Skip to main content

Instability Theory

  • Chapter
Geophysical Fluid Dynamics

Abstract

Solar heating is the ultimate energy source for the motion of both the atmosphere and the oceans with the exception of the lunar forcing of the tides. The radiant energy emitted by the sun may vary somewhat over very long periods, but a sensible idealization for most meteorological and oceanographic purposes consists in considering the solar source strength as fixed. Temporal variations in the incident radiation (and its spatial distribution) are then fixed by the astronomical relation between the positions of the earth and sun, e.g., by the seasonal progress of the earth in its solar orbit. Quite clearly, though, the motions of both the atmosphere and the oceans exhibit fluctuations whose time scales are not directly related to the astronomical periodicities of the earth-sun system. The phenomenon of weather in the atmosphere is in fact nothing more than the existence of large-scale wavelike fluctuations in the circulation of the atmosphere whose occurrence cannot be predicted, as the tides can be, by a simple almanac of assured recurrence based on past experience. Observations of oceanic motions have also revealed fluctuations at periods which bear no evident relationship with the astronomical periods which characterize the externally imposed forces. Not only do the observed oceanic and meteorological fluctuations occur on time scales which do not match the periods of the external forcing, but in addition, any particular observation of the fluctuations in the circulation shows them to occur erratically if not randomly distributed in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Section 7.1

  • Charney, J. G. 1947. The dynamics of long waves in a baroclinic westerly current. J. Meteor. 4, 135–163.

    Article  Google Scholar 

  • Eady, E. T. 1949. Long waves and cyclone waves. Tellus 1, 33–52.

    Article  Google Scholar 

Section 7.3

  • Charney, J. G. and Stern, M. 1962. On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci. 19, 159–172.

    Article  Google Scholar 

Section 7.4

  • Charney, J. G. and Pedlosky, J. 1963. On the trapping of unstable planetary waves in the atmosphere. J. Geophys. Res. 68, 6441–6442.

    Google Scholar 

  • Pedlosky, J. 1964. The stability of currents in the atmosphere and the oceans. Part I. J. Atmos. Sci. 27, 201–219.

    Article  Google Scholar 

Section 7.5

  • Howard, L. N. 1961. Note on a paper of John Miles. J. Fluid Mech. 10, 509–512.

    Article  Google Scholar 

  • Pedlosky, J. 1964. The stability of currents in the atmosphere and the oceans. Part I. J. Atmos. Sci. 21, 201–219.

    Article  Google Scholar 

Section 7.6

  • Charney, J. G. 1947. The dynamics of long waves in a baroclinic westerly current. J. Meteor. 4, 135–163.

    Article  Google Scholar 

  • Eady, E. T. 1949. Long waves and cyclone waves. Tellus 1, 33–52.

    Article  Google Scholar 

  • Pedlosky, J. 1971. Geophysical fluid dynamics. In Mathematical Problems in the Geophysical Sciences. Ed., W. H. Reid. Amer. Math. Soc. 1–60.

    Google Scholar 

Section 7.7

  • Eady, E. T. 1949. Long waves and cyclone waves. Tellus 1, 33–52.

    Article  Google Scholar 

  • Pedlosky, J. 1964. An initial value problem in the theory of baroclinic instability. Tellus XVI, 12–17.

    Article  Google Scholar 

Section 7.8

  • Abramowitz, M. and Stegun, I. A. 1964. Handbook of Mathematical Functions National Bureau of Standards. Chapter 13.

    Google Scholar 

  • Branscome, L. E. 1983. The Charney stability problem: approximate solutions and modal structures. J. Atmos. Sci. 40, 1393–1409.

    Article  Google Scholar 

  • Bretherton, F. P. 1966. Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc. 92, 325–334.

    Article  Google Scholar 

  • Burger, A. P. 1962. On the non-existence of critical wave lengths in a continuous baroclinic stability problem. J. Atmos. Sci. 19, 31–38.

    Article  Google Scholar 

  • Charney, J. G. 1947. The dynamics of long waves in a baroclinic westerly current. J. Meteor. 4, 135–163.

    Article  Google Scholar 

  • Garcia, R. V. and Norscini, R. 1970. A contribution to the baroclinic instability problem. Tellus 22, 239–250.

    Article  Google Scholar 

  • Gill, A. E., Green, J. S. A. and Simmons, A. J. 1974. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. 21, 497–528.

    Google Scholar 

  • Green, J. S. A. 1960. A problem in baroclinic instability. Quart. J. Roy. Meteor. Soc. 86, 237–251.

    Article  Google Scholar 

  • Held, I. M. 1978. The vertical scale of an unstable baroclinic wave and its importance for eddy heat flux parameterization. J. Atmos. Sci. 35, 572–576.

    Article  Google Scholar 

  • Hildebrand, F. B. 1963. Advanced Calculus for Applications Prentice-Hall, 646 pp. Chapter 4.

    Google Scholar 

  • Kuo, H. L. 1952. Three dimensional disturbances in a baroclinic zonal current. J. Meteor. 9, 260–278.

    Article  Google Scholar 

  • Kuo, H. L. 1973. Dynamics of quasi-geostrophic flows and instability theory. In Advances in Applied Mechanics 13. 247–330.

    Google Scholar 

  • Lin, C. C. 1955. The Theory of Hydrodynamic Instability. Cambridge Univ. Press, 155 pp. Chapter 8.

    Google Scholar 

  • Miles, J. W. 1964a. A note on Charney’s model of zonal-wind instability. J. Atmos. Sci. 21, 451–452.

    Article  Google Scholar 

  • Miles, J. W. 1964b. Baroclinic instability of the zonal wind. Rev. of Geophys. 2, 155–176.

    Article  Google Scholar 

  • Miles, J. W. 1964c. Baroclinic instability of the zonal wind. Parts I, II, J. Atmos. Sci. 21, 550–556, 603–609.

    Google Scholar 

  • Phillips, N. A. (1963) Geostrophic Motion. Rev. of Geophysics 1, 123–176.

    Article  Google Scholar 

Section 7.9

  • Held, I. M. 1975. Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci. 32, 1494–1497.

    Article  Google Scholar 

  • Phillips, N. A. 1954. Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6, 273–286.

    Article  Google Scholar 

Section 7.10

  • Pedlosky, J. 1963. Baroclinic instability in two-layer systems. Tellus 15, 20–25.

    Article  Google Scholar 

  • Pedlosky, J. 1964. The stability of currents in the atmosphere and the oceans. Part I. J. Atmos. Sci. 21, 201–219.

    Article  Google Scholar 

Section 7.11

  • Phillips, N. A. 1954. Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6, 273–286.

    Article  Google Scholar 

Section 7.12

  • Barcilon, V. 1964. Role of Ekman layers in the stability of the svmmetric regime in a rotating annulus. J. Atmos. Sci. 21, 291–299.

    Article  Google Scholar 

Section 7.13

  • Gill, A. E., Green, J. S. A., and Simmons, A. J. 1974. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. 21, 497–528.

    Google Scholar 

  • Robinson, A. R. and McWilliams, J. C. 1974. The baroclinic instability of the open ocean. J. Phys. Oceanog. 4, 281–294.

    Article  Google Scholar 

Section 7.14

  • Dickinson, R. E. and Clare, F. J. 1973. Numerical study of the unstable modes of a hyperbolic-tangent barotropic shear flow. J. Atmos. Sci. 30, 1035–1049.

    Article  Google Scholar 

  • Howard, L. N. and Drazin, P. G. 1964. On instability of parallel flow of inviscid fluid in a rotating system with variable Coriolis parameter. J. Math. Phys. 43, 83–99.

    Google Scholar 

  • Kuo, H. L. 1949. Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteor. 6, 105–122.

    Article  Google Scholar 

  • Kuo, H. L. 1973. Dynamics of quasi-geostrophic flows and instability theory. In Advances in Applied Mechanics 13, 247–330.

    Google Scholar 

Section 7.15

  • Brown. J. A., Jr. 1969. A numerical investigation of hydrodynamic instability and energy conversions in the quasigeostrophic atmosphere. Parts I, II. J. Atmos. Sci. 26, 352–365, 366–375.

    Article  Google Scholar 

  • Charney, J. G. 1951. On baroclinic instability and the maintenance of the kinetic energy of the westerlies. In Proc. 9th Gen. Assembly, UGGI (Assoc. Meteor.) Brussels 47–63.

    Google Scholar 

  • Green, J. S. A. 1970. Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc. 96, 157–185.

    Article  Google Scholar 

  • Jeffreys, H. 1933. The function of cyclones in the general circulation. In Procès- Verbaux de F Association de Météorologie, UGGI (Lisbon), Part II. 219–230. Reprinted in Theory of Thermal Convection. Ed., B. Saltzman. Dover, 1962.

    Google Scholar 

  • Lorenz, E. N. 1967. The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization #218, Geneva, Switzerland.

    Google Scholar 

  • Pedlosky, J. 1964. The stability of currents in the atmosphere and the ocean: Part II. J. Atmos. Sci. 21, 342–353.

    Article  Google Scholar 

  • Schmitz, W. J., Jr. 1977. On the circulation in the western North Atlantic. J. Marine Res. 35, 21–28.

    Google Scholar 

  • Starr, V. P. 1953. Note concerning the nature of the large scale eddies in the atmosphere. Tellus 5, 494–498.

    Article  Google Scholar 

Section 7.16

  • Drazin, P. G. 1970. Non-linear baroclinic instability of a continuous zonal flow. Quart. J. Roy. Meteor. Soc. 96, 667–676.

    Article  Google Scholar 

  • Hart, J. E. 1973. On the behavior of large-amplitude baroclinic waves. J. Atmos. Sci. 30, 1017–1034.

    Article  Google Scholar 

  • Hart, J. E. 1981. Wave number selection in nonlinear baroclinic instability. J. Atmos. Sci. 38, 400–408.

    Article  Google Scholar 

  • Lorenz, E. N. 1963a. The mechanics of vacillation. J. Atmos. Sci. 20, 448–464.

    Article  Google Scholar 

  • Lorenz, E. N. 1963b. Deterministic nonperiod flow. J. Atmos. Sci. 12, 130–141.

    Article  Google Scholar 

  • Pedlosky, J. 1970. Finite amplitude baroclinic waves. J. Atmos. Sci. 27, 15–30.

    Article  Google Scholar 

  • Pedlosky, J. 1971. Finite amplitude baroclinic waves with small dissipation. J. Atmos. Sci. 28, 587–597.

    Article  Google Scholar 

  • Pedlosky, J. 1972a. Limit cycles and unstable baroclinic waves, J. Atmos. Sci. 29, 53–63.

    Article  Google Scholar 

  • Pedlosky, J. 1972b. Finite amplitude baroclinic wave packets. J. Atmos. Sci. 29, 680–686.

    Article  Google Scholar 

  • Pedlosky, J. 1981. The nonlinear dynamics of baroclinic wave ensembles. J. Fluid Mech. 102, 169–209.

    Article  Google Scholar 

  • Pedlosky, J. and Frenzen, C. 1980. Chaotic and period behavior of finite-amplitude baroclinic waves. J. Atmos. Sci. 37, 1177–1196.

    Article  Google Scholar 

  • Phillips, N. A. 1954. Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6, 273–286.

    Article  Google Scholar 

  • Smith, R. K. and Reilly, J. M. 1977. On a theory of Amplitude Vacillation in Baroclinic Waves: Some Numerical Solutions. J. Atmos. Sci. 34, 1256–1260.

    Article  Google Scholar 

Section 7.17

  • Arnold, V. I. 1965. Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid. Dokl. Akad. Nauk SSSR 162, 975–978.

    Google Scholar 

  • Blumen, W. 1968. On the stability of quasigeostrophic flow. J. Atoms. Sci. 25, 929–931.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Pedlosky, J. (1987). Instability Theory. In: Geophysical Fluid Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4650-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4650-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96387-7

  • Online ISBN: 978-1-4612-4650-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics