Skip to main content

Mechanisms for Inhibition of Adenylate Cyclase by alpha-2 Adrenergic Receptors

  • Chapter
Book cover The alpha-2 Adrenergic Receptors

Part of the book series: The Receptors ((REC))

Abstract

Regulation of cellular functions by hydrophilic transmitters, e.g., catecholamines, requires efficient mechanisms for signal transduction across the plasma membrane. Generally speaking, these mechanisms function by translating the primary message, i.e., presence or absence of a hormone or neurotransmitter at the outer surface of the plasma membrane, into one or more second messages inside the cell, e.g., changes in cytosolic concentrations of cyclic nucleotides or calcium ions, modulation of ion fluxes across the cell membrane, altered metabolism of phosphoinositides, or phosphorylation of cellular proteins by receptor-driven protein kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aktories, K. and Jakobs, K. H. (1981) Epinephrine inhibits adenylate cyclase and stimulates a GTPase in human platelet membranes via α-adrenoceptors. FEBS Lett. 130, 235–238.

    PubMed  CAS  Google Scholar 

  • Aktories, K., Schultz, G., and Jakobs, K. H. (1979) Inhibition of hamster fat cell adenylate cyclase by prostaglandin Ex and epinephrine: Requirement for GTP and sodium ions. FEBS Lett. 107, 100–104.

    PubMed  CAS  Google Scholar 

  • Aktories, K., Schultz, G., and Jakobs, K. H. (1980) Regulation of adenylate cyclase activity in hamster adipocytes. Naunyn Schmiedebergs Arch. Pharmacol. 312, 167–173.

    PubMed  CAS  Google Scholar 

  • Aktories, K., Schultz, G., and Jakobs, K. H. (1981) The hamster adipocyte adenylate cyclase system. II. Regulation of enzyme stimulation and inhibition by monovalent cations. Biochim. Biophys. Acta. 676, 59–67.

    PubMed  CAS  Google Scholar 

  • Aktories, K., Schultz, G., and Jakobs, K. H. (1983) Islet-activating protein impairs α2-adrenoceptor-mediated inhibitory regulation of human platelet adenylate cyclase. Naunyn Schmiedebergs Arch. Pharmacol. 324, 196–200.

    PubMed  CAS  Google Scholar 

  • Bokoch, G. M. and Gilman, A. G. (1984) Inhibition of receptor mediated release of arachidonic acid by pertussis toxin. Cell 39, 301–308.

    PubMed  CAS  Google Scholar 

  • Bokoch, G. M., Katada, T., Northup, J. K., Hewlett, E. L., and Gilman, A. G. (1983) Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J. Biol. Chem. 258, 2072–2075.

    PubMed  CAS  Google Scholar 

  • Bokoch, G. M., Katada, T., Northup, J. K., Ui, M., and Gilman, A. G. (1984) Purification and properties of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. J. Biol. Chem. 259, 3560–3567.

    PubMed  CAS  Google Scholar 

  • Brandt, D. R. and Ross, E. (1986) Catecholamine-stimulated GTPase cycle. Multiple sites of regulation by β-adrenergic receptor and Mg2+ studied in reconstituted receptor-Gs vesicles. J. Biol. Chem. 261, 1656–1664.

    PubMed  CAS  Google Scholar 

  • Cerione, R. A., Codina, J., Kilpatrick, B. F., Staniszewski, C., Gierschik, P., Somers, R. L., Spiegel, A. M., Birnbaumer, L., Caron, M. G., and Lefkowitz, R. J. (1985) Transducin and the inhibitory nucleotide regulatory protein inhibit the stimulatory nucleotide regulatory protein mediated stimulation of adenylate cyclase in phospholipid vesicle systems. Biochemistry 24, 4499–4503.

    PubMed  CAS  Google Scholar 

  • Cerione, R. A., Staniszewski, C., Gierschik, P., Codina, J., Somers, R. L., Birnbaumer, L., Spiegel, A. M., Caron, M. G., and Lefkowitz, R. J. (1986) Mechanism of guanine nucleotide regulatory protein-mediated inhibition of adenylate cyclase. Studies with isolated subunits of transducin in a reconstituted system. J. Biol. Chem. 261, 9414–9520.

    Google Scholar 

  • Cochaux, P., Van Sande, J., and Dumont, J. E. (1985) Islet-activating protein discriminates between different inhibitors of thyroidal cyclic AMP system. FEBS Lett. 179, 303-306.

    PubMed  CAS  Google Scholar 

  • Codina, J., Hildebrandt, J., Iyengar, R., Birnbaumer, L., Sekura, R. D., and Manclark, C. R. (1983) Pertussis toxin substrate, the putative Ni component of adenylyl cyclases, in an aβ heterodimer regulated by guanine nucleotide and magnesium. Proc. Natl. Acad. Sci. USA 80, 4276–4280.

    PubMed  CAS  Google Scholar 

  • Codina, J., Hildebrandt, J. D., Birnbaumer, L., and Sekura, R. D. (1984) Effects of guanine nucleotides and Mg on human erythrocyte Ni and Ns, the regulatory components of adenylyl cyclase. J. Biol. Chem. 259, 11408–11418.

    PubMed  CAS  Google Scholar 

  • Cooper, D. M. F., Schlegel, W., Lin, M. C, and Rodbell, M. (1979) The fat cell adenylate cyclase system. Characterization and manipulation of its bimodal regulation by GTP. J. Biol. Chem. 254, 8927–8931.

    PubMed  CAS  Google Scholar 

  • Enomoto, K. and Asakawa, T. (1986) Inhibition of the catalytic unit of adenylate cyclase and activation of GTPase of Ni protein by βγ-subunits of GTP-binding proteins. FEBS Lett. 202, 63–68.

    PubMed  CAS  Google Scholar 

  • Ferry, N., Adnot, S., Borsodi, A., Lacombe, M. L., Guellaen, G., and Hanoune, J. (1982) Uncoupling by proteolysis of a-adrenergic receptor-mediated inhibition of adenylate cyclase in human platelets. Biochem. Biophys. Res. Comm. 108, 708–714.

    PubMed  CAS  Google Scholar 

  • Florio, V. A. and Sternweis, P. C. (1985) Reconstitution of muscarinic cholinergic receptors with purified GTP-binding proteins. J. Biol. Chem. 260, 3477–3483.

    PubMed  CAS  Google Scholar 

  • Garbers, D. L. and Johnson, R. A. (1975) Metal and metal-ATP interactions with brain and cardiac adenylate cyclases. J. Biol. Chem. 250, 8449–8456.

    PubMed  CAS  Google Scholar 

  • Garcia-Sàinz, J. A., Boyer, J. L., Michel T., Sawyer, D., Stiles, G. L., Dohlman, H., and Lefkowitz, R. J. (1984) Effect of pertussis toxin on α2-receptors: Decreased formation of the high affinity state for agonists. FEBS Lett. 172, 95–98.

    PubMed  Google Scholar 

  • Gierschik, P., Codina, J., Simons, C, Birnbaumer, L., and Spiegel, A. (1985) Antisera against a guanine nucleotide binding protein from retina cross react with the β subunit of the adenylyl cyclase-associated guanine nucleotide binding proteins, Ns and Ni . Proc. Natl. Acad. Sci. USA 82, 727–731.

    PubMed  CAS  Google Scholar 

  • Gierschik, P., Falloon, J., Milligan, G., Pines, M., Gallin, J. I., and Spiegel, A. M. (1986) Immunochemical evidence for a novel pertussis toxin substrate in human neutrophils. J. Biol. Chem. 261, 8058–8062.

    PubMed  CAS  Google Scholar 

  • Gierschik, P., Sidiropoulos, D., Spiegel, A., and Jakobs, K. H. (1987) Purification and immunochemical characterization of the major pertussis toxin substrate of bovine neutrophil membranes. Eur. J. Biochem. 165, 185–194.

    PubMed  CAS  Google Scholar 

  • Gilman, A. G. (1984a) Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J. Clin. Invest. 73, 1–4.

    PubMed  CAS  Google Scholar 

  • Gilman, A. G. (1984b) G proteins and dual control of adenylate cyclase. Cell 36, 577–579.

    PubMed  CAS  Google Scholar 

  • Hanoune, J., Stengel, D., and Lacombe, M. L. (1982) Proteolytic activation and solubilization of adenylate and guanylate cyclases. Mol. Cell. Endocrinol. 31, 21–41.

    Google Scholar 

  • Hanski, E., Sternweis, P. C., Northup, J. K., Dromerick, A. W., and Gilman, A. G. (1981) The regulatory component of adenylate cyclase. Purifications and properties of the turkey erythrocyte protein. J. Biol. Chem. 256, 12911–12919.

    PubMed  CAS  Google Scholar 

  • Harden, T. K., Scheer, A. G., and Smith, M. M. (1982) Differential modification of the interaction of cardiac muscarinic cholinergic and β-adrenergic receptors with a guanine nucleotide binding component(s). Mol. Pharmacol. 21, 570–580.

    PubMed  CAS  Google Scholar 

  • Harris, B. A., Robishaw, J. D., Mumby, S. M., and Gilman, A. G. (1985) Molecular cloning of complementary DNA for the α subunit of the G protein that stimulates adenylate cyclase. Science 229, 1274–1277.

    PubMed  CAS  Google Scholar 

  • Hazeki, O. and Ui, M. (1981) Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells. J. Biol. Chem. 256, 2856–2862.

    PubMed  CAS  Google Scholar 

  • Heidenreich, K. A., Weiland, G. A., and Molinoff, P. B. (1980) Characterization of radiolabeled agonist binding to β-adrenergic receptors in mammalian tissues. J. Cyclic Nucl. Res. 6, 217–230.

    CAS  Google Scholar 

  • Hescheler, J., Rosenthal, W., Trautwein, W., and Schultz, G. (1987a) The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 325, 445–447.

    PubMed  CAS  Google Scholar 

  • Hescheler, J., Rosenthal, W., Wulfern, M., Tang, M., Motoyuji, Y., Trautwein, W., and Schultz, G. (1987b) Involvment of the guanine nucleotide-binding protein No, in the inhibitory regulation of neuronal calcium channels. Adv. Cyclic Nucleotide Prot. Phosp. Res. 21, in press.

    Google Scholar 

  • Hildebrandt, J. D., Hanoune, J., and Birnbaumer, L. (1982) Guanine nucleotide inhibition of cyc- S49 mouse lymphoma cell membrane adenylyl cyclase. J. Biol. Chem. 257, 14723–14725.

    PubMed  CAS  Google Scholar 

  • Hildebrandt, J. D., Sekura, R. D., Codina, J., Iyengar, R., Manclark, C. R., and Birnbaumer, L. (1983) Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins. Nature 302, 706–709.

    PubMed  CAS  Google Scholar 

  • Hildebrandt, J. D., Codina, J., and Birnbaumer, L. (1984) Interaction of the stimulatory and inhibitory regulatory proteins of the adenylyl cyclase system with the catalytic component of cyc- S49 cell membranes. J. Biol Chem. 259, 13178–13185.

    PubMed  CAS  Google Scholar 

  • Hildebrandt, J. D., Codina, J., Rosenthal, W., Birnbaumer, L., Neer, E., Yamazaki, A., and Bitensky, M. W. (1985) Characterisation by two-dimensional peptide mapping of the 7 subunits of Ns and Ni, the regulatory proteins of adenylyl cyclase, and of transducin, the guanine nucleotide-binding protein of rod outer segments of the eye. J. Biol. Chetn. 260, 14867–14872.

    CAS  Google Scholar 

  • Hoffman, B. B., Mullikin-Kilpatrick, D., and Lefkowitz, R. J. (1980) Heterogeneity of radioligand binding to α-adrenergic receptors. J. Biol. Chem. 255, 4645–4652.

    PubMed  CAS  Google Scholar 

  • Hoffman, B. B., Yim, S., Tsai, B. S., and Lefkowitz, R. J. (1981) Preferential uncoupling by manganese of a-adrenergic receptor mediated inhibition of adenylate cyclase in human platelets. Biochem. Biophys. Res. Comm. 100, 724–731.

    PubMed  CAS  Google Scholar 

  • Hsia, J. A., Tsai, S. C., Adamik, R. A., Yost, D. A., Hewlett, E. L., and Moss, J. (1985) Amino acid-specific ADP-ribosylation. Sensitivity to hydroxylamine of (cysteine(ADP-ribose))protein and (arginine(ADP-ribose)protein linkages. J. Biol. Chem. 260, 16187–16191.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H. and Aktories, K. (1981) The hamster adipocyte adenylate cyclase system. I. Regulation of enzyme stimulation and inhibition by manganese and magnesium ions. Biochim. Biophys. Acta 676, 51–58.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H. and Aktories, K. (1983) Synergistic inhibition of human platelet adenylate cyclase by stable GTP analogues and epinephrine. Biochim. Biophys. Acta 732, 352–358.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H. and Schultz, G. (1983) Occurrence of a hormone-sensitive inhibitory coupling component of the adenylate cyclase in S49 lymphoma cyc- variants. Proc. Natl. Acad. Sci. USA 80, 3899–3902.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Aktories, K., and Schultz, G. (1981) Inhibition of adenylate cyclase by hormones and neurotransmitters. Adv. Cyclic Nucl. Res. 14, 173-187.

    CAS  Google Scholar 

  • Jakobs, K. H., Saur, W., and Schultz, G. (1976) Reduction of adenylate cyclase activity in lysates of human platelets by the a-adrenergic component of epinephrine. J. Cyclic Nucl. Res. 2, 381–392.

    CAS  Google Scholar 

  • Jakobs, K. H., Saur, W., and Schultz, G. (1978) Inhibition of platelet adenylate cyclase by epinephrine requires GTP. FEBS Lett. 85, 167–170.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Aktories, K., and Schultz, G. (1979) GTP-dependent inhibition of cardiac adenylate cyclase by muscarinic cholinergic agonists. Naunyn Schmiedebergs Arch. Pharmacol. 310, 113–119.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Lasch, P., Minuth, M., Aktories, K., and Schultz, G. (1982) Uncoupling of a-adrenoceptor-mediated inhibition of human platelet adenylate cyclase by N-ethylmaleimide. J. Biol. Chem. 257, 2829–2833.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Aktories, K., and Schultz, G. (1983a) Inhibitory coupling of hormone and neurotransmitter receptors to adenylate cyclase. J. Rec. Res. 3, 137–149.

    CAS  Google Scholar 

  • Jakobs, K. H., Schultz, G., Gaugler, B., and Pfeuffer, T. (1983b) Inhibition of Ns-protein-stimulated human platelet adenylate cyclase by epinephrine and stable GTP analogs. Eur. J. Biochem. 134, 351–354.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Johnson, R. A., and Schultz, G. (1983c) Activation of human platelet adenylate cyclase by a bovine sperm component. Biochim. Biophys. Acta 756, 369–375.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Gehring, U., Gaugler, B., Pfeuffer, T., and Schultz, G. (1983d) Occurrence of an inhibitory guanine nucleotide-binding regulatory component of the adenylate cyclase system in cyc- variants of S49 lymphoma cells. Eur. J. Biochem. 130, 605–611.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Aktories, K., and Schultz, G. (1983e) A nucleotide regulatory site for somatostatin inhibition of adenylate cyclase in S49 lymphoma cells. Nature 303, 177–178.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Minuth, M., and Aktories, K. (1984a) Sodium regulation of hormone-sensitive adenylate cyclase. J. Recept. Res. 4, 443–458.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., Aktories, K., and Schultz, G. (1984b) Mechanisms and components involved in adenylate cyclase inhibition by hormones. Adv. Cyclic Nucleotide Res. 17, 135–143.

    CAS  Google Scholar 

  • Jakobs, K. H., Aktories, K., Minuth, M., and Schultz, G. (1985a) Inhibition of adenylate cyclase. Adv. Cyclic Nucleotide Res. 19, 137–150.

    CAS  Google Scholar 

  • Jakobs, K. H., Bauer, S., and Watanabe, Y. (1985b) Modulation of adenylate cyclase of human platelets by phorbol esters: Impairment of the hormone sensitive inhibitory pathway. Eur. J. Biochem. 151, 425–430.

    PubMed  CAS  Google Scholar 

  • Jard, S., Cantau, B., and Jakobs, K. H. (1981) Angiotensin II and α-adrenergic agonists inhibit rat liver adenylate cyclase. J. Biol. Chem. 256, 2603–2606.

    PubMed  CAS  Google Scholar 

  • Johnson, G. L., Kaslow, H. R., and Bourne, H. R. (1978) Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase. J. Biol. Chem. 253, 7120–7123.

    PubMed  CAS  Google Scholar 

  • Kahn, R. and Gilman, A. G. (1984). ADP-ribosylation of Gs promotes the dissociation of its a and β subunits. J. Biol. Chem. 259, 6235–6240.

    PubMed  CAS  Google Scholar 

  • Katada, T. and Ui, M. (1979) Islet activating protein. Enhanced insulin secretion and cyclic AMP accumulation in pancreatic islets due to activation of native calcium ionophores. J. Biol. Chem. 254, 469–479.

    PubMed  CAS  Google Scholar 

  • Katada, T. and Ui, M. (1980) Slow interaction of islet activating protein with pancreatic islets during primary culture to cause reversal of a-adrenergic inhibition of insulin secretion. J. Biol. Chem. 255, 9580–9588.

    PubMed  CAS  Google Scholar 

  • Katada, T. and Ui, M. (1981) Islet-activating protein. A modifier of receptor-mediated regulation of rat islet adenylate cyclase. J. Biol. Chem. 256, 8310–8317.

    PubMed  CAS  Google Scholar 

  • Katada, T. and Ui, M. (1982a) Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA 79, 3129–3133.

    PubMed  CAS  Google Scholar 

  • Katada, T. and Ui, M. (1982b) ADP-ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J. Biol. Chem. 257, 7210–7215.

    PubMed  CAS  Google Scholar 

  • Katada, T., Amano, T., and Ui, M. (1982) Modulation by islet activating protein of adenylate cyclase activity in C6 glioma cells. J. Biol. Chem. 257, 3739–3746.

    PubMed  CAS  Google Scholar 

  • Katada, T., Bokoch, G. M., Northup, J. K., Ui, M., and Gilman, A. G. (1984a) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein. J. Biol. Chem. 259, 3568–3577.

    PubMed  CAS  Google Scholar 

  • Katada, T., Northup, J. K., Bokoch, G. M., Ui, M., and Gilman, A. G. (1984b) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and guanine nucleotide-dependent hormonal inhibition. J. Biol. Chem. 259, 3578–3585.

    PubMed  CAS  Google Scholar 

  • Katada, T., Bokoch, G. M., Smigel, M. D., Ui, M., and Gilman, A. G. (1984c) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and the inhibition of adenylate cyclase in S49 lymphoma cyc- and wild type membranes. J. Biol. Chem. 259, 3586–3595.

    PubMed  CAS  Google Scholar 

  • Katada, T., Gilman, A. G., Watanabe, Y., Bauer, S., and Jakobs, K. H. (1985) Protein kinase C phosphorylates the inhibitory guaninenucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur. J. Biochem. 151, 431–437.

    PubMed  CAS  Google Scholar 

  • Katada, T., Oinuma, M., and Ui, M. (1986) Mechanisms for inhibition of the catalytic activity of adenylate cyclase by the guanine nucleotide binding proteins serving as the substrate of islet activating protein, pertussis toxin. J. Biol. Chem. 261, 5215–5221.

    PubMed  CAS  Google Scholar 

  • Kilpatrick, B. F., De Lean, A., and Caron, M. (1982) Dopamine receptor of the porcine anterior pituitary gland. Effects of N-ethylmaleimide and heat on ligand binding mimic the effects of guanine nucleotides. Mol. Pharmacol. 22, 298–303.

    PubMed  CAS  Google Scholar 

  • Korn, S. J., Martin, M. W., and Harden, T. K. (1983) N-ethylmaleimide-in-duced alteration in the interaction of agonists with muscarinic cholinergic receptors in rat brain. J. Pharmacol] Exp. Ther. 224, 118–126.

    CAS  Google Scholar 

  • Kurose, H., Katada, T., Amano, T., and Ui, M. (1983) Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via α-adrenergic, cholinergic, and opiate receptors in neuroblastoma glioma hybrid cells. J. Biol. Chem. 258, 4870–4875.

    PubMed  CAS  Google Scholar 

  • Lefkowitz, R. J., Stadel, J. M., and Caron, M. (1983) Adenylate cyclase-coupled β-adrenergic receptors: Structure and mechanisms of activation and desensitation. Ann. Rev. Biochem. 52, 159–186.

    PubMed  CAS  Google Scholar 

  • Lim, L. K., Sekura, R. D., and Kaslow, H. R. (1985) Adenine nucleotides directly stimulate pertussis toxin. J. Biol. Chem. 269, 2585–2588.

    Google Scholar 

  • Limbird, L. E. and Speck, J. L. (1983) N-ethylmaleimide, elevated temperature, and digitonin solubilization eliminate guanine nucleotide but not sodium effects on human platelet α2-adrenergic receptor-agonist interaction. J. Cyclic Nucleic Res. 9, 183–202.

    Google Scholar 

  • Limbird, L. E., Speck, J. L., and Smith, S. K. (1982) Sodium ion modulates agonist and antagonist interactions with the human platelet α2-adrenergic receptor in membrane and solubilized preparations. Mol. Pharmacol. 21, 609–617.

    PubMed  CAS  Google Scholar 

  • Litosch, I. and Fain, J. N. (1986) Regulation of phosphoinositide breakdown by guanine nucleotides. Life Sci. 39, 187–194.

    PubMed  CAS  Google Scholar 

  • Maguire, M. E. (1984) Hormone-sensitive magnesium transport and magnesium regulation of adenylate cyclase. TIPS 2, 73–77.

    Google Scholar 

  • Manning, D. R. and Gilman, A. G. (1983) The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide-binding proteins. J. Biol. Chem. 258, 7059–7063.

    PubMed  CAS  Google Scholar 

  • Martin, M. W., Evans, T., and Harden, T. K. (1985) Further evidence that muscarinic cholinergic receptors of 1321N1 astrocytoma cells couple to a guanine nucleotide regulatory protein that is not Ni. Biochem. J. 229, 539–544.

    PubMed  CAS  Google Scholar 

  • May, D. C., Ross, E. M., Gilman, A. G., and Smigel, M. D. (1985) Reconstitution of catecholamine-stimulated adenylate cyclase activity using three purified proteins. J. Biol. Chem. 260, 15829–15833.

    PubMed  CAS  Google Scholar 

  • Michel, T., Hoffman, B. B., and Lefkowitz, R. J. (1980) Differential regulation of the α-adrenergic receptor by Na+ and guanine nucleotides. Nature 288, 709–711.

    PubMed  CAS  Google Scholar 

  • Mills, D. C. B. and Smith, J. B. (1972) The control of platelet responsiveness by agents that influence cyclic AMP metabolism. Ann. NY Acad. Sci. 201, 391–399.

    PubMed  CAS  Google Scholar 

  • Minuth, M. and Jakobs, K. H. (1986) Sodium regulation of agonist and antagonist binding to β-adrenoceptors in intact and Ns-deficient membranes. Naunyn Schmiedebergs Arch. Pharmacol. 333, 124–129.

    PubMed  CAS  Google Scholar 

  • Moss, J. and Vaughan, M. (1979) Activation of adenylate cyclase by choleragen. Ann. Rev. Biochem. 48, 581–600.

    PubMed  CAS  Google Scholar 

  • Munson, P. J. (1983) LIGAND: A computerized analysis of ligand binding data. Meth. Enzymol. 92, 543–576.

    PubMed  CAS  Google Scholar 

  • Murayama, T. and Ui, M. (1983) Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP-ribosylation by islet activating protein, pertussis toxin, in adipocyte membranes. J. Biol. Chem. 258, 3319–3226.

    PubMed  CAS  Google Scholar 

  • Murayama T. and Ui, M. (1984) [3H]GTP release from rat and hamster adipocyte membranes independently linked to receptors involved in activation or inhibition of adenylate cyclase. J. Biol. Chem. 259, 761–769.

    PubMed  CAS  Google Scholar 

  • Neer, E. J., Lok, J. L., and Wolf, L. G. (1984) Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J. Biol. Chem. 259, 14222–14229.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y. (1986) Studies and perspectives of protein kinase C. Science 233, 305–312.

    PubMed  CAS  Google Scholar 

  • Northup, J. K., Sternweis, P. C., Smigel, M. D., Schleifer, L. S., Ross, E. M., and Gilman, A. G. (1980) Purification of the regulatory component of adenylate cyclase. Proc. Natl. Acad. Sci. USA 77, 6516–6520.

    PubMed  CAS  Google Scholar 

  • Northup, J. K., Smigel, M. D., and Gilman, A. G. (1982) The guanine nucleotide activating site of the regulatory component of adenylate cyclase. J. Biol. Chem. 257, 11416–11423.

    PubMed  CAS  Google Scholar 

  • Northup, J. K., Stern weis, P. C., and Gilman, A. G. (1983a) The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution, activity, and properties of the 35,000-dalton β subunit. J. Biol. Chem. 258, 11361–11368.

    PubMed  CAS  Google Scholar 

  • Northup, J. K., Smigel, M. D., Sternweis, P. C., and Gilman, A. G. (1983b) The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-dalton a subunit. J. Biol. Chem. 258, 11369–11376.

    PubMed  CAS  Google Scholar 

  • Nukuda, T., Tanabe, T., Takahashi, H., Noda, M. Haga, K., Haga, T., Ichiyama, A., Kangawa, K., Hiranaga, M., Matsuo, H., and Numa, S. (1986) Primary structure of the a subunit of bovine adenylate cyclase-inhibiting G-protein deduced from the cDNA sequence. FEBS Lett. 197, 305–310.

    Google Scholar 

  • Pfeuffer, E., Mollner, S., and Pfeuffer, T. (1985) Adenylate cyclase from bovine brain cortex: Purification and characterization of the catalytic unit. EMBO J. 4, 3675–3679.

    PubMed  CAS  Google Scholar 

  • Pines, M., Gierschik, P., Milligan, G., Klee, W., and Spiegel, A. (1985) Antibodies against the carboxy-terminal 5-kDa peptide of the a subunit of transducin crossreact with the 40 kDa, but not the 39 kDa guanine nucleotide binding protein from brain. Proc. Natl. Acad. Sci. USA 82, 4095–4099.

    PubMed  CAS  Google Scholar 

  • Ribeiro-Neto, F. A. P., Mattera, R., Hildebrandt, J. D., Codina, J., Field, J. B., Birnbaumer, L., and Sekura, R. D. (1985) ADP-ribosylation of membrane components by pertussis and cholera toxin. Meth. Enzymol. 109, 566–572.

    PubMed  CAS  Google Scholar 

  • Robinson, Jr., C. W., Mason, R. G., and Wagner, R. H. (1963) Effect of sulfhydryl inhibitors on platelet agglutinability. Proc. Soc. Exp. Biol. Med. 113, 857–861.

    PubMed  CAS  Google Scholar 

  • Rodbell, M. (1975) On the mechanism of activation of fat cell adenylate cyclase by guanine nucleotides. An explanation for the biphasic inhibitory and stimulatory effects of the nucleotides and the role of hormones. J. Biol. Chem. 250, 5826–5834.

    PubMed  CAS  Google Scholar 

  • Ross, E. M., Howlett, A. C., Ferguson, K. M., and Gilman, A. G. (1978) Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J. Biol. Chem. 253, 6401–6412.

    PubMed  CAS  Google Scholar 

  • Sabol, S. L. and Nirenberg, M. (1979) Regulation of adenylate cyclase of neuroblastoma × glioma hybrid cells by α-adrenergic receptors. J. Biol. Chem. 254, 1913–1920.

    PubMed  CAS  Google Scholar 

  • Salzman, E. W. and Neri, L. L. (1969) Cyclic 3′,5′-adenosine monophosphate in human blood platelets. Nature 224, 609–610.

    PubMed  CAS  Google Scholar 

  • Seamon, K. B. and Daly, J. W. (1981) Forskolin: A unique diterpene activator of cyclic AMP generating systems. J. Cyclic Nucleotide Res. 7, 201–224.

    PubMed  CAS  Google Scholar 

  • Shorr, R. G. L., Lefkowitz, R. J., and Caron, M. G. (1981) Purification of the β-adrenergic receptor. J. Biol. Chem. 256, 5820–5826.

    PubMed  CAS  Google Scholar 

  • Smigel, M. D. (1986) Purification of the catalyst adenylate cyclase. J. Biol. Chem. 261, 1976–1982.

    PubMed  CAS  Google Scholar 

  • Smith, M. M. and Harden, T. K. (1984) Modification of receptor mediated inhibition of adenylate cyclase in NG 108–15 neuroblastoma x glioma cells by N-ethylmaleimide. J. Pharmacol. Exp. Ther. 228, 425–433.

    PubMed  CAS  Google Scholar 

  • Smith, S. K. and Limbird, L. E. (1981) Solubilization of human platelet a-adrenergic receptors: Evidence that agonist occupancy of the receptor stabilizes receptor-effector interactions. Proc. Natl. Acad. Sci. USA 78, 4026–4030.

    PubMed  CAS  Google Scholar 

  • Spiegel, A. M., Gierschik, P., Levine, M. A., and Downs, R. W., Jr. (1985) Clinical implications of guanine nucleotide-binding proteins as receptor-effector couplers. N. Engl. J. Med. 312, 26–33.

    PubMed  CAS  Google Scholar 

  • Sternweis, P. C. (1986) The purified a subunits of Go and Gi from bovine brain require βγ for association with phospholipid vesicles. J. Biol. Chem. 261, 631–637.

    PubMed  CAS  Google Scholar 

  • Sternweis, P. C. and Robishaw, J. D. (1984) Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J. Biol. Chem. 259, 13806–13813.

    PubMed  CAS  Google Scholar 

  • Sternweis, P. C, Northup, J. K., Smigel, M. D., and Gilman, A. G. (1981) The regulatory component of adenylate cyclase. Purification and properties. J. Biol. Chem. 256, 11517–11526.

    PubMed  CAS  Google Scholar 

  • Stiles, G. L. and Lefkowitz, R. J. (1982) Hormone-sensitive adenylate cyclase. Delineation of a trypsin-sensitive site in the pathway of receptor-mediated inhibition. J. Biol. Chem. 257, 6287–6291.

    PubMed  CAS  Google Scholar 

  • Sugimoto, K., Nukada, T., Tanabe, T., Takahashi, H., Noda, M., Minamino, N., Kangawa, K., Matsuo, H., Hirose, T., Inayama, S., and Numa, S. (1985) Primary structure of the β subunit of bovine transducin deduced from the cDNA sequence. FEBS Lett. 191, 235–240.

    PubMed  CAS  Google Scholar 

  • Sunyer, T., Codina, J., and Birnbaumer, L. (1984) GTP hydrolysis by pure Ni, the inhibitory regulatory component of adenylyl cyclase. J. Biol. Chem. 259, 15447–15451.

    PubMed  CAS  Google Scholar 

  • Tsai, B. S. and Lefkowitz, R. J. (1978) Agonist-specific effects of monovalent and divalent cations on adenylate cyclase coupled a-adrenergic receptors in rabbit platelets. Mol. Pharmacol. 14, 540–548.

    PubMed  CAS  Google Scholar 

  • Ui, M. (1984) Islet-activating protein, pertussis toxin: A probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. TIPS 5, 277–279.

    CAS  Google Scholar 

  • Van Dop, C, Yamanaka, G., Steinberg, F., Sekura, R. D., Manclark, C. R., Stryer, L., and Bourne, H. R. (1984) ADP-ribosylation of transducin by pertussis toxin blocks light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors. J. Biol. Chem. 259, 23–26.

    PubMed  Google Scholar 

  • Verghese, M. W., Fox, K., McPhail, L. C., and Snyderman, R. (1985) Chemoattractant-elicited alterations of cAMP levels in human polymorphonuclear leukocytes require a Ca2 +-dependent mechanism which is independent of transmembrane activation of adenylate cyclase. J. Biol. Chem. 260, 6769–6775.

    PubMed  CAS  Google Scholar 

  • Watanabe, Y., Horn, F., Bauer, S., and Jakobs, K. H. (1985) Protein kinase C interferes with Ni-mediated inhibition of human platelet adenylate cyclase. FEBS Lett. 192, 23–27.

    PubMed  CAS  Google Scholar 

  • Wei, J. W. and Sulakhe, P. V. (1980) Requirement for sulfhydryl groups in the differential effects of magnesium ion and GTP on agonist binding of muscarinic cholinergic receptor sites in rat atrial membrane fraction. Naunyn Schmiedebergs Arch. Pharmacol. 314, 51–59.

    PubMed  CAS  Google Scholar 

  • Woodcock, E. A., Johnston, C. I., and Olson, C. A. (1980) α-Adrenergic inhibition of renal cortical adenylate cyclase. J. Cyclic Nucleotide Res. 6, 261–269.

    PubMed  CAS  Google Scholar 

  • Yeung, S. M. H. and Green, R. D. (1983) Agonist and antagonist affinities for inhibitory adenosine receptors are reciprocally affected by 5′-guanylylimidodiphosphate or N-ethylmaleimide. J. Biol. Chem. 258, 2334–2339.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this chapter

Cite this chapter

Gierschik, P., Jakobs, K.H. (1988). Mechanisms for Inhibition of Adenylate Cyclase by alpha-2 Adrenergic Receptors. In: Limbird, L.E. (eds) The alpha-2 Adrenergic Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4596-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4596-4_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8942-5

  • Online ISBN: 978-1-4612-4596-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics