Advertisement

Neuronal Phosphoproteins

Mediators of Signal Transduction
  • Paul Greengard
Part of the Molecular Neurobiology book series (MN)

Abstract

This article summarizes some of our knowledge concerning intracellular protein phosphorylation pathways in nerve cells. It also summarizes, very briefly, recent direct experimental evidence involving intracellular injection of protein kinases, protein kinase inhibitors, and substrates, indicating that protein phosphorylation mediates the actions of a variety of neurotransmitters on their target cells. Finally, it summarizes in somewhat greater detail the results of studies of three different types of substrate proteins that appear to regulate different types of biological responses in nerve cells: synapsin I, a substrate protein present in virtually all nerve terminals, which appears to regulate neurotransmitter release from those nerve terminals; the acetylcholine receptor, the phosphorylation of which regulates its rate of desensitization in the presence of acetylcholine; and DARPP-32, the phosphorylation of which converts it into a very potent phosphoprotein phosphatase inhibitor that may be involved in the regulation by the neuromodulator dopamine of the effects of the neurotransmitter glutamate. The identification and characterization of additional neuronal phospho-proteins can be expected to lead to the clarification of numerous additional molecular mechanisms by which signal transduction is carried out in nerve cells.

Index Entries

Neuronal phosphoproteins phosphoproteins, neuronal signal transduction, neuronal phosphoproteins as mediators of mediators, of signal transduction by neuronal phosphoproteins neurotransmitter actions synapsin I nicotinic acetylcholine receptor DARPP-32, regulation of cAMP regulation of DARPP-32 dopamine regulation, of DARPP-32 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams W. B. and Levitan I. B. (1982) Intracellular injection of protein kinase inhibitor blocks the serotonin-induced increase of K+ conductance in Aplysia neuron R15. Proc. Natl. Acad. Sci. USA 79, 3877–3880.PubMedGoogle Scholar
  2. Aitken A. T., Bilham P., Cohen P., Aswad P., Greengard P. (1981) A specific substrate from rabbit cerebellum for guanosine 3′:5′-monophosphate-de-pendent protein kinase. III Amino acid sequences at the two phosphorylation sites. J. Biol. Chem. 256, 3501–3506.PubMedGoogle Scholar
  3. Alkon D. L., Acosta-Urguidi J., Olds J., Kuzma G.. and Neary J. T. (1983) Protein kinase injection reduces voltage-dependent potassium currents. Science 219, 303–306.PubMedGoogle Scholar
  4. Aswad D. W. and Greengard P. (1981) A specific substrate from rabbit cerebellum for guanosine 3′: 5′-monophosphate-dependent protein kinase. II. Kinetic studies on its phosphorylation by guanosine 3′:5′-monophosphate-dependent and adenosine-3′:5′-monophosphate-dependent protein kinases. J. Biol Chem. 256, 3494–3500.PubMedGoogle Scholar
  5. Barnekow A., Schartl M., Anders F., and Bauer H. (1982) Identification of a fish protein associated with a kinase activity and related to the Rous sarcoma virus transforming protein. Cancer Res. 42, 2429–2433.PubMedGoogle Scholar
  6. Benson J. A. and Levitan I. B. (1983) Serotonin increases an anomalously rectifying K+ current in the Aplysia neuron R15. Proc. Natl Acad. Sci. USA 80, 3522–3525.PubMedGoogle Scholar
  7. Bloom F. E., Ueda T., Battenberg E., and Greengard P. (1979) Immunocytochemical localization in synapses of protein I, an endogenous substrate for protein kinase in mammalian brain. Proc. Natl. Acad. Sci. USA 76, 5982–5986.PubMedGoogle Scholar
  8. Brown E. M., Carroll R. J., and Aurbach G. D. (1977) Dopaminergic stimulation of cyclic AMP accumulation and parathyroid release from dispersed bovine parathryoid cells. Proc. Natl. Acad. Sci. USA 74, 4210–4213.PubMedGoogle Scholar
  9. Bunney B. S. (1979) The electrophysiological pharmacology of midbrain dopaminergic systems, in The Neurobiology of Dopamine, A. S. Horn, J. Korf, and B. H. C. Westerink, eds. pp. 417–452.Google Scholar
  10. Burgoyne R. D. (1983) Regulation of the muscarinic acetylcholine receptor; effects of phosphorylating conditions on agonist and antagonist binding. J. Neurochem. 40, 324–331.PubMedGoogle Scholar
  11. Calas A. (1985) Morphological correlates of chemically specified neuronal interactions in the hypo-thalamo-hypophoseal area. Neurochem. Int. 7, 927–940.PubMedGoogle Scholar
  12. Castellucci V. F., Nairn A., Greengard P., Schwartz J. H., and Kandel E. R. (1982) Inhibitor of adenosine 3′:5′-monophosphate-dependent protein kinase blocks presynaptic facilitation in Aplysia. J. Neurosci. 2, 1673–1681.PubMedGoogle Scholar
  13. Castellucci V. F., Kandel E. R., Schwartz J. H., Wilson F. D., Nairn A. C., and Greengard P. (1980) Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase stimulates facilitation of transmitter release underlying behavioral sensitization in Aplysia. Proc. Natl Acad. Sci. USA 77, 7492–7496.PubMedGoogle Scholar
  14. Chad J. E. and Eckert R. (1984) Stimulation of cAMP-dependent protein phosphorylation retards both inactivation and ‘washout’ of Ca current in dialyzed Helix neurons. Soc. Neurosci. Abstr. 10, 866.Google Scholar
  15. Cohen P. (1982) The role of protein phosphorylation in the neural and hormonal control of cellular activity. Nature 296, 613–620.PubMedGoogle Scholar
  16. Costa M. R., Casnellie J. E., and Catterall W. A. (1982) Selective phosphorylation of the alpha subunit of the sodium channel by cAMP-dependent protein kinase. J. Biol Chem. 257, 7918–7921.PubMedGoogle Scholar
  17. Costa M. R. C. and Catterall W. A. (1984a) Cyclic AMP-dependent phosphorylation of the α-subunit of the sodium channel in synaptic nerve ending particles. J. Biol Chem. 259, 8210–8218.PubMedGoogle Scholar
  18. Costa M. R. C. and Catterall W. A. (1984b) Phosphorylation of the α-subunit of the sodium channel by protein kinase C. Cell Mol Neurobiol 4, 291–297.PubMedGoogle Scholar
  19. Cotton P. C. and Brugge J. S. (1983) Neural tissues express high levels of the cellular src gene product pp60c-src. Mol Cell Biol. 3, 1157–1162.PubMedGoogle Scholar
  20. De Camilli P., Miller P. E., Levitt P., Walter U., and Greengard P. (1984) Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker. Neuroscience 11, 761–817.Google Scholar
  21. De Camilli P., Cameron R. and Greengard P. (1983a) Synapsin I (Protein I), a nerve terminal-specific phosphoprotein: I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J. Cell Biol. 96, 1337–1354.Google Scholar
  22. De Camilli P. Harris S. M., Huttner W. B., and Greengard P. (1983b) Synapsin I (Protein I), a nerve terminal-specific phosphoprotein: II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J. Cell Biol. 96, 1355–1373.Google Scholar
  23. De Camilli P., Ueda T., Bloom F. E., Battenberg E., and Greengard P. (1979) Widespread distribution of Protein I in the central and peripheral nervous system. Proc. Natl Acad. Sci. USA 76, 5977–5981.Google Scholar
  24. DeGennaro L. J., Kanazir S. D., Wallace W. C, Lewis R. M., and Greengard P. (1983) Neuron-specific phosphoproteins as models for neuronal gene expression. Cold Spring Harbor Syntp. Quant. Biol. 48, 337–345.Google Scholar
  25. de Jonge H. R. and Rosen O. M. (1977) Self-phosphor-ylation of cyclic guanosine 3′:5′-monophosphate-dependent protein kinase from bovine lung. J. Biol Chem. 252, 2780–2783.PubMedGoogle Scholar
  26. DeMaille J. G. and Pechere J. -F. (1983) The control of contractility by protein phosphorylation. Adv. Cyclic Nucleotide Res. 15, 337–371.Google Scholar
  27. de Peyer J. E., Cachelin A. B., Levitan I. B., and Reuter H. (1982). Ca2+-activated conductance in internally perfused snail neurons is enhanced by protein phosphorylation. Proc. Natl Acad. Sci. USA 79, 4207–4211.PubMedGoogle Scholar
  28. DeRiemer S. A., Strong J. A., Albert K. A., Greengard P., and Kaczmarek L. K. (1985) Enhancement of calcium current in Aplysia neurons by phorbol ester and protein kinase C. Nature 313,313–316.PubMedGoogle Scholar
  29. Detre J. A., Nairn A. C., Aswad D. W., and Greengard P. (1984) Localization in mammalian brain of G-substrate, a specific substrate for guanosine 3′:5′-monophosphate-dependent protein kinase. J. Neurosci. 4, 2843–2849.PubMedGoogle Scholar
  30. Dimova R., Vuillet J., and Scite R. (1980) Study of the rat neostriatum, using a combined Golgi-electron microscope technique and serial sections. Neuroscience 5, 1581–1596.PubMedGoogle Scholar
  31. Dolphin A. C. and Greengard P. (1981a) Serotonin stimulates phosphorylation of Protein I in the facial motor nucleus of rat brain. Nature 289, 76–79.PubMedGoogle Scholar
  32. Dolphin A. C. and Greengard P. (1981b) Neurotransmitter and neuromodulator-dependent alterations in phosphorylation of Protein I in slices of rat facial nucleus. J. Neurosci. 1, 192–203.PubMedGoogle Scholar
  33. Dolphin A. C, Hamont M., and Bockaert J. (1979) The resolution of dopamine and β1-and β1-adrenergic-sensitive adenylate cyclase activities in homogenates of cat cerebellum, hippocampus, and cerebral cortex. Brain Res. 179, 305–317.PubMedGoogle Scholar
  34. Doroshenko P. A., Kostyuk P. G., Martynyuk A. E., Kursky M. D., and Vorobetz Z. D. (1984) Intracellular protein kinase and calcium inward currents in perfused neurones of snail Helix pomatia. Neuroscience 11, 263–267.PubMedGoogle Scholar
  35. Edelman A. M., Raese J. D., Lazar M. A., and Barchas J. D. (1981) Tyrosine hydroxylase: Studies on the phosphorylation of a purified preparation of the brain enzyme by the cyclic AMP-dependent protein kinase. J. Pharmacol. Exp. Ther. 216, 647–653.PubMedGoogle Scholar
  36. Ehrlich Y. H., Whittemore S. R., Garfield M. K., Graber S. G., and Lenox R. H. (1982) Protein phosphorylation in the regulation and adaptation of receptor function. Prog. Brain Res. 56, 375–396.PubMedGoogle Scholar
  37. Ellis L., Katz F., and Pfenninger K. H. (1985) Nerve growth cones isolated from fetal rat brain. II. Cyclic adenosine 3′:5′-monophosphate (cAMP)-binding proteins and cAMP-dependent protein phosphorylation. J. Neurosci. 5, 1363–1401.Google Scholar
  38. Forn J. and Greengard P. (1978) Depolarizing agents and cyclic nucleotides regulate the phosphorylation of specific neuronal proteins in rat cerebral cortex slices. Proc. Natl. Acad. Sci. USA 75, 5195–5199.PubMedGoogle Scholar
  39. Forn J., Krueger B. K., and Greengard P. (1974) Adenosine 3′:5′-monophosphate content in rat caudate nucleus. Demonstration of dopaminergic and adrenergic receptors. Science 186, 1118–1120.PubMedGoogle Scholar
  40. Fried G., Nestler E. J., De Camilli P., Stjarne L., Olson L., Lundberg J. M., Hokfelt T., Ouimet C. C, and Greengard P. (1982) Cellular and subcellular localization of Protein I in the peripheral nervous system. Proc. Natl Acad. Sci. USA 79, 2717–2721.PubMedGoogle Scholar
  41. Goelz S. E., Nestler E. J., and Greengard P. (1985) Phylogenetic survey of proteins related to synapsin I and biochemical analysis of four such proteins from fish brain. J. Neurochem. 45, 63–72.PubMedGoogle Scholar
  42. Goelz S. E., Nestler E. J., Chehrazi B., and Greengard P. (1981) Distribution of Protein I in mammalian brain as determined by a detergent-based radioimmunoassay. Proc. Natl Acad. Sci. USA 78, 2130–2134.PubMedGoogle Scholar
  43. Goldenring J. R., Gonzalez B., and De Lorenzo R. J. (1982) Isolation of brain Ca2+ -calmodulin tubulin kinase containing calmodulin binding proteins. Biochem. Biophys. Res. Commun. 108, 421–428.PubMedGoogle Scholar
  44. Gordon A. S., Davis C. G., Milfay D., and Diamond I. (1977) Phosphorylation of acetylcholine receptor by endogenous membrane protein kinase in receptor-enriched membranes of Torpedo californica. Nature (Lond) 267, 539–540.PubMedGoogle Scholar
  45. Greengard P. (1981) Intracellular signals in the brain, in, The Harvey Lectures, Series 75, pp. 277–331, Academic, New York.Google Scholar
  46. Gribkoff V. K., Ashe J. H., Fletcher W. H., and Lekawa M. E. (1984) Dopamine, cyclic AMP, and protein kinase produce a similar long-lasting increase in input resistance in hippocampal CA1 neurons. Soc. Neurosci. Abstr. 10, 898.Google Scholar
  47. Groves P. M. (1983) A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Res. Rev. 5, 109–132.Google Scholar
  48. Gurley L. R., D’Anna J. A., Halleck M. S., Barham S. S., Walters R. A., Jett J. J., and Tobey R. A. (1981) Relationships between histone phosphorylation and cell proliferation. Cold Spring Harbor Conf. Cell Prolif. 8, 1073–1093.Google Scholar
  49. Hammond C., Paupardin-Tritsch D., Nairn A. C., Greengard P., and Gerschenfeld H. M. (1987) Cholestcystokinin induces a decrease in Ca2+ current in snail neurons that is mediated by protein kinase C. Nature. 325, 809–811.PubMedGoogle Scholar
  50. Hathaway G. M. and Traugh J. A. (1982) CaScin kinases—multipotential protein kinases. Curr. Top. Cell Regul. 21, 101–127.PubMedGoogle Scholar
  51. Hemmings H. C, Jr. and Greengard P. (1986) DARPP-32, a dopamine- and cyclic AMP-regulated phosphoprotein. Regional, tissue, and phylogenetic distribution. Neuroscience 6, 1469–1481.PubMedGoogle Scholar
  52. Hemmings H. C., Jr., Nairn A. C., Aswad D. W., and Greengard P. (1984a) DARPP-32, a dopamine-and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus. J. Neurosci. 4, 99–110.PubMedGoogle Scholar
  53. Hemmings H. C, Greengard P., Lim Tung H. Y., and Cohen P. (1984b) DARPP-32, a dopamine-regu-lated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 310, 503–505.PubMedGoogle Scholar
  54. Hemmings H. C, Jr., Williams K. R., Konigsberg W. H., and Greengard P. (1984c) DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated neuronal phosphoprotein. I. Amino acid sequence around the phosphorylated threonine. J. Biol. Chem. 259, 14486–14490.PubMedGoogle Scholar
  55. Hemmings H. C. Jr., Nairn A. C, and Greengard P. (1984d) DARPP-32, a dopamine and adenosine 3′:5′-monophosphate-regulated neuronal phosphoprotein. II. Comparison of the kinetics of phosphorylation of DARPP-32 and phosphatase inhibitor-1. J. Biol. Chem. 259, 14491–14497.PubMedGoogle Scholar
  56. Henn F. A., Anderson D. J., and Sellstrom A. (1977) Possible relationship between glial cells, dopamine, and the effects of antipsychotic drugs. Nature 266, 636–638.Google Scholar
  57. Hook V. Y. H., Stokes K. B., Lees N. M., and Loh H. H. (1981) Possible nuclear protein kinase regulation of homologous ribonucleic acid polymerases from small dense nuclei of mouse brain during morphine tolerance-dependence. Biochem. Pharmacol. 30, 2313–2318.PubMedGoogle Scholar
  58. Huang F. L. and Glinsmann W. H. (1976) Separation and characterization of two Phosphorylase phosphatase inhibitors from rabbit skeletal muscle. Eur. J. Biochem. 70, 419–426.PubMedGoogle Scholar
  59. Huganir R. L., Delcour A. H., Greengard P., and Hess G. P. (1986) Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 321, 774–776.PubMedGoogle Scholar
  60. Huganir R. L., Miles K., and Greengard P. (1984) Phosphorylation of the nicotinic acetylcholine receptor by an endogenous tyrosine-specific protein kinase. Proc. Natl Acad. Sci. USA 81, 6968–6972.PubMedGoogle Scholar
  61. Huganir R. L. and Greengard P. (1983) cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 80, 1130–1134.PubMedGoogle Scholar
  62. Huganir R. L., Albert K. A., and Greengard P. (1983) Phosphorylation of the nicotinic acetylcholine receptor by Ca2+ phospholipid-dependent protein kinase, and comparison with its phosphorylation by cAMP-dependent protein kinase. Soc. Neurosci. Abstr. 9, 578.Google Scholar
  63. Huttner W. B. and Greengard P. (1979) Multiple phosphorylation sites in Protein I and their differential regulation by cyclic AMP and calcium. Proc. Natl. Acad. Sci. USA 76, 5402–5406.PubMedGoogle Scholar
  64. Huttner W. B., DeGennaro L. J., and Greengard P. (1981) Differential phosphorylation of multiple sites in purified Protein I by cyclic AMP-dependent and calcium-dependent protein kinases. J. Biol. Chem. 256, 1482–1488.PubMedGoogle Scholar
  65. Huttner W. B., Schiebler W., Greengard P., and De Camilli P. (1983) Synapsin I (Protein I), a nerve terminal-specific phosphoprotein. III. Itsassocia-tion with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J.Cell Biol. 96, 1374–1388.PubMedGoogle Scholar
  66. Ingebritsen T. S. and Cohen P. (1983a) Protein phosphatases: Properties and role in cellular regulation. Science 221, 331–338.PubMedGoogle Scholar
  67. Ingebritsen T. S. and Cohen P. (1983b) The protein phosphatases involved in cellular regulation. I. Classification and substrate specificities. Eur. J. Biochem. 132, 255–261.PubMedGoogle Scholar
  68. Joh T. H., Park D. H., and Reis D. J. (1978) Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: Mechanism of enzyme activation. Proc. Natl Acad. Sci. USA 75, 4744–4748.PubMedGoogle Scholar
  69. Johnson E. M. (1982) Nuclear protein phosphorylation and the regulation of gene expression. Handb. Exp. Pharamacol. 58 (Part I), 507–533.Google Scholar
  70. Johnson E. M., Ueda T., Maeno H., and Greengard P. (1972) Adenosine 3′:5′-monophosphate-dependent phosphorylation of a specific protein in synaptic membrane fractions from rat cerebrum. J. Biol Chem. 247, 5650–5652.PubMedGoogle Scholar
  71. Kaczmarek L. K., Nairn A. C., and Greengard P. (1984) Microinjection of protein kinase inhibitor prevents enhancement of action potentials in peptidergic neurons of Aplysia. Abstracts of the 14th Annual Meeting of the Society for Neuroscience, 10, 895.Google Scholar
  72. Kaczmarek L. K., Jennings K. R., Strumwasser F., Nairn A. C., Walter U., Wilson F. D., and Greengard P. (1980) Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture. Proc. Natl. Acad. Sci. USA 77, 7487–7491.PubMedGoogle Scholar
  73. Kakiuchi S. and Rall T. W. (1968) The influence of chemical agentson the accumulation of adenosine 3′:5′-monophosphate in slices of rabbit cerebellum. Mol Pharmacol. 4, 367–378.PubMedGoogle Scholar
  74. Kebabian J. W. and Cote T. E. (1981) Dopamine receptors and cyclic AMP: A decade of progress. Trends. Pharmacol Sci. 2, 69–71.Google Scholar
  75. Kebabian J. W. and Calne D. B. (1979) Multiple receptors for dopamine. Nature, 277, 93–96.PubMedGoogle Scholar
  76. Kebabian J. W. and Greengard P. (1971) Dopamine-sensitive adenylate cyclase: Possible role in synaptic transmission. Science 174, 1346–1349.PubMedGoogle Scholar
  77. Kennedy M. B. and Greengard P. (1981) Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate Protein I at distinct sites. Proc. Natl. Acad. Sci. USA 78, 1293–1297.PubMedGoogle Scholar
  78. Kennedy M. B., McGuinness T., and Greengard P. (1983) A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates Synapsin I: Partial purification and characterization. J. Neurosci. 3, 818–831.PubMedGoogle Scholar
  79. Kikkawa U., Takai Y., Minakuchi R, Inohara S., and Nishizuka Y. (1982) Calcium-activated, phospholipid-dependent protein kinase from rat brain. Subcellular distribution, purification and properties. J. Biol. Chem. 257, 13341–13348.PubMedGoogle Scholar
  80. King M. M., Huang C. Y., Chock P. B., Nairn A. C., Hemmings H. C., Jr., Chan, K. -F. J., and Greengard P. (1984) Mammalian brain phosphoproteins as substrates for calcineurin. J. Biol. Chem. 259, 8080–8083.PubMedGoogle Scholar
  81. Krueger B. K., Forn J., and Greengard P. (1977) Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes. J. Biol Chem. 252, 2764–2773.PubMedGoogle Scholar
  82. Kuhn D. M. and Lovenberg W. (1982) Roleof calmodulin in the activation of tryptophan hydroxylase. Fed. Proc. 41, 2258–2264.PubMedGoogle Scholar
  83. Langan T. (1969) Phosphorylation of liver histone following the administration of glucagon and insulin. Proc. Natl. Acad. Sci. USA 64, 1276–1283.PubMedGoogle Scholar
  84. Lee R. H., Brown B. M., and Lolley R. N. (1981) Protein kinases of retinal rod outer segments; identification and partial characterization of cyclic nucleotide-dependent protein kinase and rhodopsin kinase. Biochemistry 20, 7532–7538.PubMedGoogle Scholar
  85. Levitt P., Rakic P., De Camilli P., and Greengard P. (1984) Emergence of cyclic guanosine 3′:5′-monophosphate-dependent protein kinase immunore-activity in developing Rhesus monkey cerebellum: Correlative immunocytochemical and electron microscopic analysis. J. Neurosci. 4, 2553–2564.PubMedGoogle Scholar
  86. Lindvall O. and Bjorklund A. (1978) Organization of catecholamine neurons in the rat central nervous system, in Iversen L.L., Iversen S. D., and Snyder S. H., eds. Handbook of Psychopharmacology, vol. 9, Plenum, New York. pp. 139–231.Google Scholar
  87. Ljungdahl A. T., Hokfelt T., and Nilsson G. (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience 3, 861–943.PubMedGoogle Scholar
  88. Llinas R., McGuinness T. L., Leonard C. S., Sugimori M., and Greengard P. (1985) Intraterminal injection of Synapsin I or calcium/calmodulin-depen-dent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc. Natl. Acad. Sci. USA 82, 3035–3039.PubMedGoogle Scholar
  89. Lohmann S. M., Ueda T., and Greengard P. (1978) Ontogeny of synaptic phosphoproteins in brain. Proc. Natl. Acad. Sci. USA 75, 4037–4041.PubMedGoogle Scholar
  90. Marchmont R. J. and Houslay M. D. (1980) Insulin triggers cyclic AMP-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase. Nature 286,904–906.PubMedGoogle Scholar
  91. Mobley P. and Greengard P. (1985) Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex. Proc. Natl. Acad. Sci. USA 82, 945–947.PubMedGoogle Scholar
  92. Moore R. Y. and Bloom F. E. (1978) Central catecholamine neuron systems. Anatomy and physiology of the dopamine systems. Ann. Rev. Neurosci. 1, 129–169.PubMedGoogle Scholar
  93. Nairn A. C. and Greengard P. (1987) Purification and characterization of brain Ca2+/calmodulin-dependent protein kinase I from bovine brain. J. Biol. Chem. 262, 7273–7281.PubMedGoogle Scholar
  94. Navone F., Greengard P., and DeCamilli P. (1984) Synapsin I in nerve terminals: Selective association with small synaptic vesicles. Science 226, 1209–1211.PubMedGoogle Scholar
  95. Nestler E.J. and Greengard P. (1984) Protein Phosphorylation in the Nervous System, Wiley, New York.Google Scholar
  96. Nestler E. J. and Greengard P. (1983) Protein phosphorylation in the brain. Nature, 305, 583–588.PubMedGoogle Scholar
  97. Nestler E. J. and Greengard P. (1982a) Nerve impulses increase the state of phosphorylation of Protein I in the rabbit superior cervical ganglion. Nature 29, 452–454.Google Scholar
  98. Nestler E. J. and Greengard P. (1982b) Distribution of Protein I and regulation of its state of phosphorylation in the rabbit superior cervical ganglion. J. Neurosci. 2, 1011–1023.PubMedGoogle Scholar
  99. Nestler E. J. and Greengard P. (1980) Dopamine and depolarizing agents regulate the state of phosphorylation of Protein I in mammalian superior cervical sympathetic ganglion. Proc. Natl. Acad. Sci. USA 77, 7479–7483.PubMedGoogle Scholar
  100. Nestler E. J., Walaas S. I., and Greengard P. (1984) Neuronal phosphoproteins: Physiological and clinical implications. Science 225, 1357–1364.PubMedGoogle Scholar
  101. Nimmo G. A., and Cohen P. (1978) The regulation of glycogen metabolism. Purification and characterization of protein phosphatase in-hibitor-1 from rabbit skeletal muscle. Eur. J. Biochem. 87, 341–351.PubMedGoogle Scholar
  102. Nishizuka Y. (1984) Turnover of inositol phospholipids and signal transduction. Science 225, 1365–1370.PubMedGoogle Scholar
  103. Oertel W. H. and Mugnaini E. (1984) Immuno-cytochemical studies of GABA-ergic neurons in rat basal ganglia and their relations to other neuronal systems. Neurosci. Lett. 47, 233–238.PubMedGoogle Scholar
  104. Osterrieder W., Brum G., Hescheler J., Trautwein W., Flockerzi V., and Hoffman F. (1982) Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature 298, 576–578.PubMedGoogle Scholar
  105. Ouimet C. C., Miller P. E., Hemmings H. C., Jr., Walaas S. I., and Greengard P. (1984) DARPP-32, a dopamine- and adenosine 3′: 5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J. Neurosci. 4, 111–124.Google Scholar
  106. Pasik P., Pasik T., and DiFiglia M. (1979) The internal organization of the neostriatum in mammals in The Neostriatum Divac I. and Oberg G. E., eds., Pergamon, New York, pp. 5–36.Google Scholar
  107. Paupardin-Tritsch D., Hammond C., Gerschenfeld H.M., Nairn A.C, and Greengard P.(1986)cGMP-dependent protein kinase enhances Ca2+ current and potentiates a serotonin-induced Ca2+ current increase in snail neurones. Nature 323, 812–814.PubMedGoogle Scholar
  108. Pickel V. M., Sumal K. K., Beckley S. C., Miller R. J., and Reis D. J. (1980) Immunocytochemical localization of enkephalin in the neostriatum of rat brain: A light and electron microscopic study. J. Comp. Neurol. 189, 721–740.PubMedGoogle Scholar
  109. Rangel-Aldao R. and Rosen O. M. (1976) Dissociation and reassociation of the phosphorylated and non-phosphorylated forms of adenosine 3′:5′-mono-phosphate-dependent protein kinase from bovine cardiac muscle. J. Biol Chem. 251, 3375–3380.PubMedGoogle Scholar
  110. Reader T. A., Ferron A., Descarnes L., and Jasper H. H. (1979) Modulatory role for biogenic amines in the cerebral cortex. Microiontophoretic studies. Brain Res. 160,217–229.PubMedGoogle Scholar
  111. Reiner A., Braith S. E., and Karten H. J. (1984) Evolution of the amniote basal ganglia. Trends Neurosci. 7, 320–325.Google Scholar
  112. Richards J. M., Tierney J. M., and Swislocki N. I. (1981) ATP-dependent activation of adenylate cyclase. J. Biol Chem. 256, 3375–3380.Google Scholar
  113. Roberts S. (1982) Ribosomal protein phosphorylation and protein synthesis in the brain. Prog. Brain Res. 56, 195–211.PubMedGoogle Scholar
  114. Saitoh T. and Changeux J. -P. (1981) Change in the state of phosphorylation of acetylcholine receptor during maturation of the electromotor synapse in Torpedo marmorata electric organ. Proc. Natl Acad. Sci USA 78, 4430–4434.PubMedGoogle Scholar
  115. Schichi H. and Somers R. L. (1978) Light-dependent phosphorylation of rhodopsin. Purification and properties of rhodopsin kinase. J. Biol Chem. 253, 7040–7046.Google Scholar
  116. Schiebler W., Jahn R., Doucet J. -P. Rothlein J., and Greengard P., (1986) Characterization of synapsin I binding to small synaptic vesicles. J. Biol Chem. 261, 8383–8390.PubMedGoogle Scholar
  117. Schiebler W., Jahn R., Doucet J. P., and Greengard P. (1983) Synapsin I (Protein I) binds specifically and with high affinity to highly purified synaptic vesicles from rat brain. Soc. Neurosci Abstr. 9, 882.Google Scholar
  118. Schlichter D. J., Detre J. A., Aswad D. W., Chehrazi B., and Greengard P. (1980) Localization of cyclic GMP-dependent protein kinase and substrate in mammalian cerebellum. Proc. Natl Acad. Sci. USA 77, 5537–5541.PubMedGoogle Scholar
  119. Schlichter D. J. Casnellie J. E., and Greengard P. (1978) An endogeous substrate for cGMP-dependent protein kinase in mammalian cerebellum. Nature 273, 61–62.PubMedGoogle Scholar
  120. Schubert D., Tarikas H., and LaCombiere M. (1976) Neurotransmitter regulation of adenosine 3′: 5′-monophosphate in clonal nerve, glia and muscle cells. Science 192, 471–472.PubMedGoogle Scholar
  121. Schwartz R. and Coyle J. T. (1977) Striatal lesions with kainic acid: Neurochemical characteristics. Brain Res. 127, 235–249.Google Scholar
  122. Sharma R. K., Wang T. H., Wirch E., and Wang, J. H. (1980) Purification and properties of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase. J. Biol Chem. 255, 5916–5923.PubMedGoogle Scholar
  123. Siegelbaum S. A., Camardo J. S., and Kandel E. R. (1982) Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature 299, 413–417.PubMedGoogle Scholar
  124. Sieghart W., Fom J., and Greengard P. (1979) Ca2+ and cyclic AMP regulate phosphorylation of same two membrane-associated proteins specific to nervous tissue. Proc. Natl Acad. Sci. USA 76, 2475–2479.PubMedGoogle Scholar
  125. Sieghart W., Forn J., Schwarcz R., Coyle J. T., and Greengard P. (1978) Neuronal localization of specific brain phosphoproteins. Brain Res. 156, 345–350.PubMedGoogle Scholar
  126. Sorensen R. G. and Babitch J. A. (1984) Identification and comparison of Protein I in chick and rat fore-brain. J. Neurochem. 42, 705–710.Google Scholar
  127. Stadel J. M., Nambi P., Shorr R. G. L., Sawyer D. F., Caron M. G., and Lefkowitz R. J. (1983) Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the β-adrenergic receptor. Proc. Natl. Acad. Sci. USA 80, 3173–3177.PubMedGoogle Scholar
  128. Stewart A. A., Ingebritsen T. S., Manalan A., Klee C. B., and Cohen P. (1982) Discovery of Ca2+- and cal-modulin-dependent protein phosphatase. FEBS lett. 137, 80–84.PubMedGoogle Scholar
  129. Stoof J. C. and Kebabian J. W. (1981) Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 294, 366–368.PubMedGoogle Scholar
  130. Strombom U., Forn J., Dolphin A. C., and Greengard P. (1979) Regulation of the state of phosphorylation of specific neuronal proteins in mouse brain by in vivo administration of anesthetic and convul-sant agents. Proc. Natl. Acad. Sci. USA 76, 4687–4690.PubMedGoogle Scholar
  131. Teichberg V. I.,Sobel A., and Changeux J. -P. (1977) In vitro phosphorylation of the acetylcholine receptor. Nature 267, 540–542.Google Scholar
  132. Thomas G. (1982) Activation of multiple S6 phosphorylation and its possible role in the alteration of mRNA expression. Prog. Brain Res. 56, 179–194.PubMedGoogle Scholar
  133. Tsou K. and Greengard P. (1982) Regulation of phosphorylation of Proteins I, IIIa and IIIb in rat neurohypophysis in vitro by electrical stimulation and by neuroactive agents. Proc. Natl. Acad. Sci. USA 79, 6075–6079.PubMedGoogle Scholar
  134. Ueda T. (1981) Attachment of the synapse-specific phosphoprotein protein I to the synaptic membrane: A possible role of the collagenase-sensitive region of protein I. J. Neurochem. 36, 297–300.PubMedGoogle Scholar
  135. Ueda T. and Greengard P. (1977) Adenosine 3′:5′-monophosphate regulated phosphoprotein system of neuronal membranes. I. Solubilization, purification and some properties of an endogenous phosphoprotein. J. Biol. Chem. 252, 5155–5163.PubMedGoogle Scholar
  136. Ueda T., Greengard P., Berzins K., Cohen R.S., Blomberg F., Grab D. J., and Siekevitz P. (1979) Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP-dependent protein kinase. J. Cell Biol. 83, 308–319.PubMedGoogle Scholar
  137. Ueda T., Maeno H., and Greengard P. (1973) Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3′:5′-monophosphate. J. Biol Chem. 248, 8295–8305.PubMedGoogle Scholar
  138. Vandlen R. L., Wu W. C. -S., Eisenach J. C, and Raftery M. A. (1979) Studies of the composition of purified Torpedo californica acetylcholine receptor and its subunits. Biochemistry 18, 1845–1853.PubMedGoogle Scholar
  139. Walaas S. I. and Greengard P. (1984) DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine innervated brain regions. I. Regional and cellular distribution in rat brain. J. Neurosci. 4, 84–98.PubMedGoogle Scholar
  140. Walaas S. I., Nairn A. C, and Greengard P. (1983a) Regional distribution of calcium- and cyclic AMP-regulated protein phosphorylation systems in mammalian brain. I. Particulate systems. J. Neurosci. 3, 291–301.PubMedGoogle Scholar
  141. Walaas S. I., Nairn A. C., and Greengard P. (1983b) Regional distribution of calcium- and cyclic AMP-regulated protein phosphorylation systems in mammalian brain. II. Soluble systems. J. Neurosci. 3, 302–311.PubMedGoogle Scholar
  142. Walaas S. I., Aswad D. W., and Greengard P. (1983c) A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature 301, 69–71.PubMedGoogle Scholar
  143. Wallace W. C., Lewis R. M., Kanazir S., DeGennaro L. J., and Greengard P. (1985) Neuron-specific phosphoproteins as models for neuronal gene expression, in Gene Expression in Brain Walker W. A. and Zomzely-Neurath C., eds. Wiley, New York, pp. 99–124.Google Scholar
  144. Wallace R. W., Tallant E A., and Cheung W. Y. (1980) High levels of a heat-labile calmodulin-binding protein (CaM-BP80) in bovine neostriatum. Bio-chemistry 19, 1831–1837.Google Scholar
  145. Williams K. R., Hemmings H. C., Jr., LoPresti M. B., Konigsberg W. H., and Greengard P. (1986) DARPP-32, a dopamine- and cyclic AMP-regulated neuronal phosphoprotein. Primary structure and homology with protein phosphatase inhibitor-1. J. Biol. Chem. 261, 1890–1903.PubMedGoogle Scholar
  146. Wise B. C., Guidotti A., and Costa E. (1983) Phosphorylation induces a decrease in the biological activity of the protein inhibitor (GABA-modulin) of gamma-aminobutyric acid binding sites. Proc. Natl Acad. Sci. USA 80, 886–890.PubMedGoogle Scholar
  147. Wood J. G., Wallace R. W., Whittaker J. N., and Cheung W. Y. (1980) Immunocytochemical localization of calmodulin and a heat labile calmod-ulin-binding protein (CaM-BP80) in basal ganglia of mouse brain. J. Cell Biol. 84, 66–76.PubMedGoogle Scholar
  148. Yamauchi T., Nakata H., and Fujisawa H. (1981) A new activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase: Purification and characterization. BBRC 256, 5404–5409.Google Scholar
  149. Zwiller J., Revel M. -O., and Basset P. (1982) Evidence for phosphorylation of rat brain guanylate cyclase by cyclic AMP-dependent protein kinase. Bio-chem. Biophys. Res. Commun. 101, 1381–1387.Google Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • Paul Greengard
    • 1
  1. 1.The Laboratory of Molecular and Cellular NeuroscienceThe Rockefeller UniversityNew YorkUSA

Personalised recommendations