Advertisement

Studies of Gene Expression During Granulocyte Maturation

  • Edward J. BenzJr.
  • Katherine A. High
  • Karen Lomax
  • Catherine Stolle
  • Thomas A. Rado
  • Jay W. Schneider
  • Robert W. Mercer
Chapter
Part of the Experimental Biology and Medicine book series (EBAM, volume 17)

Abstract

Hematopoiesis is the process by which a pluripotent stem cell gives rise to the formed elements (recognizable differentiated cells) of the blood. These include red cells, platelets, lymphocytes, and cells of the granulocyte monocyte series (neutrophils, eosinophils, basophils, and monocyte-macrophages). The cellular biology and biochemistry of hematopoiesis have been intensively studied because the hematopoietic system is of fundamental scientific and clinical importance. As a biological phenomenon, hematopoiesis represents the most striking and readily examined example of differentiation by a single parent stem cell along several alternate cellular pathways. At the clinical level, hematopoiesis represents the means by which the body is supplied with cells needed for oxygen transport, infection resistance, and hemostasis.

Keywords

HL60 Cell Hypersensitive Site Chronic Granulocytic Leukemia Commit Stem Cell Stern Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Takeshita, K., Benz, E.J., Jr.: Analysis of gene expression during hematopoiesis: present and future applications. CRC Critical Reviews in Oncology/Hematolgy, 4:67–102, 1985.CrossRefGoogle Scholar
  2. 2.
    Nienhuis, A.W., Benz, E.J., Jr.: Regulation of hemoglobin synthesis during the development of the red cell, N. Engl. J. Med. 297:1318, 1977.PubMedCrossRefGoogle Scholar
  3. 3.
    Rado T.A., Bollekens, J. St. Laurent, G., Parker, L., Benz, E.J., Jr.: Lactoferrin biosynthesis during granulocytopoiesis. Blood 64(5):1103–1109, 1984.PubMedGoogle Scholar
  4. 4.
    Tonkonow, B.L., Hoffman, R., Burger, D., Elder, J.T., Mazur, E.M., Murnane, M.J., Benz, E.J., Jr.: Differing responses of globin and glycophorin gene expression to hemin in the human leukemia cell line K562. Blood 59(4):738–746, 1982.PubMedGoogle Scholar
  5. 5.
    Wintrobe, M., Clinical Hematology, 8th Ed., Lea and Fibiger, Philadelphia, 1981.Google Scholar
  6. 6.
    Collins, S.J., Gallo, R.C., Gallagher, R.E.: Continuous in suspension culture. Nature 270:347–349, 1977.PubMedCrossRefGoogle Scholar
  7. 7.
    Collins, S.J., Ruscett, F.W., Gallagher, R.E., Gallo, R.C: Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc. Nat. Acad. Sci. (USA) 24588–2462, 1978.Google Scholar
  8. 8.
    Haberman, E., Callahan, M.: Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents. Proc. Nat. Acad. Sei. (USA) 1293–1297, 1979.Google Scholar
  9. 9.
    Fontana, J.A., Wright D.G., Schiffman, E. Corcoran, B.A., Deisseroth A.B.: Development of chemotactic responsiveness in myeloid precursor cells: Studies with a human cell line. Proc. Nat. Acad. Sci. (USA) 77:3664, 1980.PubMedCrossRefGoogle Scholar
  10. 10.
    Fibach, E., Peled, T., Treves, A., Romberg, A., Rachmilewitz, E.: Modulation of the maturation of human leukemic promyelocytes (HL 60) to granulocytes or macrophages. Leukemia Res. 6:781, 1982.CrossRefGoogle Scholar
  11. 11.
    Mason, D.Y.: Intracellular lysozyme and lactoferrin in myeloproliferative disorders. J. Clin. Pathol. 30:541, 1977.PubMedCrossRefGoogle Scholar
  12. 12.
    Pryzwansky, K.B., Martin, L.E., Spitznagel, J.K.: Immunocytochemical localization of myeloperoxidase, lactoferrin, lysozyme, and neutral proteases in human monocytes and neutrophilic granulocytes. J. Reticuloendothel. Soc. 24:295, 1978.PubMedGoogle Scholar
  13. 13.
    Briggs, R.C., Glass, W.F. II, Montiel, M.M., Hnilica, L.S.: Lactoferrin: Nuclear localization in the human neutrophilic granulocyte? J. Histochem. Cytochem. 29:1128, 1981.PubMedCrossRefGoogle Scholar
  14. 14.
    Osease, R., Yang, H-H., Baehner, R.L., Boxer L.A.: Lactoferrin: A promoter of polymorphonuclear leukocyte adhesiveness. Blood 57:939, 1981.Google Scholar
  15. 15.
    Boxer, L.A., Haak, R.A., Yang, H-H., Wallace, J.B., Whitcomb, J.A., Butterick, C.J., Baehner R.L.: Membrane-bound lactoferrin alters the surface properties of polymorphonuclear leukocytes. J. Clin. Invest. 70:1049, 1982.PubMedCrossRefGoogle Scholar
  16. 16.
    Breton-Gorius, J., Mason, D.Y., Buriot D., Vilde, J-L., Griscelli, C.: Lactoferrin deficiency as a consequence of a lack of specific granules in neutrophils from a patient with recurrent infections. Am. J. Pathol. 99:413, 1980.PubMedGoogle Scholar
  17. 17.
    Boxer, L.A., Coates, T.D., Haak, R.A., Wolach, J.B., Hoffstein, S., Baehner, R.L.: Lactoferrin deficiency associated with altered granulocyte function. N. Engl. J. Med. 307:404, 1982.PubMedCrossRefGoogle Scholar
  18. 18.
    Broxmeyer, H.E., DeSousa, M., Smithyman, A., Ralph, P., Kurland, J.I., Bognacki, J.: Specificity and modulation of the action of lactoferrin, a negative feedback regulator of myelopoiesis. Blood 55:324, 1980.PubMedGoogle Scholar
  19. 19.
    Bagby, G.C., Jr., McCall, E., Layman, D.L.: Regulation of colony stimulating activity production. J. Clin. Invest. 71:340, 1983.PubMedCrossRefGoogle Scholar
  20. 20.
    Dalla Favera, R., Gelman, E.P., Martinotti, S., Franchini, G., Papas, T.S., Gallo, R.C., Wong-Staal, F.: Cloning and characterization of different human sequences related to the onc gene (v-myc) of avian myelocytomatosis virus (MCP29). Proc. Nat. Acad. Sei. (USA) 6497–6501, 1982.Google Scholar
  21. 21.
    Westin, E.H., Wong-Stall, F., Gelmann, E.P., Delia Favera, R., Papas, T.S., Lautenberger, J.A., Alessandra, E., Reddy, E.P., Tronick, S.R., Aaronson, S.A., Gallo, R.C.: Expression of cellular homologues of retroviral onc genes in human hematopoietic cells. Proc. Nat. Acad. Sci. (USA) 2490–2494, 1982.Google Scholar
  22. 22.
    Dalla Favera, R., Wong-Stall, F., Gallo, R.C.: Onc gene amplification in promyelocytic luekemia cell line HL-60 and primary leukaemic cells of the same patient. Nature 299:61–63, 1982.CrossRefGoogle Scholar
  23. 23.
    Lomax, K., Rado, T., Benz, E.J., Jr.: Lactoferrin mRNA accumulation in HL-60 and chronic granulocytic leukemia cells.Google Scholar
  24. 24.
    Groudine, M., Peretz, M., Weintraub, H.: Transcriptional regulation of hemoglobin switching in chicken embryos. Molec. Cellular Biol. 1:281–288, 1981.Google Scholar
  25. 25.
    High, K.A., Schneider, J.W., Hu, W., Benz, E.J., Jr.: C-myc gene inactivation during induced maturation of HL-60 cells: Transcriptional repression and loss of a specific DNAse I hypersensitive site. JCI (in press), 1986.Google Scholar
  26. 26.
    Elgin, S.C.R.: Anatomy of hypersensitive sites. Nature 309:213–214, 1984.PubMedCrossRefGoogle Scholar
  27. 27.
    Weisbrod, S.: Active Chromatin. Nature 297:289–295. 1981.CrossRefGoogle Scholar
  28. 28.
    Weintraub, H., Groudine, M.: Chromosomal subunits in active genes have an altered conformation. Science 193:848–853, 1976.PubMedCrossRefGoogle Scholar
  29. 29.
    Weintraub, H., Larsen, A., Groudine, M.: Alpha-glob in gene switching during the development of chicken embryos: Expression and chromosome structure. Cell 24:333–344, 1981.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • Edward J. BenzJr.
    • 1
  • Katherine A. High
    • 1
  • Karen Lomax
    • 1
  • Catherine Stolle
    • 1
  • Thomas A. Rado
    • 1
  • Jay W. Schneider
    • 1
  • Robert W. Mercer
    • 1
  1. 1.Departments of Internal Medicine and Human GeneticsYale University School of MedicineNew HavenUSA

Personalised recommendations