On the Uniqueness of Capillary Surfaces

  • Luen-fai Tam


Let Ω ⊂ ℝn. Consider the equation of prescribed mean curvature
$$\text{div}\,Tu = H\, \text{in}\,\Omega$$
$$Tu = \frac{Du}{\sqrt{1 + |Du|^2}}$$
and Du is the gradient of u.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.N. Bernstein, Sur les surfaces definies au moyen de leur courbure moyenne ou totale, Ann. Ec. Norm. Sup. 27 (1908), 233–256.Google Scholar
  2. [2]
    P. Concus and R. Finn, On capillary free surfaces in the absence of gravity. Acta Math. 132 (1974), 117–198.Google Scholar
  3. [3]
    R. Finn, Remarks relevant to minimal surfaces and to surfaces of prescribed mean curvature, Journ. d’Anal. Math. 14 (1965), 139–160.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    R. Finn, A subsidiary variational problem and existence criteria for capillary surfaces, Indiana Univ. Math. J. 32 (1983), 439–460.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin-Heidelberg-New York, 1977.MATHGoogle Scholar
  6. [6]
    E. Giusti, Minimal surfaces and functions of bounded variation. Notes on pure mathematics, Australian National Univ., Canberra, 1977.MATHGoogle Scholar
  7. [7]
    E. Giusti, On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions, Inv. Math. 46 (1978), 111–137.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    E. Giusti, Generalized solutions of mean curvature equations, Pac. J. Math. 88 (1980), 239–321.MathSciNetGoogle Scholar
  9. [9]
    U. Massari, Frontiere orientate di curvature media assegneta in L p, Rend. Sem. Mat. Padova 53 (1975), 37–52.MathSciNetGoogle Scholar
  10. [10]
    U. Massari and L. Pepe, Sulle successioni convergenti di superfici a curvatura media assegnata, Rend. Sem. Mat. Padova 53 (1975), 53–68.MathSciNetGoogle Scholar
  11. [11]
    M. Miranda, Superfici minime illimitte, Ann. Scuola Norm. Sup. Pisa, (4) 4 (1977) 313–322.MathSciNetMATHGoogle Scholar
  12. [12]
    L.-F. Tam, On existence criteria for capillary free surfaces without gravity, Pac. J. Math. (to appear).Google Scholar
  13. [13]
    L.-F. Tam, On the uniqueness of capillary surfaces without gravity over an infinite strip, Indiana Univ. Math. J. (to appear).Google Scholar
  14. [14]
    L.-F. Tam, The behavior of capillary surfaces as gravity tends to zero, Comm. in P.D.E. (to appear).Google Scholar
  15. [15]
    C. Wong, Oral communication.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Luen-fai Tam

There are no affiliations available

Personalised recommendations