Advertisement

On the Uniqueness of Capillary Surfaces

  • Luen-fai Tam

Abstract

Let Ω ⊂ ℝn. Consider the equation of prescribed mean curvature
$$\text{div}\,Tu = H\, \text{in}\,\Omega$$
(1)
where
$$Tu = \frac{Du}{\sqrt{1 + |Du|^2}}$$
(2)
and Du is the gradient of u.

Keywords

Generalize Solution Comparison Theorem Hausdorff Measure Oral Communication Capillary Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.N. Bernstein, Sur les surfaces definies au moyen de leur courbure moyenne ou totale, Ann. Ec. Norm. Sup. 27 (1908), 233–256.Google Scholar
  2. [2]
    P. Concus and R. Finn, On capillary free surfaces in the absence of gravity. Acta Math. 132 (1974), 117–198.Google Scholar
  3. [3]
    R. Finn, Remarks relevant to minimal surfaces and to surfaces of prescribed mean curvature, Journ. d’Anal. Math. 14 (1965), 139–160.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    R. Finn, A subsidiary variational problem and existence criteria for capillary surfaces, Indiana Univ. Math. J. 32 (1983), 439–460.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin-Heidelberg-New York, 1977.MATHGoogle Scholar
  6. [6]
    E. Giusti, Minimal surfaces and functions of bounded variation. Notes on pure mathematics, Australian National Univ., Canberra, 1977.MATHGoogle Scholar
  7. [7]
    E. Giusti, On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions, Inv. Math. 46 (1978), 111–137.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    E. Giusti, Generalized solutions of mean curvature equations, Pac. J. Math. 88 (1980), 239–321.MathSciNetGoogle Scholar
  9. [9]
    U. Massari, Frontiere orientate di curvature media assegneta in L p, Rend. Sem. Mat. Padova 53 (1975), 37–52.MathSciNetGoogle Scholar
  10. [10]
    U. Massari and L. Pepe, Sulle successioni convergenti di superfici a curvatura media assegnata, Rend. Sem. Mat. Padova 53 (1975), 53–68.MathSciNetGoogle Scholar
  11. [11]
    M. Miranda, Superfici minime illimitte, Ann. Scuola Norm. Sup. Pisa, (4) 4 (1977) 313–322.MathSciNetMATHGoogle Scholar
  12. [12]
    L.-F. Tam, On existence criteria for capillary free surfaces without gravity, Pac. J. Math. (to appear).Google Scholar
  13. [13]
    L.-F. Tam, On the uniqueness of capillary surfaces without gravity over an infinite strip, Indiana Univ. Math. J. (to appear).Google Scholar
  14. [14]
    L.-F. Tam, The behavior of capillary surfaces as gravity tends to zero, Comm. in P.D.E. (to appear).Google Scholar
  15. [15]
    C. Wong, Oral communication.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Luen-fai Tam

There are no affiliations available

Personalised recommendations