Skip to main content

Basal Release of Endothelium-Derived Relaxing Factor

  • Chapter
Relaxing and Contracting Factors

Part of the book series: The Endothelium ((TEEN))

Abstract

This chapter reviews evidence that the endothelium-derived relaxing factor (EDRF) described by Furchgott and Zawadzki (1980) is released spontaneously and is active tonically in certain blood vessels. Release of EDRF elicited by chemical (e.g., acetylcholine) or physical (shear stress) stimuli is not discussed, nor is the release of prostacyclin, another endothelium-derived vasodilator, although this also occurs spontaneously (Gimbrone and Alexander, 1975; Gordon and Martin, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, G., Brook, C. D., Cambridge, D., and Hladkiwiskyj, J.: Enhanced responsiveness of vascular smooth muscle to vasoactive agents after removal of endothelial cells. Br. J. Pharmacol. 79:334P, 1983.

    Google Scholar 

  • Bigaud, M., Schoeffter, P., Stocklet, J. C., and Miller, R. C: Dissociation between endothelial mediated increases in tissue cGMP levels and modulation of aortic contractile responses. Naunyn Schmiedebergs Arch. Pharmacol. 328:221–223, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Busse, P., Pohl, U., Kellner, C., and Klemm, U.: Endothelial cells are involved in the vasodilatory response to hypoxia. Pflugers Arch. 397:78–80, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Busse, R., Trogisch, G., and Bassenge, E.: The role of endothelium in the control of vascular tone. Basic Res. Cardiol. 80:475–490, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Carrier, G. O. and White, R. E.: Enhancement of alpha-1 and alpha-2 adrenergic agonist-induced vasoconstriction by removal of endothelium in rat aorta. J. Pharmac. Exp. Ther. 232:682–687, 1985.

    CAS  Google Scholar 

  • Cocks, T. M. and Angus, J. A: Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305:627–630, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Cocks, T. M., Angus, J. A., Campbell, J. H., and Campbell, G. R.: Release and properties of endothelium-derived relaxing factor (EDRF) from endothelial cells in culture. J. Cell. Physiol. 123:310–320, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, R. A., Shepherd, J. T., and Vanhoutte, P. M.: 5-Hydroxytryptamine can mediate endothelium-dependent relaxation of coronary arteries. Am. J. Physiol. 245:H1077–H1180, 1983.

    PubMed  CAS  Google Scholar 

  • Collins, P., Griffith, T. M., Henderson, A. H., and Lewis, M. J.: Effect of endothelium-derived relaxing factor on calcium fluxes in aortic ring preparations of the rabbit. J. Physiol. 381:427–437, 1986a.

    PubMed  CAS  Google Scholar 

  • Collins, P., Chappell, S. P., Griffith, T. M., Lewis, M. J., and Henderson, A. H.: Differences in basal endothelium-derived relaxing factor activity in difference artery types. J. Cardiovasc. Pharmacol. 8:1158–1162, 1986b.

    Article  PubMed  CAS  Google Scholar 

  • Collins, P., Griffith, T. M., Henderson, A. H., and Lewis, M. J.: Endothelium and calcium flux in rabbit aortic preparations. J. Physiol. 360:63P, 1984.

    Google Scholar 

  • De Mey, J. and Vanhoutte, P. M.: Interaction between Na+, K+ exchanges and the direct inhibitory effect of acetylcholine on canine femoral arteries. Circ. Res. 46:826–836, 1980.

    PubMed  Google Scholar 

  • De Mey, J. G. and Vanhoutte, P. M.: Heterogeneous behavior of the canine arterial and venous wall: Importance of the endothelium. Circ. Res. 51:439–447, 1982.

    PubMed  Google Scholar 

  • De Mey, J. G. and Vanhoutte, P. M.: Anoxia and endothelium-dependent reactivity of the canine femoral artery. J. Physiol. 335:65–74, 1983.

    PubMed  Google Scholar 

  • Diamond, J. and Chu, E. B.: Possible role for cyclic GMP in endothelium-dependent relaxation of rabbit aorta by acetylcholine. Comparison with nitroglycerine. Res. Commun. Path. Pharmacol. 41:369–372, 1983.

    CAS  Google Scholar 

  • Digges, K. G. and Summers, R. J.: Characterisation of postsynaptic alpha-adrenoceptors in rat aortic strips and portal veins. Br. J. Pharmacol. 79:655–665, 1983.

    PubMed  CAS  Google Scholar 

  • Echlin, F.: Experimental vasospasm, acute and chronic, due to blood in the subarachnoid space. J. Neurosurg. 35:646–656, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, D. H., Griffith, T. M., Henderson, A. H., Lewis, M. J., and Ryley, H. C: Endothelium-dependent relaxation is inhibited by a high molecular weight protein fraction of whole human plasma. Br. J. Pharmacol. 85:266P, 1985.

    Google Scholar 

  • Egleme, C., Godfraind, T., and Miller, R. C: Enhanced responsiveness of rat isolated aorta to clinidine after removal of the endothelial cells. Br. J. Pharmacol. 81:16–18, 1984.

    PubMed  CAS  Google Scholar 

  • Fishman, A. P.: Hypoxia on the pulmonary circulation. Circ. Res. 38:221–231, 1976.

    PubMed  CAS  Google Scholar 

  • Fujiwara, S., Kassell, N. F., Sasaki, T., Nakagomi, T., and Lehman, R. M.: Selective hemoglobin inhibition of endothelium-dependent vasodilatation of rabbit basilar artery. J. Neurosurg. 64:445–452, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R. F. and Zawadzki, J. V.: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R. F., Cherry, P. D., Zawadzki, J. V., and Jothianandan, D.: Endothelial cells as mediators of vasodilatation of arteries. J. Cardiovasc. Pharmacol. 6:S336–S343, 1984a.

    Article  PubMed  Google Scholar 

  • Furchgott, R. F., Martin, W., Jothianandan, D., and Villain, G. M.: Comparison of Endothelium-Dependent Relaxation by Acetylcholine and Endothelium-Independent Relaxation by Light in the Rabbit Aorta, in Proceedings IUPHAR 9th International Congress of Pharmacology (Paton, W., Mitchell, J., and Turner, P., eds.) vol. 1, Macmillan, London, 1984b.

    Google Scholar 

  • Gimbrone, M. A., Jr. and Alexander, R. W.: Angiotensin II stimulation of prostacyclin production in cultured human vascular endothelium. Science 189:219–220, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Godfraind, T., Egleme, C., and Osachie, A. L.: Role of endothelium in the contractile response of rat aorta to alpha-adrenoceptor agonists. Clin. Sci. 68 (suppl. 10):65S–71S, 1985.

    PubMed  CAS  Google Scholar 

  • Gordon, J. L. and Martin, W.: Stimulation of endothelial prostacyclin production plays no role in endothelium-dependent relaxation of the pig aorta. Br. J. Pharmacol. 80:179–186, 1983.

    PubMed  CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Lewis, M. J., and Henderson, A. H.: Evidence that cyclic guanosine monophosphate (cGMP) mediates endothelium-dependent relaxation. Eur. J. Pharmacol. 112:195–202, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Lewis, M. J., Newby, A. C., and Henderson, A. H.: The nature of endothelium-derived vascular relaxant factor. Nature 308:645–647, 1984a.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, T. M., Henderson, A. H., Huges Edwards, D., and Lewis, M. J.: Isolated perfused rabbit coronary artery and aortic strip preparations: The role of endothelium-derived relaxant factor. J. Physiol. 351:13–24, 1984b.

    PubMed  CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Newby, A. C., Lewis, M. J., and Henderson, A. H.: Production of endothelium-derived relaxant factor is dependent on oxidative phosphorylation and extracellular calcium. Cardiovasc. Res. 20:7–12, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Gryglewski, R. J., Moncada, S. and Palmer, R. M. J.: Bioassay of prostacyclin and endothelium-derived relaxing factor (EDRF) from porcine aortic endothelial cells. Br. J. Pharmacol. 87: 685–694, 1986a.

    PubMed  CAS  Google Scholar 

  • Gryglewski, R. J., Palmer, R. M. J., and Moncada, S.: Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320: 454–456, 1986b.

    Article  PubMed  CAS  Google Scholar 

  • Holden, W. E. and McCall, E.: Hypoxia-induced contractions of porcine pulmonary artery strips depend on intact endothelium. Exp. Lung. Res. 7: 101–112, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Holtz, J., Forstermann, U., Pohl, U., Giesler, M., and Bassenge, E.: Flow-dependent, endothelium-mediated dilatation of epicardial coronary arteries in conscious dogs: Effects of cyclooxygenase inhibition. J. Cardiovasc. Pharmacol. 6, 1161–1169, 1984.

    PubMed  CAS  Google Scholar 

  • Holzmann, S.: Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J. Cyclic Nucleotide Res. 8:409–419, 1982.

    PubMed  CAS  Google Scholar 

  • Ignarro, L. J., Burke, T. M., Wood, K. S., Wolin, M. S., and Kadowitz, P. J.: Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery. J. Pharmacol. Exp. Ther. 228:682–690, 1984.

    PubMed  CAS  Google Scholar 

  • Imaizumi, Y., Baba, M., Imaizumi, Y., and Watanabe, M.: Involvement of endothelium in the relaxation of isolated chick jugular vein by 5-hydroxy-tryptamine. Eur. J. Pharmacol. 97:335–336, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Konishi, M. and Su, C.: Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension 5:881–886, 1983.

    PubMed  CAS  Google Scholar 

  • Long, C. J. and Stone, T.W.: The release of endothelium-derived relaxant factor is calcium-dependent. Blood Vess. 22:205–208, 1985.

    CAS  Google Scholar 

  • Lues, I and Schumann, H-J.: Effect of removing the endothelial cells on the reactivity of rat aortic segments to different alpha-adrenoceptor agonists. Naunyn Schmiedebergs Arch. Pharmacol. 328:160–163, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Macia, R. A., Matthews, W. D., Lafferty, J., and De Marinis, R. M.: Assessment of alpha-adrenergic receptor subtypes in isolated aortic segments. Naunyn Schmiedebergs Arch. Pharmacol. 325:306–309, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, R. F.: Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Ther. 232:708–716, 1985a.

    PubMed  CAS  Google Scholar 

  • Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, R. F.: Blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation of rabbit aorta by certain ferrous hemoproteins. J. Pharmacol. Exp. Ther. 233:679–685, 1985b.

    PubMed  CAS  Google Scholar 

  • Martin, W., Furchgott, R. F., Villani, G. M., and Jothianandan, D.: Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor (EDRF). J. Pharmacol. Exp. Ther. 237:529–538, 1986a.

    PubMed  CAS  Google Scholar 

  • Martin, W., Furchgott, R. F., Villani, G. M., and Jothianandan, D.: Phosphodiesterase inhibitors induce endothelium-dependent relaxation of rat and rabbit aorta by potentiating the effects of spontaneously released endothelium-derived relaxing factor. J. Pharmacol. Exp. Ther. 237:539–547, 1986b.

    PubMed  CAS  Google Scholar 

  • Matsuda, H., Kuon, E., Holtz, J., and Busse, R.: Endothelium-mediated dilations contribute to the polarity of the arterial wall in vasomotion induced by α 2-adrenergic agonists. J Cardiovasc. Pharmacol. 7:680–688, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Miller, V. M., and Vanhoutte, P. M.: Endothelial α 2-adrenoceptors in canine pulmonary and systemic blood vessels Eur. J. Pharmacol. 118:123–129, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. C., Mony, M. C., Schini, V., Schoeffter, P., and Stoclet, J. C.:Endothelial mediated inhibition of contraction and increase in cGMP levels evoked by the alpha-adrenoceptor agonist B-HT 920 in rat isolated aorta. Br. J. Pharmacol. 83:903–908, 1984.

    PubMed  CAS  Google Scholar 

  • Miller, R. C., Schoeffter, P., and Stoclet, J. C: Insensitivity of calcium-dependent endothelial stimulation in rat isolated aorta to the calcium entry blocker, flunarizine. Br. J. Pharmacol. 85:481–487, 1985.

    PubMed  CAS  Google Scholar 

  • Murakami, K., Karaki, H., and Urakawa, N.: Role of endothelium in the contractions induced by norepinephrine and Clonidine in rat aorta. Jap. J. Pharmacol. 39:357–364, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Osaka, K.: Prolonged vasospasm produced by the breakdown products of erythrocytes. J. Neurosurg. 47:403–410, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport, R. M. and Murad, F.: Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ. Res. 52:352–357, 1983.

    PubMed  CAS  Google Scholar 

  • Rapoport, R. M., Waldman, S. A., Schwartz, K., Winquist, R. J., and Murad, F.: Effects of atrial natriuretic factor, sodium nitroprusside, and acetylcholine on cyclic GMP levels and relaxation in rat aorta. Eur. J. Pharmacol. 115:219–229, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Rubanyi, G. M. and Vanhoutte, P. M.: Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor(s). Am. J. Physiol. 250:H822–H827, 1986.

    PubMed  CAS  Google Scholar 

  • Rubanyi, G. M. and Vanhoutte, P. M.: Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J. Physiol. 364:45–56, 1985.

    PubMed  CAS  Google Scholar 

  • Rubanyi, G. M., Lorenz, R. R., and Vanhoutte, P. M.: Bioassay of endothelium-derived relaxing factor(s): inactivation by catecholamines. Am. J. Physiol. 249:H95–H101, 1985.

    PubMed  CAS  Google Scholar 

  • Ruffolo, R. R. Jr., Rosling, E. L, and Waddell, J. E.: Receptor interactions of imidazolines. I. Affinity and efficacy for alpha adrenergic receptors in rat aorta. J. Pharmacol. Exp. Ther. 209:429–436, 1979.

    PubMed  CAS  Google Scholar 

  • Singer, H, A. and Peach, M. J.: Calcium- and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension 4 (suppl. II): 19–25, 1982.

    PubMed  CAS  Google Scholar 

  • Tanishima, T.: Cerebral vasospasm: Contractile activity of hemoglobin in isolated canine basilar arteries. J. Neurosurg. 53:787–793, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Van De Voorde, J. and Leusen, I.: Role of endothelium in the vasodilator response of rat thoracic aorta to histamine. Eur. J. Pharmacol. 87:113–120, 1983.

    Article  PubMed  Google Scholar 

  • Vanhoutte, P. M. and Rubanyi, G. M.: Superoxide dismutase prolongs the half-life of endothelium-derived relaxing factor(s). Clin. Res. 33:522A, 1985.

    Google Scholar 

  • Verrecchia, C., Sercombe, R., and Seylaz, J.: Influence of endothelium on noradrenaline-induced vasoconstriction in rabbit central ear artery. Clin. Exp. Pharmacol. Physiol. 12:169–179, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Young, M. A. and Vatner, S. F.: Removal of endothelium reduces β -adrenergic dilatation and enhances α -adrenergic constriction in iliac arteries of conscious dogs. Circulation 70 (suppl. II):122, 1984.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this chapter

Cite this chapter

Martin, W. (1988). Basal Release of Endothelium-Derived Relaxing Factor. In: Vanhoutte, P.M. (eds) Relaxing and Contracting Factors. The Endothelium. Humana Press. https://doi.org/10.1007/978-1-4612-4588-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4588-9_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8939-5

  • Online ISBN: 978-1-4612-4588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics