Skip to main content

The Nature of Endothelium-Derived Relaxing Factor

  • Chapter
Relaxing and Contracting Factors

Part of the book series: The Endothelium ((TEEN))

  • 52 Accesses

Abstract

The phenomenon of endothelium-dependent relaxation, first described in detail by Furchgott and colleagues (Furchgott and Zawadzki, 1980), has now been demonstrated in a wide range of blood vessels from a variety of species studied, including human (for reviews, see Furchgott, 1983; Griffith et al., 1985a; Busse et al., 1985). Endothelium-dependent relaxation can be elicited in vivo (Angus et al., 1983) as well as in standard in vitro pharmacological preparations by a number of agents at pharmacological concentrations. The inhibitory potential of the endothelium on vascular smooth muscle can be potent enough to virtually abolish responses in some arteries (Fig. 1) (Griffith et al., 1984a). The important role of endothelium is further emphasized when considering that the total mass of endothelial cells in the human body is approximately equivalent to that of the liver (Gerlach et al., 1985). Initial investigations into the mechanisms by which the phenomenon occurred suggested that it was mediated by a humoral agent, on the basis of “sandwich” experiments in which an aortic strip with intact endothelium could be shown to relax a closely apposed strip in which the endothelium had been removed (Furchgott and Zawadzki, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angus, J. A., Campbell, G. R., Cocks, T. M., and Manderson, J. A.: Vasodilatation by acetylcholine is endothelium-dependent: A study by sonomicrometry in canine femoral artery in vivo. J. Physiol. (Lond.) 344:209–222, 1983.

    CAS  Google Scholar 

  • Bing, R. J., Burger, W., Chemnitius, J. M., Saeed, M., and Metz, M. Z.: Effect of endothelium against platelet-induced coronary artery spasm in isolated rabbit hearts. Am. J. Cardiol. 55:1596–1600, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Bolton, T. B., Lang, R. J., and Takewaki, T.: Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. J. Physiol.(Lond.) 351:549–572, 1984.

    CAS  Google Scholar 

  • Brum, J. M., Sufan, Q., Lane, G., and Bove, A.: Increased vasoconstrictor activity of proximal coronary arteries with endothelial damage in intact dogs. Circulation 70:1066–1073, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Busse, R., Trogish, G., and Bassenge, E.: The role of endothelium in the control of vascular tone. Basic Res. Cardiol. 80:475–490, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Chand, N., and Altura, B. M.: Acetycholine and bradykinin relax intrapulmonary arteries by acting on endothelial cells: Role in lung vascular diseases. Science 213:1376–1379, 1981

    Article  PubMed  CAS  Google Scholar 

  • Chappell, S. P., Griffith, T. M., Henderson, A. H., and Lewis, M. J.: Influence of cholesterol feeding on endothelium-dependent vasomotor response in rabbit aortic strips. Br. J. Pharmacol. 85:266P, 1985.

    Google Scholar 

  • Chappell, S. P., Lewis, M. J., and Henderson, A. H.: Effect of lipid feeding on endothelium-dependent relaxation in rabbit aortic preparation. Cardiovasc. Res. 1986, in press.

    Google Scholar 

  • Cocks, T. M. and Angus, J. A.: Bioassay of the Release of Endothelium-Derived Relaxing Factor (EDRF) from Isolated Endothelial cells In Vitro, in Vascular Neuroeffector Mechanisms (Bevan, J. A., Godfraind, T., Maxwell, R. A., Stodet, J. C, and Worcel, M., eds.) Elsevier, Amsterdam, New York, Oxford, 1985.

    Google Scholar 

  • Cocks, T. M., Angus, J. A., Campbell, J. H., and Campbell, G. R.: Release and properties of endothelium-derived relaxing factor (EDRF) from endothelial cells in culture. J. Cell. Physiol. 123:310–320, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Cocks, T. M., Angus, J. A., Campbell, J., and Campbell, G.: Nature and role of endothelium derived relaxing factor (EDRF). J. Mol. Cell. Cardiol. 18 (suppl. 1):17, 1986.

    Google Scholar 

  • Cohen, G. and Heikkla, R. E.: The generation of hydrogen peroxide, superoxide radical and hydroxyl radical by 6-hydroxydopamine, dialuric acid and related cytotoxic agents. J. Biol. Chem. 249:2447–2452, 1974.

    PubMed  CAS  Google Scholar 

  • Collins, P., Griffith, T. M., Henderson, A. H., and Lewis, M. J.: 8-Bromo-cGMP and calcium flux in arterial smooth muscle. Br. J. Pharmacol. 85:279P, 1985a.

    Google Scholar 

  • Collins, P., Griffith, T. M., Henderson, A. H., and Lewis, M. J.: Endothelium and calcium flux in rabbit aortic preparations. Br. J. Pharmacol. 85:342P, 1985b.

    Google Scholar 

  • Collins, P., Chappell, S. P., Griffith, T. M., Lewis, M. J., and Henderson, A. H.: Differences in basal endothelium-derived relaxing factor activity in different artery types. J. Cardiovasc. Pharmacol. 8:1158–1162, 1986a.

    Article  PubMed  CAS  Google Scholar 

  • Collins, P., Griffith, T. M., Henderson, A. H., and Lewis, M. J.: Endothelium-derived relaxing factor alters calcium fluxes in rabbit aorta: A cyclic guanosine monophosphate-mediated phenomenon. J. Physiol. (Lond.)381: 427–437, 1986b.

    CAS  Google Scholar 

  • Craven, P. A. and De Rubertis, F. R.: Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemoproteins. J. Biol. Chem. 253:8433–8443, 1978.

    PubMed  CAS  Google Scholar 

  • De Mey, J. G., Claeys, M., and Vanhoutte, P. M.: Endothelium-dependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery. J. Pharmacol. Exp. Ther. 222:166–173, 1982.

    PubMed  Google Scholar 

  • De Mey, J. G. and Vanhoutte, P. M.: Anoxia and endothelium-dependent reactivity of the canine femoral artery. J. Physiol. (Lond.) 335:65–74, 1983.

    Google Scholar 

  • Diamond, J. and Chu, E. U.: Possible role for cyclic GMP in endothelium-dependent relaxation of rabbit aorta by acetylcholine. Comparison with nitroglycerin. Res. Comm. Chem. Path. Pharmac. 41: 369–381, 1983.

    CAS  Google Scholar 

  • Edwards, D. H., Griffith, T. M., Henderson, A. H., Lewis, M. J., and Newby, A.C.: Production of endothelium derived relaxant factor is both ATP and calcium dependent. Br. J. Pharmacol. 85:344P, 1985a.

    Google Scholar 

  • Edwards, D. H., Griffith, T. M., Henderson, A. H., Lewis, M. J., and Ryley, H. C: Endothelium dependent relaxation is inhibited by a high molecular weight protein fraction of whole human plasma. Br. J. Pharmacol. 85:341P, 1985b.

    Google Scholar 

  • Edwards, D. H., Griffith, T.M., Ryley, H. C, and Henderson, A. H.: Haptoglobin-haemoglobin complex in human plasma inhibits endothelium dependent relaxation: Evidence that endothelium derived relaxing factor acts as a local autocoid. Cardiovasc. Res. 20:549–556, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Fiscus, R. R., Rapoport, R. M., and Murad, F.: Endothelium-dependent and nitrovasodilator-induced activation of cyclic GMP-dependent protein kinase in rat aorta. J. Cyclic Nucleotide Protein Phosphor. Res. 9:415–425, 1983.

    PubMed  Google Scholar 

  • Forstermann, M. and Neufang, B.: The endothelium-dependent vasodilator effect of acetylcholine: Characterization of the endothelial relaxing factor with inhibitors of arachidonic acid metabolism. Eur. J. Pharmacol. 103:65–70, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Forstermann, J. and Neufang, B.: Endothelium-dependent vasodilatation by mellitin: Are lipoxygenase products involved? Am. J. Physiol. 249:H14–H19, 1985.

    PubMed  CAS  Google Scholar 

  • Forstermann, U., Trogisch, G., and Busse, R.: Species-dependent differences in the nature of endothelium-derived vascular relaxing factor. Eur. J. Pharmacol. 106:639–43, 1985.

    Article  Google Scholar 

  • Furchgott, R. F.: Role of endothelium in responses of vascular smooth muscle. Circ. Res. 53:557–573, 1983.

    PubMed  CAS  Google Scholar 

  • Furchgott, R. F. and Zawadzki, J. V.: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R. F., Cherry, P. D., Zawadzki, J. V., and Jothianandan, D.: Endothelial cells as mediators of vasodilatation of arteries. J. Cardiovasc. Pharmacol. 6:S336–343, 1984.

    Article  PubMed  Google Scholar 

  • Gerlach, E., Nees S., and Becker, B. F.: The vascular endothelium: A survey of some newly evolving biochemical and physiological features. Basic Res. Cardiol. 80:459–474, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Gerova, M., Gero, J., Barta, E., Dolezel, S., Smiesko, V., and Levicky, V: Neurogenic and myogenic control of conduit coronary artery: A possible interference. Bas. Res. Cardiol. 76:503–507, 1981.

    Article  CAS  Google Scholar 

  • Gordon, J. L. and Martin, W.: Stimulation of endothelial prostacyclin production plays no role in endothelium-dependent relaxation of the pig aorta. Br. J. Pharacol. 80:179–186, 1983.

    CAS  Google Scholar 

  • Griffith, T. M.: Studies of endothelium-derived relaxant factor (EDRF), its nature and mode of action. Eur. Heart J. 6:37–49, 1985.

    PubMed  CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Collins, P., Lewis, M. J., and Henderson, A. H.: Endothelium derived relaxant factor. J. Roy. Coll. Physicians Lond. 19:74–79, 1985a.

    CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Lewis, M J., and Henderson, A. H.: Evidence that cyclic guanosine monophosphate (cGMP) mediates endothelium-dependent relaxation. Eur. J. Pharmacol. 112:195–202, 1985b.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Lewis, M. J., and Henderson, A. H.: Endothelium Influences Coronary and Aortic Vasomotion by Release of an Unstable Humoral Factor, in Advances in Myocardiology, vol. 6 (Dhalla, N. S. and Hearse, D. J.: eds.) Plenum, New York and London, 1985c.

    Google Scholar 

  • Griffith, T. M., Henderson, A. H., Hughes Edwards, D., and Lewis, M. J.: Isolated perfused rabbit coronary artery and aortic strip preparations: The role of endothelium-derived relaxant factor. J. Physiol. (Lond.) 351:13–24, 1984a.

    CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Lewis, M. J., Newby, A. C, and Henderson, A. H.: The nature of endothelium-derived relaxant factor. Nature (Lond.) 308:645–647, 1984b.

    Article  CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Lewis, M. J., Newby, A. C, and Henderson, A. H: Production of endothelium-derived relaxant factor is dependent on oxidative phosphorylation and extracellular calcium. Cardiovasc. Res. 20:7–12, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Gryglewski, R. J., Palmer, R. M. J., and Moncada, S.: Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Holtz, J., Giesler, M., and Bassenge, E.: Two dilatory mechanisms of antianginal drugs on epicardial coronary arteries in vivo: Indirect, flow-dependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z. Kardiol. 3 (suppl.):98–106, 1983.

    Google Scholar 

  • Holtz, J., Forstermann, U., Pohl, U., Giesler, M., and Bassenge, E.: Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: Effects of cyclooxygenase inhibition. J. Cardiovasc. Pharmacol. 6:1161–1169, 1984.

    PubMed  CAS  Google Scholar 

  • Holzmann, S.: Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J. Cyclic Nucl. Res. 8:409–419, 1982.

    CAS  Google Scholar 

  • Huang, H-C. and Lee, C. Y.: Relaxant effect of phospholipase A2 from Vipera russelli snake venom on rat aorta. Eur. J. Pharmacol. 118:139–146, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L. J., Burke, T. M., Wood, K. S., Wolin, M. S., and Kadowitz, P. J.: Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery. J. Pharmacol. Exp. Ther. 228:682–690, 1984.

    PubMed  CAS  Google Scholar 

  • Lamping, K. G., Marcus, M. L., and Dole, W. P.: Removal of the endothelium potentiates canine large coronary artery constrictor responses to 5-hydrox-tryptamine in vivo. Circ. Res. 57:46–54, 1985.

    PubMed  CAS  Google Scholar 

  • Long, C. J. and Stone, T. W.: The release of endothelium-derived relaxant factor is calcium dependent. Blood Ves. 22:205–208, 1985.

    CAS  Google Scholar 

  • Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, R. F.: Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by haemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Ther. 232:708–716, 1985a.

    PubMed  CAS  Google Scholar 

  • Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, R. F.: Blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation of rabbit aorta by certain ferrous haemoproteins. J. Pharmacol. Exp. Ther. 233:679–685, 1985b.

    PubMed  CAS  Google Scholar 

  • Martin, W., Furchgott, R. F., Villani, G. M., and Jothianandan, D.: Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor. J. Pharmacol. Exp. Ther. 237:529–538, 1986.

    PubMed  CAS  Google Scholar 

  • Miki, N., Kawabe, Y., Kuriyama, K.: Activation of cerebral guanylate cyclase by nitric oxide. Biochem. Biophys. Res. Commun. 75:851–856, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. C, Schoeffter, P., and Stoclet, J. C: Insensitivity of calcium-dependent endothelial stimulation in rat isolated aorta to the calcium entry blocker flunarizine. Br. J. Pharmacol 85:481–487, 1985.

    PubMed  CAS  Google Scholar 

  • Misra, H. P.: Generation of superoxide free radical during the autooxidation of thiols. J. Biol. Chem. 249:2151–2155, 1974.

    PubMed  CAS  Google Scholar 

  • Misra, H. P. and Fridovich, I.: The generation of superoxide radical during the autooxidation of hemoglobin. J. Biol Chem. 247:6960–6962, 1972a.

    PubMed  CAS  Google Scholar 

  • Misra, H. P. and Fridovich, I.: The univalent reduction of oxygen by reduced flavins and quinones. J. Biol Chem. 247:188–192, 1972b.

    PubMed  CAS  Google Scholar 

  • Misra, H. P. and Fridovich, I.: The oxidation of Phenylhydrazine: Superoxide and mechanism. Biochemistry 15:681–687, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Mittal, C. K., Arnold, W. P., and Murad, F.: Characterization of protein inhibitors of guanylate cyclase activation from rat heart and bovine lung. J. Biol. Chem. 253:1266–1271, 1978.

    PubMed  CAS  Google Scholar 

  • Murad, F., Mittal, C. K., Arnold, W. P., Katsuki, S., and Kimura, H.: Guanylate cyclase: Activation by azide, nitro compounds, nitric oxide and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv. Cyclic Nucleotide Res. 9:145–158, 1978.

    PubMed  CAS  Google Scholar 

  • Pinto, A., Abraham, N. G., and Mullane, K. M.: Cytochrome P-450-dependent monoxygenase activity and endothelial-dependent relaxations induced by arachidonic acid. J. Pharmacol. Exp. Ther. 236:445–451, 1986.

    PubMed  CAS  Google Scholar 

  • Rapoport, R. M. and Murad, F.: Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cyclic GMP. Circ. Res. 52:352–357, 1983.

    PubMed  CAS  Google Scholar 

  • Rapoport, R. M., Draznin, M. B., and Murad, F.: Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306:174–176, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport, R. M., Draznin, M. B., and Murad, F.: Mechanisms of adenosine triphosphate-, thrombin-and trypsin-induced relaxation of rat thoracic aorta. Circ. Res. 55:468–479, 1984.

    PubMed  CAS  Google Scholar 

  • Rapoport, R. M., Waldman, S. A., Schwartz, K., Winquist, R. J., and Murad, F.: Effects of atrial natriuretic factor, sodium nitroprusside and acetylcholine on cyclic GMP levels and relaxation in rat aorta. Eur. J. Pharmacol. 115: 219–229, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Rubanyi, G. M. and Vanhoutte, P. M.: Superoxide dismutase prolongs the half-life of endothelium-derived relaxing factor(s). Clin. Res. 33:522A, 1985a.

    Google Scholar 

  • Rubanyi, G. M. and Vanhoutte, P. M.: Endothelium-removal decreases relaxations of canine coronary arteries caused by beta-adrenergic agonists and adenosine. J. Cardiovasc. Pharmacol. 7:139–144, 1985b.

    Article  PubMed  CAS  Google Scholar 

  • Rubanyi, G. M. and Vanhoutte, P. M.: Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am. J. Physiol. 250:H822–H827, 1986.

    PubMed  CAS  Google Scholar 

  • Rubanyi, G. M., Lorenz, R. R., and Vanhoutte, P. M.: Bioassay of endothelium-derived relaxing factor(s): inactivation by catecholamines. Am. J. Physiol. 249:H95–H101, 1985a.

    PubMed  CAS  Google Scholar 

  • Rubanyi, G. M., Schwartz, A., and Vanhoutte, P. M.: The calcium antagonists Bay K 8644 and (+)202, 791 stimulate the release of endothelial relaxing factor from canine femoral arteries. Eur. J. Pharmacol. 117:143–144, 1985b.

    Article  PubMed  CAS  Google Scholar 

  • Schneeberger, E. E. and Hamelin, M.: Interaction of serum proteins with lung endothelial glycocalyx: Its effect on endothelial permeability. Am. J. Physiol. 247:H206-H217, 1984.

    PubMed  CAS  Google Scholar 

  • Schretzenmayr, A.: Uber kreislaufregulatorische Vorgange an den grossen Arterien bei der Muskelarbeit. Pfluegers Arch. 232:743–748, 1933.

    Article  Google Scholar 

  • Shirasaki, Y. and Su, C.: Endothelium removal augments vasodilation by sodium nitroprusside and sodium nitrite. Eur. J. Pharmac. 114:93–96, 1985.

    Article  CAS  Google Scholar 

  • Singer, H. A. and Peach, M. J.: Calcium-and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension 4 (suppl. II):II19–1125, 1982.

    Google Scholar 

  • Singer, H. A. and Peach, M. J.: Endothelium-dependent relaxation of rabbit aorta. 1. Relaxation stimulated by arachidonic acid. J. Pharmacol. Exp. Ther. 226:790–795, 1983a.

    PubMed  CAS  Google Scholar 

  • Singer, H. A. and Peach, M. J.: Endothelium-dependent relaxation of rabbit aorta. II. Inhibition of relaxation stimulated by methacholine and A23187 with antagonists of arachidonic acid metabolism. J. Pharmacol. Exp. Ther. 226:796–801, 1983b.

    PubMed  CAS  Google Scholar 

  • Singer, H. A., Saye, J. A., and Peach, M. J.: Effects of cytochrome P450 inhibitors on endothelium-dependent relaxation in rabbit aorta. Blood Vess. 21:223–230, 1984.

    CAS  Google Scholar 

  • Sobolev, A. S., Tertov, V. V., and Rybalkin, S. D.: A study of rat liver guanylate cyclase activation by peroxides of fatty acids, carbonyl compounds and biogenic amines. Biochim. Biophys. Acta 756:92–105, 1983.

    PubMed  CAS  Google Scholar 

  • Verbeuren, T. J., Coene, M-C, Jordaens, F., Van Hove, C, Zonnekeyn, L., and Herman, A. G.: Endothelium-dependent relaxations in isolated arteries of control and hypercholesterolaemic rabbits. Br. J. Pharmacol. 85:267P, 1985.

    Google Scholar 

  • Verbeuren, T. J., Jordaens, F., Zonnekeyn, L., Van Hove, C. E., Coene, M-C, and Herman, A. G.: Endothelium-dependent and endothelium-independent concentrations and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ. Res. 58:552–564, 1986.

    PubMed  CAS  Google Scholar 

  • White, D. G., Lewis, M. J., Griffith, T. M., Edwards, D. H., and Henderson, A. H.: Influence of endothelium on drug-induced relaxation of the rabbit aorta. Eur. J. Pharmacol. 121:19–23, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Winquist, R. J., Bunting, P. B., and Schofield, T. L.: Blockade of endothelium-dependent relaxation by the amiloride analog dichlorobenzamil: Possible role of Na+/Ca++ exchange in the release of endothelium-derived relaxant factor. J. Pharmacol. Exp. Ther. 235:644–650, 1985.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this chapter

Cite this chapter

Griffith, T.M., Henderson, A.H. (1988). The Nature of Endothelium-Derived Relaxing Factor. In: Vanhoutte, P.M. (eds) Relaxing and Contracting Factors. The Endothelium. Humana Press. https://doi.org/10.1007/978-1-4612-4588-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4588-9_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8939-5

  • Online ISBN: 978-1-4612-4588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics