection in a dendritelike nonlinear system, Phys. Rev. A 27 (1983), 499–514.

    Article  Google Scholar 

  11. G.H. Markstein, Experimental and theoretical studies offlame front stability, J. Aero. Sci. 18(1951), 199–209.

    Google Scholar 

  12. G.H. Markstein, Non-Steady flame propagation, Pergamon Press, MacMillan Company, New York (1964).

    Google Scholar 

  13. W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 34 (1963), 2885.

    Article  Google Scholar 

  14. F.A. Nichols and W.W. Mullins, Trans. Met. Soc., AIME 223 (1965), 1840.

    Google Scholar 

  15. W. Noh and P. Woodward, A simple line interface calculation, Proceedings, Fifth International Conference on Fluid Dynamics, A.I. van de Vooran and P.J. Zandberger, Eds. Springer-Verlag, New York (1976).

    Google Scholar 

  16. B.R. Pamplin, Crystal Growth. Pergamon Press, New York (1975).

    Google Scholar 

  17. J.A. Sethian, An algorithm for propagatingfronts based on high-order upwind schemes (in progess).

    Google Scholar 

  18. J.A. Sethian, An analysis offlame propagation, PhD. Dissertation, University of California, Berkeley, California, June 1982; CPAM Rep. 79.

    Google Scholar 

  19. J.A. Sethian, Curvature and the evolution of fronts, Communications of Mathematical Physics 101 (1985), 487–499.

    Article  MathSciNet  MATH  Google Scholar 

  20. J.A. Sethian, Numerical Simulation of Flame Propagation in a Closed Vessel, Notes on Numerical Fluid Mechanics, Editors: Pandolfi, M. and Piva, R., Proceedings of the Fifth GAMM-Conference on Numerical Methods in Fluid Mechanics, Rome, October 5–7, 1983, Friedr, Vieweg & Sohn, Braunschweig/Wiesbaden, 1984, pp. 324–331.

    Google Scholar 

  21. J.A. Sethian, Turbulent combustion in open and closed vessels. J. Comp. Phys. 54 (1984), 425–456.

    Article  MATH  Google Scholar 

  22. G.I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames, I. Acta Astronautica 4 (1977), 1177–1206.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Turnbull, “Phase changesin solid state physics, 3, ed. Seitz, F. and Turnbull, D., Academic Press, New York (1956).

    Google Scholar 

  24. Y.B. Zeldovich, Structure and stability of steady laminar flame at moderately large Reynolds numbers, Comb. Flame 40 (1981), 225–234.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Sethian, J.A. (1987). Numerical Methods for Propagating Fronts. In: Concus, P., Finn, R. (eds) Variational Methods for Free Surface Interfaces. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4656-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4656-5_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9101-5

  • Online ISBN: 978-1-4612-4656-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics