Geophysical Fluid Dynamics pp 336-489 | Cite as

# Quasigeostrophic Motion of a Stratified Fluid on a Sphere

- 1 Citations
- 887 Downloads

## Abstract

In Chapter 1 it was noted that variations in density which arise from the differential heating of the atmosphere and oceans are responsible for the circulations of both systems. Even the wind-driven oceanic circulation implicitly requires atmospheric buoyancy forces to produce the wind. In addition, the presence of a stable stratification in which heavier fluid underlies lighter, characteristic of both the atmosphere and the oceans, inhibits vertical motion and strongly affects the nature of the dynamics. It is also clear from the discussion in Section 2.9 that the vertical structure of the winds and currents is directly related to the presence and strength of horizontal density gradients by the thermal wind relation.

## Keywords

Rossby Wave Potential Vorticity Synoptic Scale Western Boundary Current Ekman Layer## Preview

Unable to display preview. Download preview PDF.

## Bibliography

## Section 6.2

- Batchelor, G. K. 1967. An introduction to fluid dynamics, Cambridge UniversityGoogle Scholar

## Section 6.3

- Burger, A. 1958. Scale considerations of planetary motions of the atmosphere.
*Tellus***10**, 195–205.CrossRefGoogle Scholar - Charney, J. G. 1947.
*On the Scale of Atmospheric Motions*. Geofys. Publikasjoner, Norske Videnskaps-Akad Oslo 17.Google Scholar - Charney, J. G. and Drazin, P. G. 1961. Propagation of planetary scale disturbances from the lower into the upper atmosphere.
*J. Geophys. Res*.**66**, 83–109.CrossRefGoogle Scholar

## Section 6.10

- Lorenz, E. 1955. Available potential energy and the maintenance of the general circulation.
*Tellus***7**, 157–167.CrossRefGoogle Scholar

## Section 6.12

- Chapman, S. and Lindzen, R. S. 1970.
*Atmospheric Tides*. Gordon and Breach, 200 pp. Chapter 3.Google Scholar - Kundu, P. K., Allen, J. S., and Smith, R. L. 1975. Modal decomposition of the velocity field near the Oregon coast.
*J. Phys. Oceanog***5**, 683–704.CrossRefGoogle Scholar

## Section 6.13

- Holton, J. R. 1975. The dynamic meteorology of the stratosphere and mesosphere.
*Amer. Meteor. Soc*, 216 pp.Google Scholar - Smagorinsky, J. 1953. The dynamical influences of large scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere.
*Quart. J. Roy. Meteor. Soc***79**, 342–366.CrossRefGoogle Scholar

## Section 6.14

- Andrews, D. G. and Mclntyre, M. E. 1976. Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration.
*J. Atmos. Sci*.**33**, 2031–2048.CrossRefGoogle Scholar - Benney, D. J. and Bergeron, R. F. 1969. A new class of nonlinear waves in parallel flows.
*Studies Appl. Math*.**48**, 181–204.Google Scholar - Charney, J. G. and Drazin, P. G. 1961. Propagation of planetary scale disturbances from the lower into the upper atmosphere.
*J. Geophys. Res*.**66**, 83–109.CrossRefGoogle Scholar - Edmond, H. J. Jr., Hoskins, B. J., and McIntyre, M. E. 1980. Eliassen-Palm cross sections for the troposphere.
*J. Atmos. Sci*.**37**, 2600–2616.CrossRefGoogle Scholar - Eliassen, A. and Palm, E. 1961. On the transfer of energy in stationary mountain waves.
*Geofys. Publ*.**22**, 1–23.Google Scholar - Smagorinsky, J. 1953. The dynamical influences of large scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere.
*Quart. J. Roy. Meteor. Soc*.**79**, 342–366.CrossRefGoogle Scholar

## Section 6.15

- Rhines, P. 1970. Edge, bottom, and Rossby waves in a rotating stratified fluid.
*Geophys. Fluid Dyn*.**1**, 273–302.CrossRefGoogle Scholar

## Section 6.16

- Phillips, N. A. 1951. A simple three-dimensional model for the study of large-scale extratropical flow patterns.
*J. Meteor*.**8**, 381–394.CrossRefGoogle Scholar

## Section 6.19

- Sverdrup, H. U. 1947. Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific.
*Proc. Nat. Acad. Sci*.**33**, 318–326.CrossRefGoogle Scholar

## Section 6.20

- Needier, G. T. 1985. The absolute velocity as a function of conserved measurable quantities.
*Prog. Oceanog*.**14**, 421–429.CrossRefGoogle Scholar

## Section 6.21

- Bryan, K. and Cox, M. D. 1968. A non-linear model of an ocean driven by wind and differential heating. Parts I and II.
*J. Atmos. Sci*.**25**, 945–978.CrossRefGoogle Scholar - Carslaw, H. S. and Jaeger, J. C. 1959.
*Conduction of Heat in Solids*, Oxford Press, 510 pp. 388.Google Scholar - Needier, G. T. 1967. A model for thermohaline circulation in an ocean of finite depth.
*J. Marine Res*.**25**, 329–342.Google Scholar - Robinson, A. R. and Stommel, H. 1959. The oceanic thermocline and the associated thermohaline circulation.
*Tellus***11**, 295–308.Google Scholar - Robinson, A. R. and Welander, P. 1963. Thermal circulation on a rotating sphere; with application to the oceanic thermocline.
*J. Marine Res*.**21**, 25–38.Google Scholar - Welander, P. 1971a. Some exact solutions to the equations describing an ideal-fluid thermocline.
*J. Mar. Res*.**29**, 60–68.Google Scholar - Welander, P. 1971b. The thermocline problem.
*Philos. Trans. Royal Soc. Lond*.**A****270**, 69–73.Google Scholar

## Section 6.22

- Luyten, J. R., Pedlosky, J., and Stommel, H. 1983. The ventilated thermocline.
*J. Phys. Oceanogr*.**13**, 292–309.CrossRefGoogle Scholar - Pedlosky, J., 1983. Eastern boundary ventilation and the structure of the thermocline.
*J. Phys. Oceanogr*.**13**, 2038–2044.CrossRefGoogle Scholar - Rhines, P. B. and Young, W. R. 1982. Homogenization of potential vorticity in planetary gyres.
*J. Fluid Mech*.**122**, 347–367.CrossRefGoogle Scholar

## Section 6.23

- Pedlosky, J. and Young, W. R. 1983. Ventilation, potential vorticity homogenization and the structure of the ocean circulation.
*J. Phys. Oceanogr*.**13**, 2020–2037.CrossRefGoogle Scholar - Rhines, P. B. and Young, W. R. 1982a. A theory of the wind-driven circulation. I. Mid-ocean gyres.
*J. Mar. Res*.**40**(Suppl.), 559–596.Google Scholar - Rhines, P. B. and Young, W. R. 1982b. Homogenization of potential vorticity in planetary gyres.
*J. Fluid Mech*.**122**, 347–367.CrossRefGoogle Scholar - Young, W. R. and Rhines, P. B. 1982. A theory of the wind-driven circulation. II. Circulation models with western boundary layers.
*J. Mar. Res*.**40**(Suppl.), 849–972.Google Scholar

## Section 6.24

- Pedlosky, J. 1984. The equations for geostrophic motion in the ocean.
*J. Phys. Oceanogr*.**14**, 448–456.CrossRefGoogle Scholar