Advertisement

Mechanisms for Inhibition of Adenylate Cyclase by alpha-2 Adrenergic Receptors

  • Peter Gierschik
  • Karl H. Jakobs
Part of the The Receptors book series (REC)

Abstract

Regulation of cellular functions by hydrophilic transmitters, e.g., catecholamines, requires efficient mechanisms for signal transduction across the plasma membrane. Generally speaking, these mechanisms function by translating the primary message, i.e., presence or absence of a hormone or neurotransmitter at the outer surface of the plasma membrane, into one or more second messages inside the cell, e.g., changes in cytosolic concentrations of cyclic nucleotides or calcium ions, modulation of ion fluxes across the cell membrane, altered metabolism of phosphoinositides, or phosphorylation of cellular proteins by receptor-driven protein kinases.

Keywords

Adenylate Cyclase Cholera Toxin Human Platelet Guanine Nucleotide Pertussis Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aktories, K. and Jakobs, K. H. (1981) Epinephrine inhibits adenylate cyclase and stimulates a GTPase in human platelet membranes via α-adrenoceptors. FEBS Lett. 130, 235–238.PubMedGoogle Scholar
  2. Aktories, K., Schultz, G., and Jakobs, K. H. (1979) Inhibition of hamster fat cell adenylate cyclase by prostaglandin Ex and epinephrine: Requirement for GTP and sodium ions. FEBS Lett. 107, 100–104.PubMedGoogle Scholar
  3. Aktories, K., Schultz, G., and Jakobs, K. H. (1980) Regulation of adenylate cyclase activity in hamster adipocytes. Naunyn Schmiedebergs Arch. Pharmacol. 312, 167–173.PubMedGoogle Scholar
  4. Aktories, K., Schultz, G., and Jakobs, K. H. (1981) The hamster adipocyte adenylate cyclase system. II. Regulation of enzyme stimulation and inhibition by monovalent cations. Biochim. Biophys. Acta. 676, 59–67.PubMedGoogle Scholar
  5. Aktories, K., Schultz, G., and Jakobs, K. H. (1983) Islet-activating protein impairs α2-adrenoceptor-mediated inhibitory regulation of human platelet adenylate cyclase. Naunyn Schmiedebergs Arch. Pharmacol. 324, 196–200.PubMedGoogle Scholar
  6. Bokoch, G. M. and Gilman, A. G. (1984) Inhibition of receptor mediated release of arachidonic acid by pertussis toxin. Cell 39, 301–308.PubMedGoogle Scholar
  7. Bokoch, G. M., Katada, T., Northup, J. K., Hewlett, E. L., and Gilman, A. G. (1983) Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J. Biol. Chem. 258, 2072–2075.PubMedGoogle Scholar
  8. Bokoch, G. M., Katada, T., Northup, J. K., Ui, M., and Gilman, A. G. (1984) Purification and properties of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. J. Biol. Chem. 259, 3560–3567.PubMedGoogle Scholar
  9. Brandt, D. R. and Ross, E. (1986) Catecholamine-stimulated GTPase cycle. Multiple sites of regulation by β-adrenergic receptor and Mg2+ studied in reconstituted receptor-Gs vesicles. J. Biol. Chem. 261, 1656–1664.PubMedGoogle Scholar
  10. Cerione, R. A., Codina, J., Kilpatrick, B. F., Staniszewski, C., Gierschik, P., Somers, R. L., Spiegel, A. M., Birnbaumer, L., Caron, M. G., and Lefkowitz, R. J. (1985) Transducin and the inhibitory nucleotide regulatory protein inhibit the stimulatory nucleotide regulatory protein mediated stimulation of adenylate cyclase in phospholipid vesicle systems. Biochemistry 24, 4499–4503.PubMedGoogle Scholar
  11. Cerione, R. A., Staniszewski, C., Gierschik, P., Codina, J., Somers, R. L., Birnbaumer, L., Spiegel, A. M., Caron, M. G., and Lefkowitz, R. J. (1986) Mechanism of guanine nucleotide regulatory protein-mediated inhibition of adenylate cyclase. Studies with isolated subunits of transducin in a reconstituted system. J. Biol. Chem. 261, 9414–9520.Google Scholar
  12. Cochaux, P., Van Sande, J., and Dumont, J. E. (1985) Islet-activating protein discriminates between different inhibitors of thyroidal cyclic AMP system. FEBS Lett. 179, 303-306.PubMedGoogle Scholar
  13. Codina, J., Hildebrandt, J., Iyengar, R., Birnbaumer, L., Sekura, R. D., and Manclark, C. R. (1983) Pertussis toxin substrate, the putative Ni component of adenylyl cyclases, in an aβ heterodimer regulated by guanine nucleotide and magnesium. Proc. Natl. Acad. Sci. USA 80, 4276–4280.PubMedGoogle Scholar
  14. Codina, J., Hildebrandt, J. D., Birnbaumer, L., and Sekura, R. D. (1984) Effects of guanine nucleotides and Mg on human erythrocyte Ni and Ns, the regulatory components of adenylyl cyclase. J. Biol. Chem. 259, 11408–11418.PubMedGoogle Scholar
  15. Cooper, D. M. F., Schlegel, W., Lin, M. C, and Rodbell, M. (1979) The fat cell adenylate cyclase system. Characterization and manipulation of its bimodal regulation by GTP. J. Biol. Chem. 254, 8927–8931.PubMedGoogle Scholar
  16. Enomoto, K. and Asakawa, T. (1986) Inhibition of the catalytic unit of adenylate cyclase and activation of GTPase of Ni protein by βγ-subunits of GTP-binding proteins. FEBS Lett. 202, 63–68.PubMedGoogle Scholar
  17. Ferry, N., Adnot, S., Borsodi, A., Lacombe, M. L., Guellaen, G., and Hanoune, J. (1982) Uncoupling by proteolysis of a-adrenergic receptor-mediated inhibition of adenylate cyclase in human platelets. Biochem. Biophys. Res. Comm. 108, 708–714.PubMedGoogle Scholar
  18. Florio, V. A. and Sternweis, P. C. (1985) Reconstitution of muscarinic cholinergic receptors with purified GTP-binding proteins. J. Biol. Chem. 260, 3477–3483.PubMedGoogle Scholar
  19. Garbers, D. L. and Johnson, R. A. (1975) Metal and metal-ATP interactions with brain and cardiac adenylate cyclases. J. Biol. Chem. 250, 8449–8456.PubMedGoogle Scholar
  20. Garcia-Sàinz, J. A., Boyer, J. L., Michel T., Sawyer, D., Stiles, G. L., Dohlman, H., and Lefkowitz, R. J. (1984) Effect of pertussis toxin on α2-receptors: Decreased formation of the high affinity state for agonists. FEBS Lett. 172, 95–98.PubMedGoogle Scholar
  21. Gierschik, P., Codina, J., Simons, C, Birnbaumer, L., and Spiegel, A. (1985) Antisera against a guanine nucleotide binding protein from retina cross react with the β subunit of the adenylyl cyclase-associated guanine nucleotide binding proteins, Ns and Ni . Proc. Natl. Acad. Sci. USA 82, 727–731.PubMedGoogle Scholar
  22. Gierschik, P., Falloon, J., Milligan, G., Pines, M., Gallin, J. I., and Spiegel, A. M. (1986) Immunochemical evidence for a novel pertussis toxin substrate in human neutrophils. J. Biol. Chem. 261, 8058–8062.PubMedGoogle Scholar
  23. Gierschik, P., Sidiropoulos, D., Spiegel, A., and Jakobs, K. H. (1987) Purification and immunochemical characterization of the major pertussis toxin substrate of bovine neutrophil membranes. Eur. J. Biochem. 165, 185–194.PubMedGoogle Scholar
  24. Gilman, A. G. (1984a) Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J. Clin. Invest. 73, 1–4.PubMedGoogle Scholar
  25. Gilman, A. G. (1984b) G proteins and dual control of adenylate cyclase. Cell 36, 577–579.PubMedGoogle Scholar
  26. Hanoune, J., Stengel, D., and Lacombe, M. L. (1982) Proteolytic activation and solubilization of adenylate and guanylate cyclases. Mol. Cell. Endocrinol. 31, 21–41.Google Scholar
  27. Hanski, E., Sternweis, P. C., Northup, J. K., Dromerick, A. W., and Gilman, A. G. (1981) The regulatory component of adenylate cyclase. Purifications and properties of the turkey erythrocyte protein. J. Biol. Chem. 256, 12911–12919.PubMedGoogle Scholar
  28. Harden, T. K., Scheer, A. G., and Smith, M. M. (1982) Differential modification of the interaction of cardiac muscarinic cholinergic and β-adrenergic receptors with a guanine nucleotide binding component(s). Mol. Pharmacol. 21, 570–580.PubMedGoogle Scholar
  29. Harris, B. A., Robishaw, J. D., Mumby, S. M., and Gilman, A. G. (1985) Molecular cloning of complementary DNA for the α subunit of the G protein that stimulates adenylate cyclase. Science 229, 1274–1277.PubMedGoogle Scholar
  30. Hazeki, O. and Ui, M. (1981) Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells. J. Biol. Chem. 256, 2856–2862.PubMedGoogle Scholar
  31. Heidenreich, K. A., Weiland, G. A., and Molinoff, P. B. (1980) Characterization of radiolabeled agonist binding to β-adrenergic receptors in mammalian tissues. J. Cyclic Nucl. Res. 6, 217–230.Google Scholar
  32. Hescheler, J., Rosenthal, W., Trautwein, W., and Schultz, G. (1987a) The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 325, 445–447.PubMedGoogle Scholar
  33. Hescheler, J., Rosenthal, W., Wulfern, M., Tang, M., Motoyuji, Y., Trautwein, W., and Schultz, G. (1987b) Involvment of the guanine nucleotide-binding protein No, in the inhibitory regulation of neuronal calcium channels. Adv. Cyclic Nucleotide Prot. Phosp. Res. 21, in press.Google Scholar
  34. Hildebrandt, J. D., Hanoune, J., and Birnbaumer, L. (1982) Guanine nucleotide inhibition of cyc- S49 mouse lymphoma cell membrane adenylyl cyclase. J. Biol. Chem. 257, 14723–14725.PubMedGoogle Scholar
  35. Hildebrandt, J. D., Sekura, R. D., Codina, J., Iyengar, R., Manclark, C. R., and Birnbaumer, L. (1983) Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins. Nature 302, 706–709.PubMedGoogle Scholar
  36. Hildebrandt, J. D., Codina, J., and Birnbaumer, L. (1984) Interaction of the stimulatory and inhibitory regulatory proteins of the adenylyl cyclase system with the catalytic component of cyc- S49 cell membranes. J. Biol Chem. 259, 13178–13185.PubMedGoogle Scholar
  37. Hildebrandt, J. D., Codina, J., Rosenthal, W., Birnbaumer, L., Neer, E., Yamazaki, A., and Bitensky, M. W. (1985) Characterisation by two-dimensional peptide mapping of the 7 subunits of Ns and Ni, the regulatory proteins of adenylyl cyclase, and of transducin, the guanine nucleotide-binding protein of rod outer segments of the eye. J. Biol. Chetn. 260, 14867–14872.Google Scholar
  38. Hoffman, B. B., Mullikin-Kilpatrick, D., and Lefkowitz, R. J. (1980) Heterogeneity of radioligand binding to α-adrenergic receptors. J. Biol. Chem. 255, 4645–4652.PubMedGoogle Scholar
  39. Hoffman, B. B., Yim, S., Tsai, B. S., and Lefkowitz, R. J. (1981) Preferential uncoupling by manganese of a-adrenergic receptor mediated inhibition of adenylate cyclase in human platelets. Biochem. Biophys. Res. Comm. 100, 724–731.PubMedGoogle Scholar
  40. Hsia, J. A., Tsai, S. C., Adamik, R. A., Yost, D. A., Hewlett, E. L., and Moss, J. (1985) Amino acid-specific ADP-ribosylation. Sensitivity to hydroxylamine of (cysteine(ADP-ribose))protein and (arginine(ADP-ribose)protein linkages. J. Biol. Chem. 260, 16187–16191.PubMedGoogle Scholar
  41. Jakobs, K. H. and Aktories, K. (1981) The hamster adipocyte adenylate cyclase system. I. Regulation of enzyme stimulation and inhibition by manganese and magnesium ions. Biochim. Biophys. Acta 676, 51–58.PubMedGoogle Scholar
  42. Jakobs, K. H. and Aktories, K. (1983) Synergistic inhibition of human platelet adenylate cyclase by stable GTP analogues and epinephrine. Biochim. Biophys. Acta 732, 352–358.PubMedGoogle Scholar
  43. Jakobs, K. H. and Schultz, G. (1983) Occurrence of a hormone-sensitive inhibitory coupling component of the adenylate cyclase in S49 lymphoma cyc- variants. Proc. Natl. Acad. Sci. USA 80, 3899–3902.PubMedGoogle Scholar
  44. Jakobs, K. H., Aktories, K., and Schultz, G. (1981) Inhibition of adenylate cyclase by hormones and neurotransmitters. Adv. Cyclic Nucl. Res. 14, 173-187.Google Scholar
  45. Jakobs, K. H., Saur, W., and Schultz, G. (1976) Reduction of adenylate cyclase activity in lysates of human platelets by the a-adrenergic component of epinephrine. J. Cyclic Nucl. Res. 2, 381–392.Google Scholar
  46. Jakobs, K. H., Saur, W., and Schultz, G. (1978) Inhibition of platelet adenylate cyclase by epinephrine requires GTP. FEBS Lett. 85, 167–170.PubMedGoogle Scholar
  47. Jakobs, K. H., Aktories, K., and Schultz, G. (1979) GTP-dependent inhibition of cardiac adenylate cyclase by muscarinic cholinergic agonists. Naunyn Schmiedebergs Arch. Pharmacol. 310, 113–119.PubMedGoogle Scholar
  48. Jakobs, K. H., Lasch, P., Minuth, M., Aktories, K., and Schultz, G. (1982) Uncoupling of a-adrenoceptor-mediated inhibition of human platelet adenylate cyclase by N-ethylmaleimide. J. Biol. Chem. 257, 2829–2833.PubMedGoogle Scholar
  49. Jakobs, K. H., Aktories, K., and Schultz, G. (1983a) Inhibitory coupling of hormone and neurotransmitter receptors to adenylate cyclase. J. Rec. Res. 3, 137–149.Google Scholar
  50. Jakobs, K. H., Schultz, G., Gaugler, B., and Pfeuffer, T. (1983b) Inhibition of Ns-protein-stimulated human platelet adenylate cyclase by epinephrine and stable GTP analogs. Eur. J. Biochem. 134, 351–354.PubMedGoogle Scholar
  51. Jakobs, K. H., Johnson, R. A., and Schultz, G. (1983c) Activation of human platelet adenylate cyclase by a bovine sperm component. Biochim. Biophys. Acta 756, 369–375.PubMedGoogle Scholar
  52. Jakobs, K. H., Gehring, U., Gaugler, B., Pfeuffer, T., and Schultz, G. (1983d) Occurrence of an inhibitory guanine nucleotide-binding regulatory component of the adenylate cyclase system in cyc- variants of S49 lymphoma cells. Eur. J. Biochem. 130, 605–611.PubMedGoogle Scholar
  53. Jakobs, K. H., Aktories, K., and Schultz, G. (1983e) A nucleotide regulatory site for somatostatin inhibition of adenylate cyclase in S49 lymphoma cells. Nature 303, 177–178.PubMedGoogle Scholar
  54. Jakobs, K. H., Minuth, M., and Aktories, K. (1984a) Sodium regulation of hormone-sensitive adenylate cyclase. J. Recept. Res. 4, 443–458.PubMedGoogle Scholar
  55. Jakobs, K. H., Aktories, K., and Schultz, G. (1984b) Mechanisms and components involved in adenylate cyclase inhibition by hormones. Adv. Cyclic Nucleotide Res. 17, 135–143.Google Scholar
  56. Jakobs, K. H., Aktories, K., Minuth, M., and Schultz, G. (1985a) Inhibition of adenylate cyclase. Adv. Cyclic Nucleotide Res. 19, 137–150.Google Scholar
  57. Jakobs, K. H., Bauer, S., and Watanabe, Y. (1985b) Modulation of adenylate cyclase of human platelets by phorbol esters: Impairment of the hormone sensitive inhibitory pathway. Eur. J. Biochem. 151, 425–430.PubMedGoogle Scholar
  58. Jard, S., Cantau, B., and Jakobs, K. H. (1981) Angiotensin II and α-adrenergic agonists inhibit rat liver adenylate cyclase. J. Biol. Chem. 256, 2603–2606.PubMedGoogle Scholar
  59. Johnson, G. L., Kaslow, H. R., and Bourne, H. R. (1978) Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase. J. Biol. Chem. 253, 7120–7123.PubMedGoogle Scholar
  60. Kahn, R. and Gilman, A. G. (1984). ADP-ribosylation of Gs promotes the dissociation of its a and β subunits. J. Biol. Chem. 259, 6235–6240.PubMedGoogle Scholar
  61. Katada, T. and Ui, M. (1979) Islet activating protein. Enhanced insulin secretion and cyclic AMP accumulation in pancreatic islets due to activation of native calcium ionophores. J. Biol. Chem. 254, 469–479.PubMedGoogle Scholar
  62. Katada, T. and Ui, M. (1980) Slow interaction of islet activating protein with pancreatic islets during primary culture to cause reversal of a-adrenergic inhibition of insulin secretion. J. Biol. Chem. 255, 9580–9588.PubMedGoogle Scholar
  63. Katada, T. and Ui, M. (1981) Islet-activating protein. A modifier of receptor-mediated regulation of rat islet adenylate cyclase. J. Biol. Chem. 256, 8310–8317.PubMedGoogle Scholar
  64. Katada, T. and Ui, M. (1982a) Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA 79, 3129–3133.PubMedGoogle Scholar
  65. Katada, T. and Ui, M. (1982b) ADP-ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J. Biol. Chem. 257, 7210–7215.PubMedGoogle Scholar
  66. Katada, T., Amano, T., and Ui, M. (1982) Modulation by islet activating protein of adenylate cyclase activity in C6 glioma cells. J. Biol. Chem. 257, 3739–3746.PubMedGoogle Scholar
  67. Katada, T., Bokoch, G. M., Northup, J. K., Ui, M., and Gilman, A. G. (1984a) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein. J. Biol. Chem. 259, 3568–3577.PubMedGoogle Scholar
  68. Katada, T., Northup, J. K., Bokoch, G. M., Ui, M., and Gilman, A. G. (1984b) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and guanine nucleotide-dependent hormonal inhibition. J. Biol. Chem. 259, 3578–3585.PubMedGoogle Scholar
  69. Katada, T., Bokoch, G. M., Smigel, M. D., Ui, M., and Gilman, A. G. (1984c) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and the inhibition of adenylate cyclase in S49 lymphoma cyc- and wild type membranes. J. Biol. Chem. 259, 3586–3595.PubMedGoogle Scholar
  70. Katada, T., Gilman, A. G., Watanabe, Y., Bauer, S., and Jakobs, K. H. (1985) Protein kinase C phosphorylates the inhibitory guaninenucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur. J. Biochem. 151, 431–437.PubMedGoogle Scholar
  71. Katada, T., Oinuma, M., and Ui, M. (1986) Mechanisms for inhibition of the catalytic activity of adenylate cyclase by the guanine nucleotide binding proteins serving as the substrate of islet activating protein, pertussis toxin. J. Biol. Chem. 261, 5215–5221.PubMedGoogle Scholar
  72. Kilpatrick, B. F., De Lean, A., and Caron, M. (1982) Dopamine receptor of the porcine anterior pituitary gland. Effects of N-ethylmaleimide and heat on ligand binding mimic the effects of guanine nucleotides. Mol. Pharmacol. 22, 298–303.PubMedGoogle Scholar
  73. Korn, S. J., Martin, M. W., and Harden, T. K. (1983) N-ethylmaleimide-in-duced alteration in the interaction of agonists with muscarinic cholinergic receptors in rat brain. J. Pharmacol] Exp. Ther. 224, 118–126.Google Scholar
  74. Kurose, H., Katada, T., Amano, T., and Ui, M. (1983) Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via α-adrenergic, cholinergic, and opiate receptors in neuroblastoma glioma hybrid cells. J. Biol. Chem. 258, 4870–4875.PubMedGoogle Scholar
  75. Lefkowitz, R. J., Stadel, J. M., and Caron, M. (1983) Adenylate cyclase-coupled β-adrenergic receptors: Structure and mechanisms of activation and desensitation. Ann. Rev. Biochem. 52, 159–186.PubMedGoogle Scholar
  76. Lim, L. K., Sekura, R. D., and Kaslow, H. R. (1985) Adenine nucleotides directly stimulate pertussis toxin. J. Biol. Chem. 269, 2585–2588.Google Scholar
  77. Limbird, L. E. and Speck, J. L. (1983) N-ethylmaleimide, elevated temperature, and digitonin solubilization eliminate guanine nucleotide but not sodium effects on human platelet α2-adrenergic receptor-agonist interaction. J. Cyclic Nucleic Res. 9, 183–202.Google Scholar
  78. Limbird, L. E., Speck, J. L., and Smith, S. K. (1982) Sodium ion modulates agonist and antagonist interactions with the human platelet α2-adrenergic receptor in membrane and solubilized preparations. Mol. Pharmacol. 21, 609–617.PubMedGoogle Scholar
  79. Litosch, I. and Fain, J. N. (1986) Regulation of phosphoinositide breakdown by guanine nucleotides. Life Sci. 39, 187–194.PubMedGoogle Scholar
  80. Maguire, M. E. (1984) Hormone-sensitive magnesium transport and magnesium regulation of adenylate cyclase. TIPS 2, 73–77.Google Scholar
  81. Manning, D. R. and Gilman, A. G. (1983) The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide-binding proteins. J. Biol. Chem. 258, 7059–7063.PubMedGoogle Scholar
  82. Martin, M. W., Evans, T., and Harden, T. K. (1985) Further evidence that muscarinic cholinergic receptors of 1321N1 astrocytoma cells couple to a guanine nucleotide regulatory protein that is not Ni. Biochem. J. 229, 539–544.PubMedGoogle Scholar
  83. May, D. C., Ross, E. M., Gilman, A. G., and Smigel, M. D. (1985) Reconstitution of catecholamine-stimulated adenylate cyclase activity using three purified proteins. J. Biol. Chem. 260, 15829–15833.PubMedGoogle Scholar
  84. Michel, T., Hoffman, B. B., and Lefkowitz, R. J. (1980) Differential regulation of the α-adrenergic receptor by Na+ and guanine nucleotides. Nature 288, 709–711.PubMedGoogle Scholar
  85. Mills, D. C. B. and Smith, J. B. (1972) The control of platelet responsiveness by agents that influence cyclic AMP metabolism. Ann. NY Acad. Sci. 201, 391–399.PubMedGoogle Scholar
  86. Minuth, M. and Jakobs, K. H. (1986) Sodium regulation of agonist and antagonist binding to β-adrenoceptors in intact and Ns-deficient membranes. Naunyn Schmiedebergs Arch. Pharmacol. 333, 124–129.PubMedGoogle Scholar
  87. Moss, J. and Vaughan, M. (1979) Activation of adenylate cyclase by choleragen. Ann. Rev. Biochem. 48, 581–600.PubMedGoogle Scholar
  88. Munson, P. J. (1983) LIGAND: A computerized analysis of ligand binding data. Meth. Enzymol. 92, 543–576.PubMedGoogle Scholar
  89. Murayama, T. and Ui, M. (1983) Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP-ribosylation by islet activating protein, pertussis toxin, in adipocyte membranes. J. Biol. Chem. 258, 3319–3226.PubMedGoogle Scholar
  90. Murayama T. and Ui, M. (1984) [3H]GTP release from rat and hamster adipocyte membranes independently linked to receptors involved in activation or inhibition of adenylate cyclase. J. Biol. Chem. 259, 761–769.PubMedGoogle Scholar
  91. Neer, E. J., Lok, J. L., and Wolf, L. G. (1984) Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J. Biol. Chem. 259, 14222–14229.PubMedGoogle Scholar
  92. Nishizuka, Y. (1986) Studies and perspectives of protein kinase C. Science 233, 305–312.PubMedGoogle Scholar
  93. Northup, J. K., Sternweis, P. C., Smigel, M. D., Schleifer, L. S., Ross, E. M., and Gilman, A. G. (1980) Purification of the regulatory component of adenylate cyclase. Proc. Natl. Acad. Sci. USA 77, 6516–6520.PubMedGoogle Scholar
  94. Northup, J. K., Smigel, M. D., and Gilman, A. G. (1982) The guanine nucleotide activating site of the regulatory component of adenylate cyclase. J. Biol. Chem. 257, 11416–11423.PubMedGoogle Scholar
  95. Northup, J. K., Stern weis, P. C., and Gilman, A. G. (1983a) The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution, activity, and properties of the 35,000-dalton β subunit. J. Biol. Chem. 258, 11361–11368.PubMedGoogle Scholar
  96. Northup, J. K., Smigel, M. D., Sternweis, P. C., and Gilman, A. G. (1983b) The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-dalton a subunit. J. Biol. Chem. 258, 11369–11376.PubMedGoogle Scholar
  97. Nukuda, T., Tanabe, T., Takahashi, H., Noda, M. Haga, K., Haga, T., Ichiyama, A., Kangawa, K., Hiranaga, M., Matsuo, H., and Numa, S. (1986) Primary structure of the a subunit of bovine adenylate cyclase-inhibiting G-protein deduced from the cDNA sequence. FEBS Lett. 197, 305–310.Google Scholar
  98. Pfeuffer, E., Mollner, S., and Pfeuffer, T. (1985) Adenylate cyclase from bovine brain cortex: Purification and characterization of the catalytic unit. EMBO J. 4, 3675–3679.PubMedGoogle Scholar
  99. Pines, M., Gierschik, P., Milligan, G., Klee, W., and Spiegel, A. (1985) Antibodies against the carboxy-terminal 5-kDa peptide of the a subunit of transducin crossreact with the 40 kDa, but not the 39 kDa guanine nucleotide binding protein from brain. Proc. Natl. Acad. Sci. USA 82, 4095–4099.PubMedGoogle Scholar
  100. Ribeiro-Neto, F. A. P., Mattera, R., Hildebrandt, J. D., Codina, J., Field, J. B., Birnbaumer, L., and Sekura, R. D. (1985) ADP-ribosylation of membrane components by pertussis and cholera toxin. Meth. Enzymol. 109, 566–572.PubMedGoogle Scholar
  101. Robinson, Jr., C. W., Mason, R. G., and Wagner, R. H. (1963) Effect of sulfhydryl inhibitors on platelet agglutinability. Proc. Soc. Exp. Biol. Med. 113, 857–861.PubMedGoogle Scholar
  102. Rodbell, M. (1975) On the mechanism of activation of fat cell adenylate cyclase by guanine nucleotides. An explanation for the biphasic inhibitory and stimulatory effects of the nucleotides and the role of hormones. J. Biol. Chem. 250, 5826–5834.PubMedGoogle Scholar
  103. Ross, E. M., Howlett, A. C., Ferguson, K. M., and Gilman, A. G. (1978) Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J. Biol. Chem. 253, 6401–6412.PubMedGoogle Scholar
  104. Sabol, S. L. and Nirenberg, M. (1979) Regulation of adenylate cyclase of neuroblastoma × glioma hybrid cells by α-adrenergic receptors. J. Biol. Chem. 254, 1913–1920.PubMedGoogle Scholar
  105. Salzman, E. W. and Neri, L. L. (1969) Cyclic 3′,5′-adenosine monophosphate in human blood platelets. Nature 224, 609–610.PubMedGoogle Scholar
  106. Seamon, K. B. and Daly, J. W. (1981) Forskolin: A unique diterpene activator of cyclic AMP generating systems. J. Cyclic Nucleotide Res. 7, 201–224.PubMedGoogle Scholar
  107. Shorr, R. G. L., Lefkowitz, R. J., and Caron, M. G. (1981) Purification of the β-adrenergic receptor. J. Biol. Chem. 256, 5820–5826.PubMedGoogle Scholar
  108. Smigel, M. D. (1986) Purification of the catalyst adenylate cyclase. J. Biol. Chem. 261, 1976–1982.PubMedGoogle Scholar
  109. Smith, M. M. and Harden, T. K. (1984) Modification of receptor mediated inhibition of adenylate cyclase in NG 108–15 neuroblastoma x glioma cells by N-ethylmaleimide. J. Pharmacol. Exp. Ther. 228, 425–433.PubMedGoogle Scholar
  110. Smith, S. K. and Limbird, L. E. (1981) Solubilization of human platelet a-adrenergic receptors: Evidence that agonist occupancy of the receptor stabilizes receptor-effector interactions. Proc. Natl. Acad. Sci. USA 78, 4026–4030.PubMedGoogle Scholar
  111. Spiegel, A. M., Gierschik, P., Levine, M. A., and Downs, R. W., Jr. (1985) Clinical implications of guanine nucleotide-binding proteins as receptor-effector couplers. N. Engl. J. Med. 312, 26–33.PubMedGoogle Scholar
  112. Sternweis, P. C. (1986) The purified a subunits of Go and Gi from bovine brain require βγ for association with phospholipid vesicles. J. Biol. Chem. 261, 631–637.PubMedGoogle Scholar
  113. Sternweis, P. C. and Robishaw, J. D. (1984) Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J. Biol. Chem. 259, 13806–13813.PubMedGoogle Scholar
  114. Sternweis, P. C, Northup, J. K., Smigel, M. D., and Gilman, A. G. (1981) The regulatory component of adenylate cyclase. Purification and properties. J. Biol. Chem. 256, 11517–11526.PubMedGoogle Scholar
  115. Stiles, G. L. and Lefkowitz, R. J. (1982) Hormone-sensitive adenylate cyclase. Delineation of a trypsin-sensitive site in the pathway of receptor-mediated inhibition. J. Biol. Chem. 257, 6287–6291.PubMedGoogle Scholar
  116. Sugimoto, K., Nukada, T., Tanabe, T., Takahashi, H., Noda, M., Minamino, N., Kangawa, K., Matsuo, H., Hirose, T., Inayama, S., and Numa, S. (1985) Primary structure of the β subunit of bovine transducin deduced from the cDNA sequence. FEBS Lett. 191, 235–240.PubMedGoogle Scholar
  117. Sunyer, T., Codina, J., and Birnbaumer, L. (1984) GTP hydrolysis by pure Ni, the inhibitory regulatory component of adenylyl cyclase. J. Biol. Chem. 259, 15447–15451.PubMedGoogle Scholar
  118. Tsai, B. S. and Lefkowitz, R. J. (1978) Agonist-specific effects of monovalent and divalent cations on adenylate cyclase coupled a-adrenergic receptors in rabbit platelets. Mol. Pharmacol. 14, 540–548.PubMedGoogle Scholar
  119. Ui, M. (1984) Islet-activating protein, pertussis toxin: A probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. TIPS 5, 277–279.Google Scholar
  120. Van Dop, C, Yamanaka, G., Steinberg, F., Sekura, R. D., Manclark, C. R., Stryer, L., and Bourne, H. R. (1984) ADP-ribosylation of transducin by pertussis toxin blocks light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors. J. Biol. Chem. 259, 23–26.PubMedGoogle Scholar
  121. Verghese, M. W., Fox, K., McPhail, L. C., and Snyderman, R. (1985) Chemoattractant-elicited alterations of cAMP levels in human polymorphonuclear leukocytes require a Ca2 +-dependent mechanism which is independent of transmembrane activation of adenylate cyclase. J. Biol. Chem. 260, 6769–6775.PubMedGoogle Scholar
  122. Watanabe, Y., Horn, F., Bauer, S., and Jakobs, K. H. (1985) Protein kinase C interferes with Ni-mediated inhibition of human platelet adenylate cyclase. FEBS Lett. 192, 23–27.PubMedGoogle Scholar
  123. Wei, J. W. and Sulakhe, P. V. (1980) Requirement for sulfhydryl groups in the differential effects of magnesium ion and GTP on agonist binding of muscarinic cholinergic receptor sites in rat atrial membrane fraction. Naunyn Schmiedebergs Arch. Pharmacol. 314, 51–59.PubMedGoogle Scholar
  124. Woodcock, E. A., Johnston, C. I., and Olson, C. A. (1980) α-Adrenergic inhibition of renal cortical adenylate cyclase. J. Cyclic Nucleotide Res. 6, 261–269.PubMedGoogle Scholar
  125. Yeung, S. M. H. and Green, R. D. (1983) Agonist and antagonist affinities for inhibitory adenosine receptors are reciprocally affected by 5′-guanylylimidodiphosphate or N-ethylmaleimide. J. Biol. Chem. 258, 2334–2339.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • Peter Gierschik
  • Karl H. Jakobs

There are no affiliations available

Personalised recommendations