Advertisement

Selenium pp 13-21 | Cite as

Selenium: Geochemical Distribution and Associations with Human Heart and Cancer Death Rates and Longevity in China and the United States

  • M. L. Jackson

Abstract

The geochemistry of available soil Se varies enormously in different localities, and the corresponding amounts moving up through crops to food vary accordingly. In a belt extending from northeastern to south central China, the available soil Se was measured by human blood Se levels. Severe deficiency occurred at 8–26 ng/mL; subadequate amounts occurred in large areas with 32–83 ng/mL; adequate amounts of 200–300 ng/mL occurred in large cities; and toxic amounts of 3000–7800 ng/mL occurred in terrace areas where runoff from the uplands evaporated, and in certain other soils. Some heart deaths (Keshan Disease) occurred in children 1 to 10 yr of age in the most deficient areas, but were prevented by 230–900 µg/wk Se supplementation. One mg Se/wk was the adult dosage. In Se deficient areas, the life span of adults was lowered severely (35 to 45 yr), with heart muscle damage common at autopsy. Se and Zn deficiencies are apparently associated with stomach cancer. The geochemistry of Se in the USA is also highly variable, blood Se ranging from 100–350 ng/mL. Se data for individuals are limited; however, ischemic heart death correlated inversely with blood Se in 25 cities of 22 states (r = -.70; p < .01). Counties of Wisconsin and Florida are highly variable in human heart death and cancer death rates, as are the 50 states, suggesting Se geographic variability.

Index Entries

Geochemistry of Se geographic variability heart deaths cancer Se supplementation longevity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Mertz, Science, 213, 1332 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    A. G. Cairns-Smith, Scient Am. 252(6), 90 (1985).CrossRefGoogle Scholar
  3. 3.
    R. Stocker, Y. Yamamoto, A. F. McDonagh, A. N. Glazer, and B. N. Ames, Science, 235, 1043 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    W. G. Hoekstra, Fed. Proc. 34, 2083 (1975).PubMedGoogle Scholar
  5. 5.
    J. Kubota, W. H. Allaway, D. L. Carter, E. E. Cary, and V. A. Lazar, J. Agr. Food Chem. 15, 448 (1967).CrossRefGoogle Scholar
  6. 6.
    G. F. Combs and S. B. Combs, The Role of Selenium in Nutrition, Academic, New York, p. 532.Google Scholar
  7. 7.
    M. L. Jackson and C. H. Lim, in 7th Intl. Clay Conf. Proc. 1981, H. van Olphen and F. Veniale, ed., Elsevier, Amsterdam, 1982, pp. 641–653.Google Scholar
  8. 8.
    C. S. Li and M. L. Jackson, in Trace Substances in Environmental Health, vol. 19, D. D. Hemphill, ed., University of Missouri, Columbia, MO, 1985, pp. 264–276.Google Scholar
  9. 9.
    R. J. Shamberger, Biochemistry of Selenium, Plenum, New York, 1983, p. 334.Google Scholar
  10. 10.
    M. L. Jackson, Appl. Geochem., 1, 175 (1986).CrossRefGoogle Scholar
  11. 11.
    M. S. Eisenberg, L. Bergner, A. P. Hallstrom, and R. O. Cummins, Scient. Am. 254(5), 37 (1986).CrossRefGoogle Scholar
  12. 12.
    E. M. Leeper, National Academy of Sciences News, 32(3), 12 (1982).Google Scholar
  13. 13.
    L. M. Klevay, Ann. New York Acad. Sci., vol. 355, O. E. Levander and L. Cheng, ed., New York, 1980, pp. 140–151.Google Scholar
  14. 14.
    J. McBride, Agri. Res. 33(9), 6 (1985).Google Scholar
  15. 15.
    E. J. Underwood, in Biochem. Nutr-1A, vol. 27, A. Neuberger and T. H. Jukes, ed., University Park Press, MD, 1979, pp. 207–243.Google Scholar
  16. 16.
    Metropolitan Life Insurance Co., Statis. Bull. 65(3), 8 (1984).Google Scholar
  17. 17.
    M. Howe, Arch. Environ. Health, 34, 444 (1979).PubMedGoogle Scholar
  18. 18.
    G. N. Schrauzer, in Advances in Nutritional Research, vol. 2, H. H. Draper, ed., Plenum, New York, 1979, pp. 219–244.Google Scholar
  19. 19.
    G. N. Schrauzer and J. E. McGinness, in Trace Substances in Environmental Health, vol. 13, D. D. Hemphill, ed., University of Missouri, Columbia, MO, 1979, pp. 64–67.Google Scholar
  20. 20.
    G. N. Schrauzer and D. A. White, Bioinorg. Chem., 8, 303 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    W. L. Stone, M. E. Stewart, C. Nicholas, and S. Pavuluri, Ann. Nutr. Metab. 30(2), 94 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    W. H. Allaway, J. Kubota, F. Losee, and M. Roth, Arch. Environ. Health, 16, 342 (1968).PubMedGoogle Scholar
  23. 23.
    O. A. Levander, in Clinical, Biochemical, and Nutritional Aspects of Trace Elements, A.S. Prasad, ed., Liss, New York, 1982, pp. 345–368.Google Scholar
  24. 24.
    S. Y. Yu, Y. J. Chu, X. L. Gong, C. Hou, W. G. Li, H. M. Gong, and J. R. Xie, Biol. Trace Element Res. 7, 21 (1985).CrossRefGoogle Scholar
  25. 25.
    M. L. Jackson, J. Z. Zhang, C. S. Li, and D. F. Martin, Appl. Geochem. 1, 487 (1986).CrossRefGoogle Scholar
  26. 26.
    J. T. Salonen, R. Salonen, R. Lappetelainen, P. H. Maenpaa, G. Althan, and P. Puska, Br. Med. J. 290, 417 (1985).CrossRefGoogle Scholar
  27. 27.
    H. H. Draper and R. P. Bird, J. Agric. Food Chem. 32, 433 (1984).CrossRefGoogle Scholar
  28. 28.
    H. J. Thompson, J. Agric. Food Chem. 32, 422 (1984).CrossRefGoogle Scholar
  29. 29.
    G. A. Babenko, I. P. Pogribnyi, and I. I. Mashchakevich, Eksp. Onkol. 8(4), 31 (1986) (in Russian).PubMedGoogle Scholar
  30. 30.
    G. N. Schrauzer, D. A. White, and C. J. Schneider, Bioinorg. Chem. 7:23 (1977).PubMedCrossRefGoogle Scholar
  31. 31.
    M. L. Jackson, J. Z. Zhang, and C. S. Li, Trans. Wis. Acad. Sci., Arts, Lett., 73, 35 (1985).Google Scholar
  32. 32.
    M. L. Jackson, C. S. Li, and D. F. Martin, Fla. Scient. 49, 82 (1986).Google Scholar
  33. 33.
    US National Academy of Sciences, Aging and the Geochemical Environment, Washington, DC, 1981.Google Scholar
  34. 34.
    D. L. Grunes and W. H. Allaway, in Fertilizer Technology and Use, 3rd edn., O. P. Engelstad, ed., Soil Science Society of America, Madison, WI, 1985, pp. 589–619.Google Scholar
  35. 35.
    F. J. Kok, J. P. van denbrouche, C. van der Heide-Wessel and R. M. van der Heide, Am. J. Epidemiol 123, 1043 (1986).PubMedGoogle Scholar
  36. 36.
    M. S. Seelig, Magnesium Deficiency in the Pathogenesis of Disease: Early Roots of Cardiovascular, Skeletal, and Renal Abnormalities. Plenum, New York, 1980.Google Scholar
  37. 37.
    V. Eybl, J. Sykorna, and F. Mertl, Acta Pharmacol. Toxicol. Suppl. 59(7), 547 (1986).Google Scholar
  38. 38.
    H. Ohta, and S. Imamiya, Kitasato Arch. Exp. Med. 59(1–2), 27 (1986).PubMedGoogle Scholar
  39. 39.
    L. Kosta, V. Zelenko, and A. R. Byrne, in Hommage Professeur Rene Truhaut, Fac. Pharm., Paris, Fr., 1984, pp. 576–580.Google Scholar
  40. 40.
    W. T. Buckley, S. N. Huckin, L. J. Fisher, and G. K. Eigendorf, Can. J. Anim. Sci. 66(4), 1009 (1986).CrossRefGoogle Scholar
  41. 41.
    E. L. Schneider and J. D. Reed, N. Engl. J. Med. 312, 1159 (1985).PubMedCrossRefGoogle Scholar
  42. 42.
    S. B. Eaton and M. Konner, N. Engl. J. Med. 312, 283 (1985).PubMedCrossRefGoogle Scholar
  43. 43.
    J. Cairns, Scient. Am. 253(5), 51 (1985).CrossRefGoogle Scholar
  44. 44.
    H. C. Hopps and B. L. O’Dell, Federation Proc. 40, 2112 (1981).Google Scholar
  45. 45.
    US National Academy of Sciences, Recommended Daily Allowances, 9th ed., Washington, DC, 1980.Google Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • M. L. Jackson
    • 1
  1. 1.University of Wisconsin, SoilsMadisonUSA

Personalised recommendations