Skip to main content

Biochemistry of alpha-2 Adrenergic Receptors

  • Chapter

Part of the book series: The Receptors ((REC))

Abstract

Physiologic and pharmacologic studies provide the present basis for the classification of alpha-adrenergic receptors (Langer, 1974; Berthelsen and Pettinger, 1977; Wikberg, 1978; Starke, 1981). This classification calls for the existence of discrete alpha-1 and alpha-2 adrenergic receptors with the extant possibility of further subdivision among the alpha-2 adrenergic receptors (Cheung et al., 1982; McGrath and Reid, 1985; Bylund, 1985). Until recently, demonstrating the actual physical existence of the unique macromole-cules representing these alpha-adrenergic receptor subtypes has proved elusive. The difficulty in studying their biochemistry is primarily because most membrane-bound hormone receptors, including alpha-adrenergic receptors, are present only at very low concentrations in the cells of target tissues (i.e., frequently less than 0.001% of the total cellular protein). Therefore, a sensitive and reliable means of quantifying receptor activity was required before the biochemical characterization and purification of alpha-adrenergic receptors could progress. The means for the direct measurement of alpha-adrenergic receptor activity was acquired in 1976 with the development of [3H]dihydroergocryptine ([3H]DHE, Williams and Lefkowitz, 1976).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, D. K., and Daniel, E. E. (1985) Two distinct populations of [3H]prazosin and [3H]yohimbine binding sites in the plasma membranes of rat mesenteric artery. J. Pharmacol. Exp. Ther. 233, 195–203.

    PubMed  CAS  Google Scholar 

  • Alabaster, V. A., and Brett, J. M. (1983) Different affinities of alpha-2 adrenergic receptor antagonists for [3H]rauwolscine binding sites in brain and spleen membranes. Br. J. Pharmacol. 79, 314P.

    Google Scholar 

  • Arnett, C. D., and Davis, J. N. (1979) Denervation-induced changes in alpha and beta adrenergic receptors of the rat submandibular gland. J. Pharmacol. Exp. Ther. 211, 394–400.

    PubMed  CAS  Google Scholar 

  • Asakura, M., Tsukamoto, T., Imafuku, J., Matsui, H., Ino, M., and Hasegawa, K. (1985) Quantitative analysis of rat brain alpha-2 receptors discriminated by [3H]clonidine and [3H]rauwolscine. Eur. J. Pharmacol. 106, 141–147.

    Google Scholar 

  • Barnes, P. J., Skoogh, B. E., Nadel, J. A., and Roberts, J. M. (1983) Postsynaptic alpha2-adrenergic receptors predominate over alpha1-adrenergic receptors in canine tracheal smooth muscle and mediate neuronal and hormonal alpha-adrenergic contraction. Mol. Pharmacol. 23, 570–575.

    PubMed  CAS  Google Scholar 

  • Benovic, J. L., Regan, J. W., Matsui, H., Mayor, F., Cotecchia, S., Leeb-Lundberg, L. M. F., Caron, M. G., and Lefkowitz, R. J. (1988) Agonist-dependent phosphorylation of the alpha-2 adrenergic receptor by the beta adrenergic receptor kinase. J. Biol. Chem. 262, 17521–17253.

    Google Scholar 

  • Benovic, J. L., Shorr, R. G. L., Caron, M. G., and Lefkowitz, R. J. (1984) The mammalian beta-2 adrenergic receptor: Purification and characterization. Biochemistry 23, 4510–4518.

    PubMed  CAS  Google Scholar 

  • Benovic, J. L., Strasser, R. H., Caron, M. G., and Lefkowitz, R. J. (1986) Beta adrenergic receptor kinase: Identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc. Natl. Acad. Sci. USA 83, 2797–2801.

    PubMed  CAS  Google Scholar 

  • Benovic, J. L., Staniszewski, C, Cerione, R. A., Codina, J., Lefkowitz, R. J., and Caron, M. G. (1987) The mammalian beta adrenergic receptor: Structural and functional characterization of the carbohydrate moiety. J. Receptor Res. 7, 257–281.

    CAS  Google Scholar 

  • Berthelsen, S., and Pettinger, W. A. (1977) A functional basis for classification of alpha adrenergic receptors. Life Sci. 21, 595–606.

    PubMed  CAS  Google Scholar 

  • Bobik, A. (1982) Identification of alpha adrenergic receptor subtypes in dog arteries by [3H]yohimbine and [3H]prazosin. Life Sci. 30, 219–228.

    PubMed  CAS  Google Scholar 

  • Bottari, S. P., Vokaer, A., Kaivez, E., Lescrainier, J. P., and Vauquelin, G. (1983) Identification and characterization of alpha-2 adrenergic receptors in human myometrium by [3H]rauwolscine binding. Am. J. Obstet. Gynecol. 146, 639–643.

    PubMed  CAS  Google Scholar 

  • Boyajian, C. L., and Leslie, F. M. (1987) Pharmacological evidence for alpha-2 adrenoceptor heterogeneity: Differential binding properties of [3H]rauwolscine and [3H]idazoxan in rat brain. J. Pharmacol. Exp. Ther. 241, 1092–1098.

    PubMed  CAS  Google Scholar 

  • Boyajian, C. L., Loughlin, S. E., and Leslie, F. M. (1987) Anatomical evidence for alpha-2 adrenoceptor heterogeneity: Differential auto-radio-graphic distributions of [3H]rauwolscine and [3H]idazoxan in rat brain. J. Pharmacol Exp. Ther. 241, 1079–1091.

    PubMed  CAS  Google Scholar 

  • Broadhurst, A. M., and Wyllie, M. G. (1986) A reassessment of the binding of [3H]rauwolscine to membranes from rat cortex. Neuropharmacology 25, 287–295.

    PubMed  CAS  Google Scholar 

  • Brodde, O. E., Hardung, A., Ebel, H., and Bock, K. D. (1982) GTP regulates binding of agonists to alpha-2 adrenergic receptors in human platelets. Arch. Int. Pharmacodyn. 258, 193–207.

    PubMed  CAS  Google Scholar 

  • Brodde, O. E., Eymer, T., and Arroyo, J. (1983) [3H]Yohimbine binding to guinea pig kidney and calf cerebral cortex membranes: Comparison with human platelets. Arch. Int. Pharmacodyn. 266, 208–220.

    PubMed  CAS  Google Scholar 

  • Bylund, D. B. (1985) Heterogeneity of alpha-2 adrenergic receptors. Pharmacol. Biochem. Behav. 22, 835–843.

    PubMed  CAS  Google Scholar 

  • Bylund, D. B., and Martinez, J. R. (1980) Alpha-2 adrenergic receptors appear in rat salivary glands after reserpine treatment. Nature 285, 229–230.

    PubMed  CAS  Google Scholar 

  • Bylund, D. B., and Martinez, J. R. (1981) Postsynaptic localization of alpha-2 adrenergic receptors in rat submandibular gland. J. Neurosci. 1, 1003–1007.

    PubMed  CAS  Google Scholar 

  • Bylund, D. B., and Utrichard, D. C. (1983) Characterization of alpha-1 and alpha-2 adrenergic receptors. Internat. Rev. Neurobiol. 24, 343–431.

    CAS  Google Scholar 

  • Bylund, D. B., Martinez, J. R., and Pierce, D. L. (1982) Regulation of autonomic receptors in rat submandibular gland. Mol. Pharmacol. 21, 27–35.

    PubMed  CAS  Google Scholar 

  • Cambridge, D. (1981) UK-14,304, a potent and selective alpha-2 agonist for the characterization of alpha-2 adrenergic receptor subtypes. Eur. J. Pharmacol. 72, 413–415.

    PubMed  CAS  Google Scholar 

  • Caron, M. G., Srinivasan, Y., Pitha, J., Kociolek, K., and Lefkowitz, R. J. (1979) Affinity chromatography of the beta adrenergic receptor. J. Biol. Chelm. 254, 2923–2927.

    CAS  Google Scholar 

  • Carter, R. J., and Shuster, S. (1982) The association between the melanocyte-stimulating hormone receptor and the alpha-2 adrenergic receptor on the Anolis melanophore. Br. J. Pharmacol. 75, 169–176.

    PubMed  CAS  Google Scholar 

  • Cerione, R. A., Regan, J. W., Nakata, H., Codina, J., Benovic, J. B., Gierschik, P., Somers, R. L., Spiegel, A. M., Birnbaumer, L., Lefkowitz, R. J., and Caron, M. G. (1986) Functional reconstitution of the alpha-2 adrenergic receptor with guanine nucleotide regulatory proteins in phospholipid vesicles. J. Biol. Chem. 261, 3901–3909.

    PubMed  CAS  Google Scholar 

  • Chang, E. B., Field, M., and Miller, R. J. (1983) Enterocyte alpha-2 adrenergic receptors: Yohimbine and p-aminoclonidine binding relative to ion transport. Am. J. Physiol. 244, G76-G82.

    PubMed  CAS  Google Scholar 

  • Chapleo, C. B., Doxey, J. C, Meyers, P. L., and Roach, A. G. (1981) RX 781094, a new potent, selective antagonist of alpha-2 adrenergic receptors. Br. J. Pharmacol. 74, 842P.

    Google Scholar 

  • Cheung, Y. D., Barnett, D. B., and Nahorski, S. R. (1982) [3H]Rauwolscine and [3H] yohimbine binding to rat cerebral and human platelet membranes: Possible heterogeneity of alpha-2 adrenergic receptors. Eur. J. Pharmacol. 84, 79–85.

    PubMed  CAS  Google Scholar 

  • Cheung, Y. D., Barnett, D. B., and Nahorski, S. R. (1984) Interactions of endogenous and exogenous norepinephrine with alpha2 adrenergic receptor binding sites in rat cerebral cortex. Biochem. Pharmacol. 33, 1293–1298.

    PubMed  CAS  Google Scholar 

  • Cheung, Y. D., Barnett, D. B., and Nahorski, S. R. (1986) Heterogeneous properties of alpha2 adrenergic receptors in particulate and soluble preparations of human platelet and rat and rabbit kidney. Biochem. Pharmacol. 35, 3767–3775.

    PubMed  CAS  Google Scholar 

  • Cleveland, D. W., Fischer, S. G., Kirschner, M. W., and Laemmli, U. K. (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252, 1102–1106.

    PubMed  CAS  Google Scholar 

  • Cornett, L. E., and Norris, J. S. (1986) Affinity labeling of the DDT! MF-2 cell alpha-1 adrenergic receptor with [3H]phenoxybenzamine. Biochem. Pharmacol. 35, 1663–1669.

    PubMed  CAS  Google Scholar 

  • Dabire, H., Dausse, J. P., Mouille, P., Schmitt, H., and Meyer, P. (1983) In vitro studies with (imidazolinyl-2)-2-benzodioxane-l-4 (170 150), a new potent alpha-2 adrenergic receptor blocking agent. Eur. J. Pharmacol. 86, 87–90.

    Google Scholar 

  • Dabire, H., Mouille, P., Andrejak, M., Fournier, B., and Schmitt, H. (1981) Pre- and postsynaptic alpha adrenergic receptor blockade by (imida-zolinyl-2)-2-benzodioxane 1–4(170 150): Antagonist action on central effects of Clonidine. Arch. Int. Pharmacodyn. 254, 252–270.

    PubMed  CAS  Google Scholar 

  • Daiguji, M., Meltzer, H. Y., and Utrichard, D. C. (1981) Human platelet alpha-2 adrenergic receptors: Labeling with [3H]yohimbine, a selective antagonist ligand. Life Sci. 28, 2705–2717.

    PubMed  CAS  Google Scholar 

  • DeMarinis, R. M., Krog, A. J., Shah, D. H., Lafferty, J., Holden, K. G., Hieble, J. P., Matthews, W. D., Regan, J. W., Lefkowitz, R. J and Caron, M. G. (1984) Development of an affinity ligand for purification of alpha-2 adrenergic receptors from human platelet membranes. J. Med. Chem. 27, 918–921.

    PubMed  CAS  Google Scholar 

  • Dickinson, K. E. J., McKernan, R. M., Miles, C. M. M., Leys, K. S., and Sever, P. S. (1986) Heterogeneity of mammalian alpha-2 adrenergic receptors delineated by [3H]yohimbine binding. Eur. J. Pharmacol. 120, 285–293.

    PubMed  CAS  Google Scholar 

  • Diop, L., Dausse, J. P., and Meyer, P. (1983) Specific binding of [3H]rauwolscine to alpha-2 adrenergic receptors in rat cerebral cortex: Comparison between crude and synaptosomal plasma membranes. J. Neurochem. 41, 710–715.

    PubMed  CAS  Google Scholar 

  • Dixon, R. A. F., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., Bolanowski, M. A., Bennett, C. D., Rands, E., Diehl, R. E., Mumford, R. A., Slater, E. E., Sigal, LS., Caron, M. G., Lefkowitz, R. J., and Strader, C. D. (1986) Cloning of the gene and cDNA for mammalian beta adrenergic receptor and homology with rhodopsin. Nature 321, 75–79.

    PubMed  CAS  Google Scholar 

  • Dohlman, H. G., Caron, M. G., and Lefkowitz, R. J. (1987) A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 27, 2657–2664.

    Google Scholar 

  • Doxey, J. C, Gadie, B., Lane, A. C, and Tullock, I. F. (1983a) Evidence for pharmacological similarity between alpha-2 adrenergic receptors in the vas deferens and central nervous system of the rat. Br. J. Pharmacol. 80, 155–161.

    PubMed  CAS  Google Scholar 

  • Doxey, J. C, Roach, A. G., and Smith, C. F. C. (1983b) Studies on RX 781094: A selective, potent and specific antagonist of alpha-2 adrenergic receptors. Br. J. Pharmacol. 78, 489–505.

    PubMed  CAS  Google Scholar 

  • Doxey, J. C, Roach, A. C, Strachan, D. A., and Virdee, N. K. (1984) Selectivity and potency of 2-alkyl analogues of the alpha-2 adrenergic receptor antagonist idazoxan (RX 781094) in peripheral systems. Br. J. Pharmacol. 83, 713–722.

    PubMed  CAS  Google Scholar 

  • Elliot, J. M., and Rutherford, M. G. (1983) Binding characteristics of [3H]RX 781094 on human intact platelets. Br. J. Pharmacol. 79, 313P.

    Google Scholar 

  • Fedan, J. S., Hogaboom, G. K., and O’Donnell, J. P. (1984) Photoaffinity labels as pharmacological tools. Biochem. Pharmac. 33, 1167–1180.

    CAS  Google Scholar 

  • Feller, D. J., and Bylund, D. B. (1984) Comparison of alpha-2 adrenergic receptors and their regulation in rodent and porcine species. J. Pharmacol. Exp. Ther. 228, 275–281.

    PubMed  CAS  Google Scholar 

  • Gadie, B., Lane, A. C, McCarthy, P. S., Tulloch, I. F., and Walter, D. S. (1984) 2-Alkyl analogues of idazoxan (RX 781094) with enhanced antagonist potency and selectivity at central alpha-2 adrenergic receptors in the rat. Br. J. Pharmacol. 83, 707–712.

    PubMed  CAS  Google Scholar 

  • Garcia-Sevilla, J. A., and Fuster, M. J. (1986) Labelling of human platelet alpha-2-adrenoceptors with the full agonist [3H](-)adrenaline. Eur. J. Pharmacol. 124, 31–41.

    PubMed  CAS  Google Scholar 

  • Garcia-Sevilla, J. A., Hollingsworth, P. J., and Smith, C. B. (1981) Alpha-2 adrenergic receptors on human platelets: Selective labeling by [3H]clonidine, [3H]yohimbine and competitive inhibition by antidepressant drugs. Eur. J. Pharmacol. 74, 329–341.

    PubMed  CAS  Google Scholar 

  • Glusa, E., and, Markwardt, F. (1983) Characterization of alpha-2 adrenergic receptors on blood platelets from various species using [3H]yohimbine. Haemostasis 13, 96–101.

    PubMed  CAS  Google Scholar 

  • Grant, J. A., and Scrutton, M. C. (1980) Interaction of selective alpha adrenergic receptor agonists and antagonists with human and rabbit blood platelets. Br. J. Pharmacol. 71, 121–134.

    PubMed  CAS  Google Scholar 

  • Greenwood, F. C, Hunter, W. M., and Glover, J. S. (1963) The preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochem. J. 89, 114–123.

    PubMed  CAS  Google Scholar 

  • Haga, T. and Haga, K. (1980) Characterization of alpha-adrenergic receptor subtypes in rat brain: Estimation of ability of adrenergic ligands to displace [3H]dihydroergocryptine from the receptor subtypes. Life Sci. 26, 211–218.

    PubMed  CAS  Google Scholar 

  • Hannah, J. A. M., Hamilton, C. A., and Reid, J. L. (1983) RX 781094, a new potent alpha-2 adrenergic receptor antagonist. Naunyn Schmiedebergs Arch. Pharmacol. 322, 221–227.

    PubMed  CAS  Google Scholar 

  • Hoffman, B. B., DeLean, A., Wood, C. L., Schocken, D. D., and Lefkowitz, R. J. (1979) Alpha-adrenergic receptor subtypes: Quantitative assessment by ligand binding. Life Sci. 24, 1739–1746.

    PubMed  CAS  Google Scholar 

  • Hoffman, B. B., Michel, T., Brenneman, T. B., and Lefkowitz, R. J. (1982) Interactions of agonists with platelet alpha-2 adrenergic receptors. Endocrinology 110, 926–932.

    PubMed  CAS  Google Scholar 

  • Howlett, D. R., Taylor, P., and Walter, D. S. (1982) Alpha adrenoceptor selectivity studies with RX 781094 using radioligand binding to cerebral membranes. Br. J. Pharmacol. 76, 294P.

    Google Scholar 

  • Isom, L. L., Cragoe, E. J., and Limbird, L. E. (1987) Alpha-2 adrenergic receptors accelerate Na+/H+ exchange in neuroblastoma X glioma cells. J. Biol. Chem. 262, 6750–6757.

    PubMed  CAS  Google Scholar 

  • Jaiswal, R. K., and Sharma, R. K. (1985) Purification and biochemical characterization of alpha-2 adrenergic receptor from the rat adrenocortical carcinoma. Biochem. Biophys. Res. Comm. 130, 58–64.

    PubMed  CAS  Google Scholar 

  • Jakobs, K. H., and Rauschek, R. (1978) [3H]Dihydroergonine binding to alpha adrenergic receptors in human platelets. Klin. Wochenschr. 56 (suppl. 1), 139–145.

    PubMed  CAS  Google Scholar 

  • Jarrott, B., Louis, W. J., and Summers, R. J. (1982) [3H]Guanfacine: A radioligand that selectively labels high affinity alpha-2 adrenergic receptor sites in homogenates of rat brain. Br. J. Pharmacol. 75, 401–408.

    PubMed  CAS  Google Scholar 

  • Karlsson, J. O. G., Grundstrom, N., Wikberg, J. E. S., Friedman, R., and Anderson, R. G. G. (1985) The effect of pertussis toxin on alpha-2 adrenergic receptor-mediated pigment migration in fish melanophores. Life Sci. 37, 1043–1049.

    PubMed  CAS  Google Scholar 

  • Kawahara, R. S. and Bylund, D. B. (1985) Solubilization and characterization of putative alpha-2 adrenergic isoreceptors from the human platelet and the rat cerebral cortex. J. Pharmacol. Exp. Ther. 233, 603–610.

    PubMed  CAS  Google Scholar 

  • Kawahara, R. S., Byington, K. H. and Bylund, D. B. (1985) p-Azidoclonidine: A photoaffinity label for the alpha-2 adrenergic receptor. Eur. J. Pharmacol. 117, 43–50.

    PubMed  CAS  Google Scholar 

  • Kawai, M., and Nomura, Y. (1983) Involvement of sulfhydryl groups in cerebral cortical [3H]clonidine binding in developing rats. Eur. J. Pharmacol. 91, 449–454.

    PubMed  CAS  Google Scholar 

  • Kerry, R., Scrutton, M. C., and Wallis, R. B. (1984) Mammalian platelet adrenergic receptors. Br. J. Pharmacol. 81, 91–102.

    PubMed  CAS  Google Scholar 

  • Kitamura, Y., Tanaka, H., and Nomura, Y. (1986) [3H]Clonidine and [3H]yohimbine binding to solubilized alpha-2 adrenergic receptor from rat cerebral cortex. Eur. J. Pharmacol. 123, 263–270.

    PubMed  CAS  Google Scholar 

  • Kobilka, B. K., Matsui, H., Kobilka, T. S., Yang-Feng, T. L., Francke, U., Caron, M. G., Lefkowitz, R. J., and Regan, J. W. (1987) Cloning, sequencing, and expression of the gene coding for the human platelet alpha-2 adrenergic receptor. Science 238, 650–656.

    PubMed  CAS  Google Scholar 

  • Kremenetzky, R., and Atlas, D. (1984) Solubilization and reconstitution of alpha-2 adrenergic receptors from rat and calf brain. Eur. J. Biochem. 138, 573–577.

    PubMed  CAS  Google Scholar 

  • Kunos, G., Kan, W. H., Greguski, R., and Venter, J. C. (1983) Selective affinity labeling and molecular characterization of hepatic alpha-1 adrenergic receptors with [3H]phenoxybenzamine. J. Biol. Chem. 258, 326–332.

    PubMed  CAS  Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    PubMed  CAS  Google Scholar 

  • Lane, A. C, Howlett, D. R., and Walter, D. S. (1983) The effects of metal ions on the binding of a new alpha-2 adrenergic receptor antagonist radioligand [3H]RX 781094 in rat cerebral cortex. Biochem. Pharmacol. 32, 3122–3125.

    PubMed  CAS  Google Scholar 

  • Langer, S. Z. (1974) Presynaptic regulation of catecholamine release. Biochem. Pharmacol. 23, 1793–1800.

    PubMed  CAS  Google Scholar 

  • Langer, S. Z., Pimoule, C, and Scatton, B. (1983) [3H]RX 781094, a preferential alpha-2 adrenergic receptor antagonist radioligand, labels alpha-2 adrenergic receptors in the rat brain cortex. Br. J. Pharmacol. 78, 109P.

    Google Scholar 

  • Lanier, S. M., Graham, R. M., Hess, H. J., Grodski, A., Repaske, M. G., Nunnari, J. M., Limbird, L. E., and Homey, C. J. (1986a) Photoaffinity labeling of the porcine brain alpha-2 adrenergic receptor using a radioiodinated arylazide derivative of rauwolscine: Identification of the hormone-binding subunit. Proc. Natl. Acad. Sci. USA 83, 9358–9362.

    CAS  Google Scholar 

  • Lanier, S. M., Hess, H. J., Grodski, A., Graham, R. M., and Homey, C. J. (1986b) Synthesis and characterization of a high affinity radioiodinated probe for the alpha-2 adrenergic receptor. Mol. Pharmacol. 29, 219–227.

    PubMed  CAS  Google Scholar 

  • Latifpour, J., Jones, S. B., and Bylund, D. B. (1982) Characterization of [3H]yohimbine binding to putative alpha-2 adrenergic receptors in neonatal rat lung. J. Pharmacol. Exp. Ther. 223, 606–611.

    PubMed  CAS  Google Scholar 

  • Lattimer, N., and Rhodes, K. F. (1985) A difference in the affinity of some selective, alpha-2 adrenergic receptor antagonists when compared on isolated vasa deferencia of rat and rabbit. Naunyn Schmiedebergs Arch. Pharmacol. 329, 278–281.

    PubMed  CAS  Google Scholar 

  • Limbird, L. E., Speck, J. L., and Smith, S. K. (1982) Sodium ion modulates agonist and antagonist interactions with the human platelet aipha2-adrenergic receptor in membrane and solubilized preparations. Mol. Pharmacol. 21, 609–617.

    PubMed  CAS  Google Scholar 

  • Limbird, L. E., MacMillan, S. T., and Kalinoski, D. L. (1985) The resolution of agonist alpha-2 adrenergic receptor complexes from unoccupied receptors or antagonist-alpha-2 receptor complexes using DEAE chromatography. J. Cyclic Nucl. Protein Phosphor. Res. 10, 75–82.

    CAS  Google Scholar 

  • Loftus, D. J., Stolk, J. M., and Utrichard, D. C. (1984) Binding of the imidazoline UK-14,304, a putative full alpha-2 adrenergic receptor agonist, to rat cerebral cortex membranes. Life Sci. 35, 61–69.

    PubMed  CAS  Google Scholar 

  • Lomasney, J. W., Leeb-Lundberg, L. M. F., Cotecchia, S., Regan, J. W., DeBarnardis, J. F., Carón, M. G., and Lefkowitz, R. J. (1986) Mammalian alpha-1 adrenergic receptor: Purification and characterization of the native receptor ligand binding subunit. J. Biol. Chem. 261, 7710–7716.

    PubMed  CAS  Google Scholar 

  • Lynch, C. J., and Steer, M. L., (1981) Evidence for high and low affinity alpha-2 adrenergic receptors. J. Biol. Chem. 256, 3298–3303.

    PubMed  CAS  Google Scholar 

  • Macfarlane, D. E., Wright, B. L., and Stump, D. C. (1981) Use of [methyl-3H]yohimbine as a radioligand for alpha-2-adrenoreceptors on intact platelets. Throm. Res. 24, 31–43.

    CAS  Google Scholar 

  • Matsui, H., Imafuku, J., Asakura, M., Tsukamoto, T., Ino, M., Saitoh, N., Miyamura, S., and Hasegawa, K. (1984) Solubilization of active alpha-2 adrenergic receptor from rat brain: Regulation by cations and GTP. Biochem. Pharmacol. 33, 3311–3314.

    PubMed  CAS  Google Scholar 

  • Matsui, H., Asakura, M., Tsukamoto, T., Imafuku, J., Ino, M., Saitoh, N., Miyamura, S., and Hasegawa, K. (1985) Solubilization and characterization of rat brain alpha-2 adrenergic receptor. J. Neurochem. 44, 1625–1632.

    PubMed  CAS  Google Scholar 

  • Matsushima, Y., Akabane, S., and Ito, K. (1986) Characterization of alpha-1 and alpha-2 adrenergic receptors directly associated with basolateral membranes from rat kidney proximal tubules. Biochem. Pharmacol. 35, 2593–2600.

    PubMed  CAS  Google Scholar 

  • Mattens, E., Bottari, S., Vokaer, A., and Vauquelin, G. (1985) Arginine and cysteine residues in the ligand binding site of alpha 2-adrenergic receptors. Life Sci. 36, 355–362.

    PubMed  CAS  Google Scholar 

  • McGrath, J. C, and Reid, J. L. (1985) Commentary on workshop on alpha adrenergic receptors. Clin. Sci. 68 (suppl. 10), 1–7.

    Google Scholar 

  • McKernan, R. M., Dickinson, K. E. J., Miles, C. M. M., Sever, P. S. (1986) Heterogeneity between soluble human and rabbit splenic alpha-2 adrenergic receptor. Biochem. Pharmacol. 35, 3517–3523.

    PubMed  CAS  Google Scholar 

  • McLauglin, N. J., and Collins, G. G. S. (1986) Binding characteristics of the selective a-2-adrenoceptor antagonist [3H]idazoxan to rat olfactory cortex membranes. Eur. J. Pharmacol. 121, 91–96.

    Google Scholar 

  • McPherson, G. A., and Summers, R. J. (1983) Evidence from binding studies for alpha-2 adrenergic receptors directly associated with glomeruli from rat kidney. Eur. J. Pharmacol. 90, 333–341.

    PubMed  CAS  Google Scholar 

  • Miach, P. J., Dausse, J. P., and Meyer, P. (1978) Direct biochemical demonstration of two types of alpha adrenergic receptor in rat brain. Nature 274, 492–194.

    PubMed  CAS  Google Scholar 

  • Michel, T., Hoffman, B. B., Lefkowitz, R. J., and Caron, M. G. (1981) Different sedimentation properties of agonist and antagonist-labelled platelet alpha2 adrenergic receptors. Biochem. Biophys. Res. Comm. 100, 1131–1136.

    PubMed  CAS  Google Scholar 

  • Motulsky, H. J., and Insel, P. A. (1982) [3H]Dihydroergocryptine binding to alpha-adrenergic receptors of human platelets. Biochem. Pharmacol. 31, 2591–2597.

    PubMed  CAS  Google Scholar 

  • Motulsky, H. J., Shattil, S. J., and Insel, P. A. (1980) Characterization of alpha-2 adrenergic receptors on human platelets using [3H]yohimbine. Biochem. Biophys. Res. Commun. 97, 1562–1570.

    PubMed  CAS  Google Scholar 

  • Mouille, P., Dabire, H., Fournier, B., and Schmitt, H. (1981) A further attempt to characterize the alpha-2 adrenergic receptor blocking properties of (imidazolyl-2)-2-benzodioxane 1–4 (170 150) in pithed rats. Eur. J. Pharmacol. 73, 367–370.

    CAS  Google Scholar 

  • Mukherjee, A. (1981) Characterization of alpha-2 adrenergic receptors in human platelets by binding of a radioactive ligand [3H]yohimbine. Biochim. Biophys. Acta 676, 148–154.

    PubMed  CAS  Google Scholar 

  • Nakaki, T., Nakadate, T., Ishii, K. and Kato, R. (1981) Postsynaptic alpha-2 adrenergic receptors in isolated rat islets of Langerhans: Inhibition of insulin release and cyclic 3’:5’-adenosine monophosphate accumulation. J. Pharmacol. Exp. Ther. 216, 607–612.

    PubMed  CAS  Google Scholar 

  • Nakaki, T., Nakadate, T., Yamamoto, S., and Kato, R. (1983) Alpha2-adrenergic receptor in intestinal epithelial cells. Identification by [3H]yohimbine and failure to inhibit cyclic AMP accumulation. Mol. Pharmacol. 23, 228–234.

    PubMed  CAS  Google Scholar 

  • Nakata, H., Regan, J. W., and Lefkowitz, R. J. (1986) Chemical modification of alpha-2 adrenergic receptors: Possible role for tyrosine in the ligand binding site. Biochem. Pharmacol. 35, 4089–4094.

    PubMed  CAS  Google Scholar 

  • Nambi, P., Aiyar, N. V., and Sharma, R. K. (1982) Solubilization of epinephrine-specific alpha-2 adrenergic receptors from adrenocortical carcinoma. FEBS Lett. 140, 98–102.

    PubMed  CAS  Google Scholar 

  • Neubig, R. R., Gantzos, R. D., and Brasier, R. S. (1985) Agonist and antagonist binding to alpha-2 adrenergic receptors in purified membranes from human platelets. Mol. Pharmacol. 28, 475–486.

    PubMed  CAS  Google Scholar 

  • Neylon, C. B., and Summers, R. J. (1985) [3H]-Rauwolscine binding to alpha-2 adrenergic receptors in the mammalian kidney: Apparent receptor heterogeneity between species. Br. J. Pharmacol. 85, 349–359.

    PubMed  CAS  Google Scholar 

  • Nunnari, J. M., Repaske, M. G., Brandon, S., Cragoe, E. J. Jr., and Limbird, L. E. (1987) Regulation of porcine brain alpha2-adrenergic receptors by Na+ , H+ and inhibitors of Na+/H+ exchange. J. Biol. Chem. 262, 12387–12392.

    PubMed  CAS  Google Scholar 

  • Perry, B. D., and Utrichard, D. (1981) [3H]Rauwolscine (alpha-yohimbine): A specific antagonist radioligand for brain alpha-2 adrenergic receptors. Eur. J. Pharmacol. 76, 461–464.

    PubMed  CAS  Google Scholar 

  • Petrash, A. C, and Bylund, D. B. (1986) Alpha-2 adrenergic receptor subtypes indicated by [3H]yohimbine binding in human brain. Life Sci. 38, 2129–2137.

    PubMed  CAS  Google Scholar 

  • Pimoule, C, Briley, M. S. and Langer, S. Z. (1980) Short-term surgical denervation increases [3H]clonidine binding in rat salivary gland. Eur. J. Pharmacol. 63, 85–87.

    PubMed  CAS  Google Scholar 

  • Pushpendran, C. K., and Garcia-Sainz, J. A. (1984) RX 781094 a potent and selective alpha-2 adrenergic antagonist. Effects in adipocytes and hepatocytes. Eur. J. Pharmacol. 99, 337–339.

    PubMed  CAS  Google Scholar 

  • Quennedey, M. C, Bockaert, J., and Rouot B. (1984) Direct and indirect effects of sulfhydryl blocking agents on agonist and antagonist binding to central alpha-1 and alpha-2 adrenergic receptors. Biochem. Pharmacol. 33, 3923–3928.

    PubMed  CAS  Google Scholar 

  • Regan, J. W., Barden, N., Lefkowitz, R. J., Caron, M. G., DeMarinis, R. M., Krog, A. J., Holden, K. G., Matthews, W. D., and Hieble, J. P. (1982) Affinity chromatography of human platelet alpha2-adrenergic receptors. Proc. Natl. Acad. Sci. USA 79, 7223–7227.

    CAS  Google Scholar 

  • Regan, J. W., Benovic, J. L., Matsui, H., Mayor, F., Caron, M. G., and Lefkowitz, R. J. (1987) Agonist-dependent phosphorylation of the alpha-2 adrenergic receptor by the beta adrenergic receptor kinase. Clin. Res. 35, 648A.

    Google Scholar 

  • Regan, J. W., DeMarinis, R. M., Caron, M. G., and Lefkowitz, R. J. (1984) Identification of the subunit binding site of alpha-2 adrenergic receptors using [3H]phenoxybenzamine. J. Biol. Chem. 259, 7864–7869.

    PubMed  CAS  Google Scholar 

  • Regan, J. W., DeMarinis, R. M., and Lefkowitz, R. J. (1985) Arylazide photoaffinity probe for alpha-2 adrenergic receptors. Biochem. Pharmacol. 34, 3667–3672.

    PubMed  CAS  Google Scholar 

  • Regan, J. W., Nakata, H., DeMarinis, R. M., Caron, M. G., and Lefkowitz, R. J. (1986a) Purification and characterization of the human platelet alpha-2 adrenergic receptor. J. Biol. Chem. 261, 3894–3900.

    PubMed  CAS  Google Scholar 

  • Regan, J. W., Raymond, J. R., Lefkowitz, R. J., and DeMarinis, R. M. (1986b) Photoaffinity labeling of human platelet and rabbit kidney alpha-2 adrenergic receptors with [3H]SKF 102229. Biochem. Biophys. Res. Commun. 137, 606–613.

    PubMed  CAS  Google Scholar 

  • Repaske, M. G., Nunnari, J. M., and Limbird, L. E. (1987) Purification of the alpha-2 adrenergic receptor from porcine brain using a yohimbine-agarose affinity matrix. J. Biol. Chem. 262, 12381–12386.

    PubMed  CAS  Google Scholar 

  • Rouot, B. R., and Snyder, S. H. (1979) [3H]Para-amino-clonidine: A novel ligand which binds with high affinity to alpha adrenergic receptors. Life Sci. 25, 769–774.

    PubMed  CAS  Google Scholar 

  • Rouot, B., Quennedey, M. C, and Schwartz, J. (1982) Characteristics of the [3H]yohimbine binding on rat brain alpha-2 adrenergic receptors. Naunyn Schmiedebergs Arch. Pharmacol. 321, 253–259.

    PubMed  CAS  Google Scholar 

  • Schmitz, J. M., Graham, R. M., Sagalowsky, A., and Pettinger, W. A. (1981) Renal alpha-1 and alpha-2 adrenergic receptors: Biochemical and pharmacological correlations. J. Pharmacol. Exp. Ther. 219, 400–406.

    PubMed  CAS  Google Scholar 

  • Shreeve, S. M., Fraser, C. M., and Venter, J. C. (1985) Molecular comparison of alpha-1 and alpha-2 adrenergic receptors suggests that these proteins are structurally related isoreceptors. Proc. Natl. Acad. Sci. USA 82, 4842–846.

    PubMed  CAS  Google Scholar 

  • Sladeczek, F., Bockaert, J., and Rouot, B. (1984) Solubilization of brain alpha-2 adrenergic receptor with a zwitterionic detergent: Preservation of agonist binding and its sensitivity to GTP. Biochem. Biophys. Res. Comm. 119, 1116–1121.

    PubMed  CAS  Google Scholar 

  • Smith, S. K., and Limbird, L. E. (1981) Solubilization of human platelet alpha adrenergic receptors: Evidence that agonist occupancy of the receptor stabilizes receptor-effector interactions. Proc. Natl. Acad. Sci. USA 78, 4026–4030.

    PubMed  CAS  Google Scholar 

  • Smith, S. K. and Limbird, L. E. (1982) Evidence that human platelet alpha adrenergic receptors coupled to inhibition of adenylate cyclase are not associated with the subunit of adenylate cyclase ADP-ribosylated by cholera toxin. J. Biol. Chem. 257, 10471–10478.

    PubMed  CAS  Google Scholar 

  • Snavely, M. D. and Insel, P. A. (1982) Characterization of alpha-adrenergic receptor subtypes in the rat renal cortex. Mol. Pharmacol. 22, 532–546.

    PubMed  CAS  Google Scholar 

  • Starke, K. (1981) Alpha adrenoceptor subclassification. Rev. Physiol. Biochem. Pharmacol. 88, 199–236.

    PubMed  CAS  Google Scholar 

  • Steer, M. J., Khorana, J., and Galgoci, B. (1979) Quantitation and characterization of human platelet alpha-adrenergic receptors using [3H]phentolamine. Mol Pharmacol. 16, 719–728.

    PubMed  CAS  Google Scholar 

  • Stiles, G. L., Benovic, J. L., Caron, M. G., and Lefkowitz, R.J. (1984) Mammalian beta adrenergic receptors: Distinct glycoprotein populations containing high mannose or complex type carbohydrate chains. J. Biol. Chem. 259, 8655–8663.

    PubMed  CAS  Google Scholar 

  • Summers, R. J., Barnett, D. B., and Nahorski, S. R. (1983) The characteristics of adrenergic receptors in homogenates of human cerebral cortex labelled by [3H]rauwolscine. Life Sci. 33, 1105–1112.

    PubMed  CAS  Google Scholar 

  • Sweatt, J. D., Blair, I. A., Cragoe, E. J., and Limbird, L. E. (1986) Inhibitors of Na+/H+ exchange block epinephrine- and ADP-induced stimulation of human platelet phospholipase C by blockade of arachidonic acid release at a prior step. J. Biol. Chem. 261, 8660–8666.

    PubMed  CAS  Google Scholar 

  • Tanaka, T. and Starke, K. (1979) Binding of 3H-clonidine to an alpha adrenergic receptor in membranes of guinea-pig ileum. Naunyn Schmiedebergs Arch. Pharmacol. 309, 207–215.

    PubMed  CAS  Google Scholar 

  • Tanaka, T., Ashida, T. Deguchi, F., and Ikeda, MT (1983) [3H]Clonidine and [3H]rauwolscine binding to membranes from rat cerebral cortex and kidney. Japan J. Pharmacol. 33, 713–716.

    CAS  Google Scholar 

  • Tharp, M. D., Hoffman, B. B., and Lefkowitz, R. J. (1981) Alpha adrenergic receptors in human adipocyte membranes: Direct determination by [3H]yohimbine binding. J. Clin. Endocrinol. Metab. 52, 709–714.

    PubMed  CAS  Google Scholar 

  • Timmermans, P. B. M. W. M., Schoop, A. M. C, and van Zwieten, P. (1982) Binding characteristics of [3H]guanfacine to rat brain alpha adrenergic receptors. Biochem. Pharmacol. 31, 899–905.

    PubMed  CAS  Google Scholar 

  • Timmermans, P. B. M. W. M., Qian, J. Q., Ruffolo, R. R., and van Zwieten, P. A. (1984) A study of the selectivity and potency of rauwolscine, RX 781094 and RS 21361 as antagonists of alpha-1 and alpha-2 adrenergic receptors. J. Pharmacol. Exp. Ther. 228, 739–748.

    PubMed  CAS  Google Scholar 

  • Tsukahara, T., Taniguchi, T., Fujiwara, and Handa, H. (1983) Characterization of alpha adrenergic receptors in pial arteries of the bovine brain. Naunyn Schmiedebergs Arch. Pharmacol. 324, 88–93.

    PubMed  CAS  Google Scholar 

  • Turner, J. T., Ray-Prenger, C, and Bylund, D. B. (1985) Alpha-2 Adrenergic receptors in the human cell line, HT29. Mol Pharmacol. 28, 422–430.

    PubMed  CAS  Google Scholar 

  • Turtle, J. R., and Kipnis, D. M. (1967) An adrenergic receptor mechanism for the control of cyclic 3′5′ adenosine monophosphate synthesis in tissues. Biochem. Biophys. Res. Commun. 28, 797–802.

    PubMed  CAS  Google Scholar 

  • U’Prichard, D. C, and Ernsberger, P. (1983) p-Azidoclonidine: A potential photoaffinity ligand for the alpha-2 receptor. Soc. Neurosci. Abst. 9, 1117.

    Google Scholar 

  • U’Prichard, D. C, and Snyder, S.H. (1977) Binding of [3H]catecholamines talpha-noradrenergic receptor sites in calf brain. J. Biol. Chem. 252, 6450–6463.

    PubMed  Google Scholar 

  • U’Prichard, D. C, Greenberg, D. A., and Snyder, S. H. (1977). Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha-noradrenergic receptors. Mol. Pharmacol. 13, 454–473.

    PubMed  Google Scholar 

  • U’Prichard, D. C, Mitrius, J. C, Kahn, D. J., and Perry, B. D. (1983) The alpha-2 adrenergic receptor: Multiple affinity states and regulation of a receptor inversely coupled to adenylate cyclase. Adv. in Biochem. Psychopharmacol. 36, 53–72.

    Google Scholar 

  • Walter, D. S., Flockhart, I. R., Haynes, M. J., Howlett, D. R., Lane, A. C, Burton, R., Johnson, J., and Dettmar, P. W. (1984) Effects of idazoxan on catecholamine systems in rat brain. Biochem. Pharmacol. 33, 2553–2557.

    PubMed  CAS  Google Scholar 

  • Wikberg, J. E. S. (1978) Pharmacological classification of adrenergic alpha receptors in the guinea pig. Nature 273, 164–166.

    PubMed  CAS  Google Scholar 

  • Williams, L. T., and Lefkowitz, R. J. (1976) Alpha-Adrenergic receptor identification by [3H]dihydroergocryptine binding. Science 192, 791–793.

    PubMed  CAS  Google Scholar 

  • Wood, C. L., Arnett, C. D., Clarke, W. R., Tsai, B. S., and Lefkowitz, R. J. (1979) Subclassification of alpha-adrenergic receptors by direct binding studies. Biochem. Pharmacol. 28, 1277–1282.

    PubMed  CAS  Google Scholar 

  • Woodcock, E. A., and Johnston, C. I. (1982) Characterization of adenylate cyclase-coupled alpha2-adrenergic receptors in rat renal cortex using [3H]yohimbine. Mol. Pharmacol. 22, 589–594.

    PubMed  CAS  Google Scholar 

  • Woodcock, E. A., and Murley, B. (1982) Increased central alpha-2 adrenergic receptors measured with [3H]yohimbine in the presence of sodium ion and guanyl-nucleotides. Biochem. Biophys. Res. Commun. 105, 252–258.

    PubMed  CAS  Google Scholar 

  • Yamazaki, S., Katada, T., and Ui, M. (1982) Alpha2-adrenergic inhibition of insulin secretion via interference with cyclic AMP generation in rat pancreatic islets. Mol. Pharmacol. 21, 648–653.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this chapter

Cite this chapter

Regan, J.W. (1988). Biochemistry of alpha-2 Adrenergic Receptors. In: Limbird, L.E. (eds) The alpha-2 Adrenergic Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4596-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4596-4_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8942-5

  • Online ISBN: 978-1-4612-4596-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics