Advertisement

Interleukin-2 Receptor Directed Immunosuppressive Therapy

  • T. B. Strom
  • V. E. Kelley
  • J. R. Murphy
  • H. Osawa
  • N. L. Tilney
  • M. E. Shapiro
  • J. W. Kupiec-Weglinski
  • T. Diamantstein
  • G. N. Gaulton
  • R. L. Kirkman
Part of the Experimental Biology and Medicine book series (EBAM, volume 18)

Abstract

An ideal antirejection therapy should, of course, be effective in controlling rejection as well as selectively target only those T-cells that are committed to participate in rejection of the donor graft. Conventional immunosuppressive drugs exact unwanted side effects upon non-lymphoid tissues. The introduction of monoclonal antibodies as pharmacologic tools have been long awaited as therapeutic use of T-cell specific monoclonal antibodies can obviate many side effects on non-lymphoid tissues by providing new opportunities for a more targeted form of immunosuppressive therapy. Nonetheless, the pan-T cell antibodies, used with considerable success in transplantation, react with all T cells, while an ideal therapy would target only those lymphocytes committed to the unwanted immune reaction.

Keywords

Graft Survival Receptor Antibody Cardiac Allograft Allograft Survival Receptor Monoclonal Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cotner, T., Williams, J. M., Christenson, L., Shapiro, H. M., Strom, T. B., and Strominger, J. L. Simultaneous flow cytometric analysis of human T-cell activation antigen expression and DNA content. (1983). J Exp Med 157, 461.PubMedCrossRefGoogle Scholar
  2. 2.
    Williams, J. M., Loertscher, R., Cotner, T., Reddish, M., Shapiro, H. M., Carpenter, C. B., Strominger, J. L., and Strom, T. B. Dual parameter flow cytometric analysis of human mixed lymphocyte reaction. (1984). J Immunol 132, 2330.Google Scholar
  3. 3.
    Smith, K. A., Gillis, S., Baker, P. E., McKenzie, D., and Rusetti, F. W. T-cell growth factor mediated T-cell proliferation. (1979). Ann NY Acad Sci 332, 423.PubMedCrossRefGoogle Scholar
  4. 4.
    Coutinho, A., Larsson, E. L., Gronvik, K. O., and Anderson, J. Studies on T-lymphocyte activation. II. The target cells for concanavalin A induced growth factors. (1979). Eur J Immunol 9, 587.PubMedCrossRefGoogle Scholar
  5. 5.
    Bonnard, G. D., Yasaka, D., and Jacobson, D., Ligand-activated T-cell growth factor-induced proliferation: absorption of T-cell growth factor by activated T-cells. (1979). J Immunol 123, 2704.PubMedGoogle Scholar
  6. 6.
    Larsson, E. L. Mechanism of T cell activation. II. Antigen- and lectin-dependent acquisition to responsiveness to TCGF is a nonmitogenic active response of resting T-cells. (1981). J Immunol 126, 1323.PubMedGoogle Scholar
  7. 7.
    Larsson, E. L., and Coutinho, A. The role of mitogenic lectins in T-cell triggering. (1979). Nature (London) 280, 235.CrossRefGoogle Scholar
  8. 8.
    Robb, R. J., Munck, A., and Smith, K. A. T cell growth factor receptors. Quantitation, specificity, and biological relevance. (1981). J Exp Med 154, 1455.PubMedCrossRefGoogle Scholar
  9. 9.
    Helderman, J. H. and Strom, T.B. Emergence of insulin receptors upon alloimmune T cells in the rat. (1977). J Clin Invest. Google Scholar
  10. 10.
    Helderman, J. H. and Strom, T.B. Specific insulin binding site on T and B lymphocytes as a marker of cell activation. (1978). Nature. 274, 62–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Trowbridge, I.S. and Omary, M.B. Human surface glycoprotein related to cell proliferation is the receptor for transferrin. (1981). Proc. Natl. Acad Sci USA 78, 3039.PubMedCrossRefGoogle Scholar
  12. 12.
    Cantrell, P. A., and Smith, K. A. The interleukin 2 T-cell system: a new cell growth model. (1984). Science (Wash. DC) 224, 1312.CrossRefGoogle Scholar
  13. 13.
    Leonard, W. J., Depper, J. M., Uchiyama, T., Smith, K. A., Waldmann, T. A., and Greene, W. C. A monoclonal antibody that appears to recognize the receptor for human T-cell growth factor; partial characterization of the receptor. (1982). Nature (London) 300, 267.CrossRefGoogle Scholar
  14. 14.
    Kaye, J., Gillis, S., Mizel, S. B., Shevach, E. M., Malek, T. R., Dinarello, C. A., Lachman, L. B., and Janeway, C. A., Jr. Growth of a cloned helper T cell line induced by a monoclonal antibody specific for the antigen receptor: interleukin 1 is required for the expression of receptors for interleukin 2. (1984). J Immunol 133, 1339.PubMedGoogle Scholar
  15. 15.
    Morgan, D. A., Ruscetti, F. W., and Gallo, R. Selective in vitro growth of T lymphocytes from normal human bone marrows. (1976). Science (Washington, D.C.) 193, 1007.CrossRefGoogle Scholar
  16. 16.
    Ruscetti, F. W., Morgan, D. A., and Gallo, R. C., Functional and morphologic characterization of human T-cells continuously grown in vitro. (1977). J Immunol 119, 131.PubMedGoogle Scholar
  17. 17.
    Gillis, S., and Smith, K. A. Long term culture of tumor-specific cytotoxic T cells. (1977). Nature (London) 268, 1544.CrossRefGoogle Scholar
  18. 18.
    Schreier, M. H., Iscove, N. N., Tess, R., Aarden, I., and von Boehmer, H. Clones of killer and helper T cells; growth requirements, specificity, and retention of function in long term culture. (1980). Immunol Rev 51, 315.PubMedCrossRefGoogle Scholar
  19. 19.
    Farrar, J. J., Benjamin, W. R., Hilfiker, M. L., Howard, M., Farrar, W. L., and Fuller-Farrar, J. The biochemistry, biology, and role of interleukin 2 in the induction of cytotoxic T cell and antibody-forming B cell responses. (1982). Immunol Rev 63, 129.PubMedCrossRefGoogle Scholar
  20. 18.
    Leonard, W. J., Depper, J. M., Robb, R. J., Waldmann, T. A. and Greene, W. C. Characterization of the human receptor for T-cell growth factor. (1983). Proc Natl Acad Sci USA 80, 6957.PubMedCrossRefGoogle Scholar
  21. 19.
    Malek, T. B., Robb, R. J., and Shevach, E. M. Identification and initial characterization of a rat monoclonal antibody reactive with the murine interleukin 2 receptor-ligand complex. (1983). Proc. Natl Acad Sci USA 80, 5694.PubMedCrossRefGoogle Scholar
  22. 20.
    Gaulton, G. N., Bangs, J., Maddock, S., Springer, T., Eardley, D. D., Strom, T. B. Characterization of a monoclonal rat anti-mouse interleukin 2 (IL-2) receptor antibody and its use in the biochemical characterization of the murine IL-2 receptor. (1985). Clin Immunol Immunopath 94, 383.Google Scholar
  23. 21.
    Osawa, H., and Diamantstein, T. The characteristics of a monoclonal antibody that binds specifically to rat T lymphoblasts and inhibits IL2 receptor functions. (1983). J Immunol 130, 51.PubMedGoogle Scholar
  24. 22.
    Kirkman, R. L., Barrett, L. V., Gaulton, G. N., Kelley, V. E., Ythier, A., Strom, T. B. Administration of an anti-interleukin 2 receptor monoclonal antibody prolongs allograft survival in mice. (1985). J Exp Med 162,358.PubMedCrossRefGoogle Scholar
  25. 23.
    Kirkman, R. L., Barrett, L. V., Gaulton, G. N., Kelley, V. E., Koltun, W. A., Schoen, F. J., Ythier, A., Strom, T. B. The effect of anti-interleukin-2 receptor monoclonal antibody on allograft rejection. (1985). Transplantation 40, 719.PubMedCrossRefGoogle Scholar
  26. 24.
    Osawa, H. and Diamanstein, T. A rat monoclonal antibody that binds specifically to mouse T lymphoblasts and inhibits IL-2 receptor functions: A putative anti-IL2 receptor antibody. (1984). J Immunol 132, 2445.PubMedGoogle Scholar
  27. 25.
    Kirkman R.L., Barrett, L.V., Koltun, W.A. and Diamanstein, T. Prolongation of murine cardiac allograft survival by the anti-interleukin-2 receptor monocloanl antibody AMT 13. Transplant. Proc. (in press).Google Scholar
  28. 26.
    Granstein, R.D., Goulston, C, and Gaulton, G.N. prolongation of murine skin allograft survival by immunologic manipulation with anti-interleukin 2 receptor antibody. (1986). J. Immunol. 136, 898.PubMedGoogle Scholar
  29. 27.
    Kelley, V.E., Naor, D., Tarcic, N., Gaulton, G.N., Strom, T.B. Anti-interleukin-2 receptor antibody suppresses delayed type hypersensitivity to foreign and syngenic antigens. (1986). J Immunol. 137, 2122.PubMedGoogle Scholar
  30. 28.
    Kelley, V.E., Gaulton, G.N., and Strom, T.B. Inhibition effects of anti-interleukin-2 receptor and anti-L3T4 antibodies on delayed type hypersensitivity: The role of complement and epitope, J. Immunol (in press).Google Scholar
  31. 29.
    Kelley, V.E. and Strom, T.B. Anti-interleukin-2 receptor antibody suppresses lupus nephritis. (1987). Kidney Int. 31, 324 (abst.).Google Scholar
  32. 30.
    Kupiec-Weglinski, J. W., Diamantstein, T., Tilney, N. L., Strom, T. B. Anti-interleukin-2 receptor monoclonal antibody spares T suppressor cells and prevents reserves acute allograft rejection. (1986). Proc Natl Acad Sci USA 83, 2624.PubMedCrossRefGoogle Scholar
  33. 31.
    Diamantstein, T., Volk, H.D., Tilney, N.L. and Kupiec-Weglinski, J.W. Specific immunosuppressive therapy by monoclonal anti-IL-2 receptor antibody and its synergistic action with cyclosporin. (1986). Immunobiology. 172, 391.PubMedGoogle Scholar
  34. 32.
    Hancock, W.W., Lord, M.M., Colby, A.J., Diamantstein, T., Rickles, F.R., and Tilney, N.L. Identification of IL-2R+ T cells and macrophages within rejecting rat cardiac allografts, and comparison of the effects of treatment with anti-Il-2R monoclonal antibody and cyclosporin. (1987). J Immunol. 138, 164.PubMedGoogle Scholar
  35. 33.
    Kupiec-Weglinski, J.W., Padberg, W., Uhteg, L.C., Ma, Lan, Lord, R.H., Arenada, D., Strom, T.B., Diamantstein, T., and Tilney, N.L. Selective immunosuppression with anti-interleukin-2 receptor targeted therapy helper and suppressor cell activity in rat recipients of cardiac allografts. Eur. J Immunol, (in press).Google Scholar
  36. 34.
    Kupiec-Weglinski, J.W., Padberg, W., Uhteg, L.C., Strom, T.B., Diamanstein, T., and Tilney, N.L. Anti-interleukin-2 receptor (IL-2R) antibody against rejection of organ grafts. Transplant Proc. (In press).Google Scholar
  37. 35.
    Miller, R.A., and Stutman, O. Limiting dilution analysis of T helper cell heterogeneity; A single class of T cells make both IL2 and IL3. (1983). J Immunol. 130, 1749.PubMedGoogle Scholar
  38. 36.
    Ythier, A.A., Abbud-Filho, M.A., Williams, J.M., Loertscher, R., Schuster, M., Morvill, A., Hansen, J.A., Maltezos, D., and Strom, T.B. Interleukin-2 dependent release of interleukin 3 by T4+ human T cells. (1985). Proc Natl Acad Sci USA 82, 7020.PubMedCrossRefGoogle Scholar
  39. 37.
    Abbud-Filho, M., Kupiec-Weglinski, J.W., Araujo, J.L., Heidecke, C.D., Tilney, N.L., and Strom, T.B. Cyclosporine therapy of rat heart allograft recipients and release of interleukins (IL-1, IL-2, IL-3). A role for IL-3 in graft tolerance? (1984). J Immunol. 133, 2582.Google Scholar
  40. 38.
    Hahn, H.J., Kutler, B., Dunger, A., Klotting, I., Lucke, S., Volk, H.D., Boehr, R.V., and Diamantstein, T. Prolongation of rat pancreatic islet allografts by a temporary recipients treatment with monoclonal, anti-IL-2 receptor antibody and cyclosporine. Diabetologia (in press).Google Scholar
  41. 39.
    Shapiro, M.E., Kirkman, R.L., Reed, M.H., Puskas, J.D., Mazoujian, G., Letvin, N.L., Carpenter, C.B., Milford, E.L., Waldmann, T.A., Strom, T.B., and Schlossman, S.H. Monoclonal anti-IL-2 receptor antibody in primate renal transplantation. Transplant Proc. (in press).Google Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • T. B. Strom
    • 1
    • 2
    • 3
    • 4
  • V. E. Kelley
    • 1
    • 2
    • 3
    • 4
  • J. R. Murphy
    • 1
    • 2
    • 3
    • 4
  • H. Osawa
    • 1
    • 2
    • 3
    • 4
  • N. L. Tilney
    • 1
    • 2
    • 3
    • 4
  • M. E. Shapiro
    • 1
    • 2
    • 3
    • 4
  • J. W. Kupiec-Weglinski
    • 1
    • 2
    • 3
    • 4
  • T. Diamantstein
    • 1
    • 2
    • 3
    • 4
  • G. N. Gaulton
    • 1
    • 2
    • 3
    • 4
  • R. L. Kirkman
    • 1
    • 2
    • 3
    • 4
  1. 1.Depts. of Med. and Surg.Harvard Medical SchoolUSA
  2. 2.Dept. of Med.Boston UniversityBostonUSA
  3. 3.Dept. of PathUniversity of PAPhiladelphiaUSA
  4. 4.Klinikum SteglitzFreie UniverstatBerlinGermany

Personalised recommendations