Endothelium-Dependent Contractions in Veins and Arteries

  • Paul M. Vanhoutte
Part of the The Endothelium book series (TEEN)


While searching for possible heterogeneity of endothelium-dependent relaxations to acetylchloride, adenosine diphosphate, arachidonic acid, and thrombin, the author’s laboratory discovered that the endothelial cells not only play an obligatory role in a number of dilator responses (Furchgott and Zawadzki, 1980; Furchgott, 1983, 1984; Vanhoutte et al., 1986), but also can induce contractions of isolated blood vessels when exposed to certain stimuli (De Mey and Vanhoutte, 1982, 1983). This chapter summarizes the data demonstrating that endothelial cells can indeed produce at least two different types of constricting substances (endothelium-derived contracting factors) (see Vanhoutte, 1987a).


Arachidonic Acid Pulmonary Vein Basilar Artery Contractile Response Adenosine Diphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. De Mey, J. G. and Vanhoutte, P. M.: Anoxia and endothelium-dependent reactivity of the canine femoral artery. J. Physiol. 335:65–74, 1983.PubMedGoogle Scholar
  2. De Mey, J. G. and Vanhoutte, P. M.: Heterogeneous behavior of the canine arterial and venous wall: Importance of the endothelium. Circ. Res. 51:439–447, 1982.PubMedGoogle Scholar
  3. De Mey, J. and Vanhoutte, P. M.: Interaction between Na+, K+ exchanges and the direct inhibitory effect of acetylcholine on canine femoral arteries. Circ. Res. 46:826–836, 1980.PubMedGoogle Scholar
  4. Furchgott, R. F.: Role of endothelium in responses of vascular smooth muscle to drugs. Circ. Res. 53:557–573, 1983.PubMedGoogle Scholar
  5. Furchgott, R. F.: The role of endothelium in the response of vascular smooth muscle to drugs. Ann. Rev. Pharmacol. Toxicol. 24:175–197, 1984.CrossRefGoogle Scholar
  6. Furchgott, R. F. and Zawadzki, J. V.: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 228:373–376, 1980.CrossRefGoogle Scholar
  7. Gillespie, M. N., Owasoyo, J. O., McMurtry, I. F., and O’Brien, R. F.: Sustained coronary vasoconstriction provoked by a peptidergic substance released from endothelial cells in culture. J. Pharmacol. Exp. Ther. 236:339–343, 1986.PubMedGoogle Scholar
  8. Hickey, K. A., Rubanyi, G., Paul, R. J., and Highsmith, R. F.: Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am. J. Physiol. 248:C550–C556, 1985.PubMedGoogle Scholar
  9. Iqbal, A. and Vanhoutte, P. M.: The Ca2+-antagonist flunarizine inhibits endothelium-dependent hypoxic facilitation through an action on vascular smooth muscle. Fed. Proc., in press, 1987.Google Scholar
  10. Katusic, Z. S. and Vanhoutte, P. M.: Anoxic contractions in isolated canine cerebral arteries. Contribution of endothelium-derived factors, metabolites of arachidonic acid and calcium entry. J. Cardiovasc. Pharmacol. 8:S97–S101, 1986.PubMedCrossRefGoogle Scholar
  11. Katusic, Z. S., Shepherd, J. T., and Vanhoutte, P. M.: Endothelium-dependent contraction to stretch in canine basilar arteries. Am. J. Physiol. 252:H1–H3, 1986.Google Scholar
  12. Katusic, Z. S., Shepherd, J. T., and Vanhoutte, P. M.: Potassium causes endothelium-dependent rhythmic activity in canine basilar artery. Pharmacologist 27:223, 1985.Google Scholar
  13. Katusic, Z. S., Shepherd, J. T., and Vanhoutte, P. M.: Calcium ionophore A23187, arachidonic acid and acetylcholine cause endothelium-dependent contractions in the canine basilar arteries. Fed. Proc, in press, 1986.Google Scholar
  14. Miller, V. M. and Vanhoutte, P. M.: Endothelium-dependent contractions to arachidonic acid are mediated by products of cyclooxygenase in canine veins. Am. J. Physiol. 248:H432–H437, 1985.PubMedGoogle Scholar
  15. Rubanyi, G. M. and Vanhoutte, P. M.: Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J. Physiol. 364:45–56, 1985.PubMedGoogle Scholar
  16. Shirahase, H., Usui, H., Kurahashi, K., and Fujiwara, M.: Possible role of endothelial thromboxane A2 in the resting tone and contractile responses to acetylcholine and arachidonic acid in canine cerebral arteries; submitted for publication, 1986.Google Scholar
  17. Usui, H., Kurahashi, K., Ashida, K., and Fujiwara, M.: Acetylcholine-induced contractile response in canine basilar artery with activation of thromboxane A2 synthesis sequence. IRCS Med. Sci. Physiol. 11:418–419, 1983.Google Scholar
  18. Vanhoutte, P. M.: Endothelium-Dependent Contractions in Arteries and Veins, in Blood Vessels, in press, 1987a.Google Scholar
  19. Vanhoutte, P. M.: Endothelium and the control of vascular tone. News Physiol. Sci., in press, 1987b.Google Scholar
  20. Vanhoutte, P. M. and McGoon, M. D.: The Endothelial Cell, in Abnormal Pulmonary Circulation (E. H. Bergofsky, ed.) Churchhill-Livingstone, New York, 1986.Google Scholar
  21. Vanhoutte, P. M., Rubanyi, G. M., Miller, V. M., and Houston, D. S.: Modulation of vascular smooth muscle contraction by the endothelium. Ann. Rev. Physiol. 48:307–320, 1986.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • Paul M. Vanhoutte

There are no affiliations available

Personalised recommendations