Skip to main content

Endothelium-Dependent Responses in the Peripheral Microcirculation

  • Chapter
Relaxing and Contracting Factors

Part of the book series: The Endothelium ((TEEN))

  • 51 Accesses

Abstract

Experimental studies of endothelium-dependent relaxation have to date largely focused on the properties of pharmacologically and physiologically vasoactive agents in conduit vessels. The phenomenon has been demonstrated in vitro (Furchgott, 1983) and in vivo (Angus et al., 1983), although it has become apparent that species and vessel differences exist (Furchgott, 1983; Kalsner, 1985; Katusic et al., 1984). There is evidence that injury to the arterial wall, as occurs in experimental models of atheroma (Habib et al., 1984) or hypertension (Konishi and Su, 1983), may functionally impair endothelium-dependent responses. These observations may have clinical relevance. Relatively little is known, however, about endothelium-dependent relaxation in the microvasculature, where it may have an important physiological role, since small vessels regulate peripheral resistance and hence govern the distribution of blood flow in the intact circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, P. O., Bloom, S. R., and Jarhult, J.: Colonic motor and vascular response to pelvic nerve stimulation and their relation to local peptide release in the cat. J. Physiol. (Lond.) 334: 293–307, 1983.

    CAS  Google Scholar 

  • Andersson, P. O., Bloom, S. R., and Mellander, S.: Haemodynamics of pelvic nerve induced penile erection in the dog: Possible mediation by vasoactive intestinal polypeptide. J. Physiol. (Lond.) 350: 209–224, 1984.

    CAS  Google Scholar 

  • Angus, J. A., Campbell, G. R., Cocks, T. M., and Manderson, J. A.: Vasodilatation by acetylcholine is endothelium-dependent: A study by sonomicrometry in canine femoral artery in vivo. J. Physiol (Lond.) 334: 209–222, 1983.

    Google Scholar 

  • Azuma, T. and Oka, S.: Mechanical equilibrium of blood vessel walls. Am. J. Physiol. 221: 1310–1318, 1971.

    PubMed  CAS  Google Scholar 

  • Bayliss, W. M.: On the local reactions of the arterial wall to changes of internal pressure. 7. Physiol. (Lond.) 28: 220–231, 1902.

    CAS  Google Scholar 

  • Bellman, S.: Microangiography. Acta Radiol. (suppl.) 102: 7–104, 1953.

    Google Scholar 

  • Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R., and Maclntyre, I.: Calcitonin gene-related peptide is a potent vasodilator. Nature 313: 54–56, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Burger, W., Kellner, C, and Busse, R.: Effects of active and passive wall stress changes on the rhythmic mechanical activity of the pressurised rat tail artery. Blood Vess. 21: 231–245, 1984.

    CAS  Google Scholar 

  • Busse, R., Trogisch, G., and Bassenge, E.: The role of endothelium in the control of vascular tone. Bas. Res. Cardiol. 80: 475–490, 1985.

    CAS  Google Scholar 

  • Cauvin, C., Saida, K., and van Breemen, C: Effects of Ca antagonists on Ca fluxes in resistance vessels. 7. Cardiovasc. Pharmacol. 4: S287-S290, 1982.

    Article  Google Scholar 

  • Cocks, T. M. and Angus, J. A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305: 627–30, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Cocks, T. M. and Angus, J. A.: Bioassay of the Release of Endothelium-Derived Relaxing Factor (EDRF) from Isolated Endothelial Cells In Vitro, in Vascular Neuroeffector Mechanisms (Bevan, J. A., Godfraind, T., Maxwell, R. A., Stoclet, J. C, and Worcel, M., ed.) Elsevier, Amsterdam, New York, Oxford, 1985.

    Google Scholar 

  • Cox, R. H.: Comparison of arterial wall mechanics using ring and cylindrical segments. Am. J. Physiol. 244: H298–H303, 1983.

    PubMed  CAS  Google Scholar 

  • Davies, R. L1.: Contact microradiography in bio-medical research. Doctoral thesis. University of Wales, Cardiff, UK, 1983.

    Google Scholar 

  • Davies, R. L1., Flores, N. A., and Evans, K. T.: Development and assessment of an image intensifier for real-time x-ray microscopy. Br. J. Radiol. 59: 273–276, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Davies, J. M. and Williams, K. I.: Endothelial-dependent relaxant effects of vasoactive intestinal polypeptide and archidonic acid in rat aortic strips. Prostaglandins 27: 195–202, 1984.

    Article  PubMed  CAS  Google Scholar 

  • De Mey, J. G. and Gray, S.D.: Endothelium-dependent reactivity in resistance vessels. Prog. Appl. Microcirc. 8: 181–187, 1985.

    Google Scholar 

  • Dewey, C. F., Bussolari, S. R., Gimbrone, M. A., and Davies, P. F.: The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103: 177–185, 1981.

    Google Scholar 

  • Diamond, J. and Chu, E. U.: Possible role for cyclic GMP in endothelium-dependent relaxation of rabbit aorta by acetylcholine. Comparison with nitroglycerin. Res. Comm. Chem. Pathol. Pharmacol. 41: 369–381, 1983.

    CAS  Google Scholar 

  • D’Orleans-Juste, P., Dion, S., Mizrati, J., and Regoli, D.: Effects of peptides and non-peptides on isolated arterial smooth muscle: Role of endothelium. Eur. J. Pharmacol. 114: 9–21, 1985.

    Google Scholar 

  • Edwards, D. H., Griffith, T. M., Henderson, A. H., Lewis, M. J., and Ryley, H.C.: Endothelium-dependent relaxation is inhibited by a high molecular weight protein fraction of whole human plasma. Br. J. Pharm. 85: 341P, 1985.

    Google Scholar 

  • Edwards, D. H., Griffith, T. M., Ryley, H. C, and Henderson, A. H.: Haptoglobin-haemoglobin complex in human plasma inhibits endothelium-dependent relaxation: Evidence that endothelium derived relaxing factor acts as a local autocoid. Cardiovasc. Res. 20: 549–556, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Ely, R. V.: Microfocal Radiography. Academic, London, New York, 1980.

    Google Scholar 

  • Eskin, S. G., Ives, C. L., Mclntire, L. V., and Navarro, L. T.: Response of cultured endothelial cells to steady flow. Microvasc. Res. 28: 87–94, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Folkow, B.: Description of the myogenic hypothesis. Circ. Res. 15 (suppl. I): 279–287, 1964.

    PubMed  Google Scholar 

  • Folkow, B.: Relationships between vessel design and hemodynamics along the precapillary resistance compartment in normo and hypertension. Blood Vess. 16: 277–280, 1979.

    CAS  Google Scholar 

  • Frangos, J. A., Eskin, S. G., Mclntire, L. V., and Ives, C. L.: Flow effects on prostacyclin production by cultured human endothelial cells. Science 227: 1477–1479, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Franke, R-P., Grafe, M., Schnittler, H., Seiffge, D., and Mittermayer, C: Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307: 648–649, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R. F.: Role of endothelium in responses of vascular smooth muscle. Circ. Res. 53: 557–573, 1983.

    PubMed  CAS  Google Scholar 

  • Furchgott, R. F. and Zawadzki, J. V.: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 375–376, 1980.

    Article  Google Scholar 

  • Gerova, M., Gero, J., Barta, E., Dolezel, S., Smiesko, V., and Levicky, V.: Neurogenic and myogenic control of conduit coronary arteries, a possible interference. Bas. Res. Cardiol. 76: 503–507, 1981.

    Article  CAS  Google Scholar 

  • Gore, R. W.: Wall stress: A determinant of regional differences in response of frog microvessels to norepinephrine. Am. J. Physiol. 222: 82–91, 1972.

    PubMed  CAS  Google Scholar 

  • Griffith, T. M.: Studies of endothelium-derived relaxant factor (EDRF), its nature and mode of action. Eur. Heart J. 6: 37–49, 1985.

    PubMed  CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Lewis, M. J., Newby, A., C, and Henderson, A. H.: The nature of endothelium derived vascular relaxant factor. Nature 308: 645–647, 1984a.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, T. M., Henderson, A. H., Hughes Edwards, D., and Lewis, M. J.: Isolated perfused rabbit coronary artery and aortic strip preparations; The role of endothelium-derived relaxant factor. J. Physiol. (Lond.) 351: 13–24, 1984b.

    CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Lewis, M. J., and Henderson, A. H.: Evidence that cyclic guanosine monophosphate (cGMP) mediates endothelium dependent relaxation. Eur. J. Pharm. 112: 195–202, 1985.

    Article  CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Newby, A. C, Lewis, M. J., and Henderson, A. H.: Production of endothelium derived relaxant factor is dependent on oxidative phosphorylation and extracellular calcium. Cardiovasc. Res. 20: 7–12, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Guyton, J. R. and Hartley, C. J.: Flow restriction of one carotid artery in juvenile rats inhibits growth of arterial diameter. Am. J. Physiol 248: H540–H546, 1985.

    PubMed  CAS  Google Scholar 

  • Habib, J. B., Wells, S. L., Williams, C. L., and Henry, P. D. Atherosclerosis impairs endothelium dependent arterial relaxation. Circulation 70:(suppl.) 11: 123, 1984.

    Google Scholar 

  • Hammerson, F. and Hammerson, E.: Some structural and functional aspects of endothelial cells. Bas. Res. Cardiol. 80: 491–501, 1985.

    Article  Google Scholar 

  • Hilton, S. M.: A peripheral arterial conducting mechanism underlying dilatation of the femoral artery and concerned in functional vasodilatation in skeletal muscle. J. Physiol. (Lond.) 149: 93–111, 1959.

    PubMed  CAS  Google Scholar 

  • Holtz, J., Busse, R., and Giesler, M.: Flow-dependent dilation of canine epicar-dial coronary arteries in vivo and in vitro: Mediated by the endothelium Naunyn Schmiedebergs Arch. Pharmacol. 332:R44, 1983a.

    Google Scholar 

  • Holtz, J., Giesler, M., and Bassenge, E.: Two dilatory mechanisms of anti-anginal drugs on epicardial coronary arteries in vivo: Indirect, flow-dependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z. Cardiol. 72 (suppl.3): 98–106, 1983b.

    CAS  Google Scholar 

  • Holtz, J., Forstermann, U., Pohl, U., Giesler, M., and Bassenge, E.: Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: Effects of cyclooxygenase inhibition. J. Cardiovasc. Pharmacol. 6: 1161–1169, 1984.

    CAS  Google Scholar 

  • Holzmann, S.: Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J. Cyclic. Nucl. Res. 8: 409–419, 1982.

    CAS  Google Scholar 

  • Hwa, J. J. and Bevan, J. A.: Stretch dependent (myogenic) tone in rabbit ear resistance arteries. Am. J. Physiol. 250: H87-H95, 1986.

    PubMed  CAS  Google Scholar 

  • Isabey, D.: Steady and pulsatile flow distribution in a multiple branching network with physiological applications. J. Biomech. 15: 395–404, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Jarasch, E. D., Grund, C, Bruder, G., Heid, H. W., Keenan, T. W., and Franke, W. W.: Localisation of xanthine oxidase in mammary gland epithelium and capillary endothelium. Cell 25: 67–82, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P. C: The Myogenic Response, in Handbook of Physiology vol. 2 (Bohr, D., ed.) Waverly, Maryland, 1980.

    Google Scholar 

  • Kalsner, S.: Cholinergic mechanisms in human coronary artery preparations: Implications of species differences. J. Physiol. (Lond.) 358: 509–526, 1985.

    PubMed  CAS  Google Scholar 

  • Kamiya, A. and Togawa, T.: Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239: H14–21, 1980.

    PubMed  CAS  Google Scholar 

  • Katusic, Z. S., Shepherd, J. T., and Vanhoutte, P. M.: Vasopressin causes endothelium-dependent relaxations of the canine basilar artery. Circ. Res. 55: 575–579, 1984.

    PubMed  CAS  Google Scholar 

  • Konishi, M. and Su, C: Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension 5: 881–886, 1983.

    PubMed  CAS  Google Scholar 

  • Krishnakumar, C. K., Rovick, A. A., and Lavan, Z.: The effect of pressure pulsatations on time mean flow rate. Microvasc. Res. 11: 41–49, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Lew, H. S. and Fung, Y. C: On the low-Reynolds-number entry flow into a circular cylindrical tube. 7. Biomech. 2: 105–119, 1969.

    Article  CAS  Google Scholar 

  • Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, R. F.: Selective blockade of endothelium-dependent and glyceryl trinitrate induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pham. Exp. Ther. 232: 708–716, 1985.

    CAS  Google Scholar 

  • Mayrovitz, H. N. and Roy, J.: Microvascular blood flow: Evidence indicating a cubic dependence on arteriolar diameter. Am. J. Physiol. 245: H1031–H1038, 1983.

    PubMed  CAS  Google Scholar 

  • Mulvey, R. and Newman, C. D.: Scanning electron microscopy-systems and applications. Inst. Phys. Conf. Series 16–21, 1973.

    Google Scholar 

  • Murray, C.D.: The physiological principle of minimum work. Proc. Natl. Acad. Sci. USA 12: 207–214, 1926.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, H. and Sjoblom, N.: Distension-dependent changes in noradrenaline sensitivity in small arteries from the rat. Acta. Physiol. Scand. 125: 429–435, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Owen, M. P. and Bevan, J. A.: Acetylcholine induced endothelial-dependent vasodilation increases as artery diameter decreases in the rabbit ear. Ex-perentia 41: 1057–1058, 1985.

    CAS  Google Scholar 

  • Pedley, T. J., Schroter, R. C, and Sudlow, M. F.: Flow and pressure drop in systems of repeatedly branching tubes. J. Fluid. Mech. 46: 365–383, 1971.

    Article  Google Scholar 

  • Price, J. M., Davis, D. L., and Knauss, E. B.: Length-dependent sensitivity at lengths greater than L max in vascular smooth muscle. Am. J. Physiol. 245: H379-H384, 1983.

    PubMed  CAS  Google Scholar 

  • Rapoport, R. M., Draznin, M. B., and Murad, F.: Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP dependent protein phosphorylation. Nature 306: 174–176, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Rubanyi, G. M., Romero, J. C, and Vanhoutte, P. M.: Flow-induced release of endothelium-derived relaxing factor. Am. J .Physiol. 250: H1145–H1149, 1986.

    PubMed  CAS  Google Scholar 

  • Schnaar, R. L. and Sparks, H. V.: Response of large and small coronary arteries to nitroglycerin, NaNO2and adenosine. Am. J. Physiol. 223: 223–228, 1972.

    PubMed  CAS  Google Scholar 

  • Schretzenmayr, A.: Uber kreislaufregulatorische Vorgange an den grossen Arterien bei der Muskelarbeit. Pfluegers Arch. Ges. Physiol. 232: 743–748, 1933.

    Article  Google Scholar 

  • Sparks, H. V.: Effect of Local Metabolic Factors on Vascular Smooth Muscle, in Handbook of Physiology vol. 2. (Bohr, D., ed.) Waverly, Maryland, 1980.

    Google Scholar 

  • Speden, R. N.: Active reactions of the rabbit ear to distension. J. Physiol. (Lond.) 351: 631–643, 1984.

    CAS  Google Scholar 

  • Speden, R. N.: The use of excised, pressurized blood vessels to study the physiology of vascular smooth muscle. Experentia 41: 1026–1028, 1985.

    Article  CAS  Google Scholar 

  • Sutter, M. C, Hallback, M., Jones, J. V., and Folkow, B.: Contractile responses to noradrenaline: Varying dependance on external calcium of consecutive vascular segments of perfused rat hindquarters. Acta. Physiol. Scand. 99: 166–172, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Weihe, E., Reinecke, M., and Forssmann, W. G.: Distribution of vasoactive intestinal polypeptide-like immunoreactivity in the mammalian heart. Cell. Tissue. Res. 236: 527–540, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Winbury, M. M., Howe, B. B., and Hefner, M. A.: Effects of nitrates and other coronary dilators on large and small coronary vessels: An hypothesis for the mechanism of action of nitrates. J. Pharm. Exp. Ther. 168: 70–95, 1969.

    CAS  Google Scholar 

  • Zaidi, M., Bevis, P. J. R., Girgis, S. I., Lynch, C, Stevenson, J. C., and MacIn-tyre, I.: Circulating CGRP coes from the perivascular nerves. Eur. J. Pharm. 117: 283–284, 1985.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this chapter

Cite this chapter

Griffith, T.M., Edwards, D.H., Davies, R.L., Harrison, T.J., Evans, K.T. (1988). Endothelium-Dependent Responses in the Peripheral Microcirculation. In: Vanhoutte, P.M. (eds) Relaxing and Contracting Factors. The Endothelium. Humana Press. https://doi.org/10.1007/978-1-4612-4588-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4588-9_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8939-5

  • Online ISBN: 978-1-4612-4588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics