Advertisement

Endothelium-Dependent Responses in the Peripheral Microcirculation

  • T. M. Griffith
  • D. H. Edwards
  • R. L. Davies
  • T. J. Harrison
  • K. T. Evans
Part of the The Endothelium book series (TEEN)

Abstract

Experimental studies of endothelium-dependent relaxation have to date largely focused on the properties of pharmacologically and physiologically vasoactive agents in conduit vessels. The phenomenon has been demonstrated in vitro (Furchgott, 1983) and in vivo (Angus et al., 1983), although it has become apparent that species and vessel differences exist (Furchgott, 1983; Kalsner, 1985; Katusic et al., 1984). There is evidence that injury to the arterial wall, as occurs in experimental models of atheroma (Habib et al., 1984) or hypertension (Konishi and Su, 1983), may functionally impair endothelium-dependent responses. These observations may have clinical relevance. Relatively little is known, however, about endothelium-dependent relaxation in the microvasculature, where it may have an important physiological role, since small vessels regulate peripheral resistance and hence govern the distribution of blood flow in the intact circulation.

Keywords

Vessel Diameter Vasoactive Intestinal Polypeptide Resistance Vessel Branch Vessel Central Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, P. O., Bloom, S. R., and Jarhult, J.: Colonic motor and vascular response to pelvic nerve stimulation and their relation to local peptide release in the cat. J. Physiol. (Lond.) 334: 293–307, 1983.Google Scholar
  2. Andersson, P. O., Bloom, S. R., and Mellander, S.: Haemodynamics of pelvic nerve induced penile erection in the dog: Possible mediation by vasoactive intestinal polypeptide. J. Physiol. (Lond.) 350: 209–224, 1984.Google Scholar
  3. Angus, J. A., Campbell, G. R., Cocks, T. M., and Manderson, J. A.: Vasodilatation by acetylcholine is endothelium-dependent: A study by sonomicrometry in canine femoral artery in vivo. J. Physiol (Lond.) 334: 209–222, 1983.Google Scholar
  4. Azuma, T. and Oka, S.: Mechanical equilibrium of blood vessel walls. Am. J. Physiol. 221: 1310–1318, 1971.PubMedGoogle Scholar
  5. Bayliss, W. M.: On the local reactions of the arterial wall to changes of internal pressure. 7. Physiol. (Lond.) 28: 220–231, 1902.Google Scholar
  6. Bellman, S.: Microangiography. Acta Radiol. (suppl.) 102: 7–104, 1953.Google Scholar
  7. Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R., and Maclntyre, I.: Calcitonin gene-related peptide is a potent vasodilator. Nature 313: 54–56, 1985.PubMedCrossRefGoogle Scholar
  8. Burger, W., Kellner, C, and Busse, R.: Effects of active and passive wall stress changes on the rhythmic mechanical activity of the pressurised rat tail artery. Blood Vess. 21: 231–245, 1984.Google Scholar
  9. Busse, R., Trogisch, G., and Bassenge, E.: The role of endothelium in the control of vascular tone. Bas. Res. Cardiol. 80: 475–490, 1985.Google Scholar
  10. Cauvin, C., Saida, K., and van Breemen, C: Effects of Ca antagonists on Ca fluxes in resistance vessels. 7. Cardiovasc. Pharmacol. 4: S287-S290, 1982.CrossRefGoogle Scholar
  11. Cocks, T. M. and Angus, J. A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305: 627–30, 1983.PubMedCrossRefGoogle Scholar
  12. Cocks, T. M. and Angus, J. A.: Bioassay of the Release of Endothelium-Derived Relaxing Factor (EDRF) from Isolated Endothelial Cells In Vitro, in Vascular Neuroeffector Mechanisms (Bevan, J. A., Godfraind, T., Maxwell, R. A., Stoclet, J. C, and Worcel, M., ed.) Elsevier, Amsterdam, New York, Oxford, 1985.Google Scholar
  13. Cox, R. H.: Comparison of arterial wall mechanics using ring and cylindrical segments. Am. J. Physiol. 244: H298–H303, 1983.PubMedGoogle Scholar
  14. Davies, R. L1.: Contact microradiography in bio-medical research. Doctoral thesis. University of Wales, Cardiff, UK, 1983.Google Scholar
  15. Davies, R. L1., Flores, N. A., and Evans, K. T.: Development and assessment of an image intensifier for real-time x-ray microscopy. Br. J. Radiol. 59: 273–276, 1986.PubMedCrossRefGoogle Scholar
  16. Davies, J. M. and Williams, K. I.: Endothelial-dependent relaxant effects of vasoactive intestinal polypeptide and archidonic acid in rat aortic strips. Prostaglandins 27: 195–202, 1984.PubMedCrossRefGoogle Scholar
  17. De Mey, J. G. and Gray, S.D.: Endothelium-dependent reactivity in resistance vessels. Prog. Appl. Microcirc. 8: 181–187, 1985.Google Scholar
  18. Dewey, C. F., Bussolari, S. R., Gimbrone, M. A., and Davies, P. F.: The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103: 177–185, 1981.Google Scholar
  19. Diamond, J. and Chu, E. U.: Possible role for cyclic GMP in endothelium-dependent relaxation of rabbit aorta by acetylcholine. Comparison with nitroglycerin. Res. Comm. Chem. Pathol. Pharmacol. 41: 369–381, 1983.Google Scholar
  20. D’Orleans-Juste, P., Dion, S., Mizrati, J., and Regoli, D.: Effects of peptides and non-peptides on isolated arterial smooth muscle: Role of endothelium. Eur. J. Pharmacol. 114: 9–21, 1985.Google Scholar
  21. Edwards, D. H., Griffith, T. M., Henderson, A. H., Lewis, M. J., and Ryley, H.C.: Endothelium-dependent relaxation is inhibited by a high molecular weight protein fraction of whole human plasma. Br. J. Pharm. 85: 341P, 1985.Google Scholar
  22. Edwards, D. H., Griffith, T. M., Ryley, H. C, and Henderson, A. H.: Haptoglobin-haemoglobin complex in human plasma inhibits endothelium-dependent relaxation: Evidence that endothelium derived relaxing factor acts as a local autocoid. Cardiovasc. Res. 20: 549–556, 1986.PubMedCrossRefGoogle Scholar
  23. Ely, R. V.: Microfocal Radiography. Academic, London, New York, 1980.Google Scholar
  24. Eskin, S. G., Ives, C. L., Mclntire, L. V., and Navarro, L. T.: Response of cultured endothelial cells to steady flow. Microvasc. Res. 28: 87–94, 1984.PubMedCrossRefGoogle Scholar
  25. Folkow, B.: Description of the myogenic hypothesis. Circ. Res. 15 (suppl. I): 279–287, 1964.PubMedGoogle Scholar
  26. Folkow, B.: Relationships between vessel design and hemodynamics along the precapillary resistance compartment in normo and hypertension. Blood Vess. 16: 277–280, 1979.Google Scholar
  27. Frangos, J. A., Eskin, S. G., Mclntire, L. V., and Ives, C. L.: Flow effects on prostacyclin production by cultured human endothelial cells. Science 227: 1477–1479, 1985.PubMedCrossRefGoogle Scholar
  28. Franke, R-P., Grafe, M., Schnittler, H., Seiffge, D., and Mittermayer, C: Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307: 648–649, 1984.PubMedCrossRefGoogle Scholar
  29. Furchgott, R. F.: Role of endothelium in responses of vascular smooth muscle. Circ. Res. 53: 557–573, 1983.PubMedGoogle Scholar
  30. Furchgott, R. F. and Zawadzki, J. V.: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 375–376, 1980.CrossRefGoogle Scholar
  31. Gerova, M., Gero, J., Barta, E., Dolezel, S., Smiesko, V., and Levicky, V.: Neurogenic and myogenic control of conduit coronary arteries, a possible interference. Bas. Res. Cardiol. 76: 503–507, 1981.CrossRefGoogle Scholar
  32. Gore, R. W.: Wall stress: A determinant of regional differences in response of frog microvessels to norepinephrine. Am. J. Physiol. 222: 82–91, 1972.PubMedGoogle Scholar
  33. Griffith, T. M.: Studies of endothelium-derived relaxant factor (EDRF), its nature and mode of action. Eur. Heart J. 6: 37–49, 1985.PubMedGoogle Scholar
  34. Griffith, T. M., Edwards, D. H., Lewis, M. J., Newby, A., C, and Henderson, A. H.: The nature of endothelium derived vascular relaxant factor. Nature 308: 645–647, 1984a.PubMedCrossRefGoogle Scholar
  35. Griffith, T. M., Henderson, A. H., Hughes Edwards, D., and Lewis, M. J.: Isolated perfused rabbit coronary artery and aortic strip preparations; The role of endothelium-derived relaxant factor. J. Physiol. (Lond.) 351: 13–24, 1984b.Google Scholar
  36. Griffith, T. M., Edwards, D. H., Lewis, M. J., and Henderson, A. H.: Evidence that cyclic guanosine monophosphate (cGMP) mediates endothelium dependent relaxation. Eur. J. Pharm. 112: 195–202, 1985.CrossRefGoogle Scholar
  37. Griffith, T. M., Edwards, D. H., Newby, A. C, Lewis, M. J., and Henderson, A. H.: Production of endothelium derived relaxant factor is dependent on oxidative phosphorylation and extracellular calcium. Cardiovasc. Res. 20: 7–12, 1986.PubMedCrossRefGoogle Scholar
  38. Guyton, J. R. and Hartley, C. J.: Flow restriction of one carotid artery in juvenile rats inhibits growth of arterial diameter. Am. J. Physiol 248: H540–H546, 1985.PubMedGoogle Scholar
  39. Habib, J. B., Wells, S. L., Williams, C. L., and Henry, P. D. Atherosclerosis impairs endothelium dependent arterial relaxation. Circulation 70:(suppl.) 11: 123, 1984.Google Scholar
  40. Hammerson, F. and Hammerson, E.: Some structural and functional aspects of endothelial cells. Bas. Res. Cardiol. 80: 491–501, 1985.CrossRefGoogle Scholar
  41. Hilton, S. M.: A peripheral arterial conducting mechanism underlying dilatation of the femoral artery and concerned in functional vasodilatation in skeletal muscle. J. Physiol. (Lond.) 149: 93–111, 1959.PubMedGoogle Scholar
  42. Holtz, J., Busse, R., and Giesler, M.: Flow-dependent dilation of canine epicar-dial coronary arteries in vivo and in vitro: Mediated by the endothelium Naunyn Schmiedebergs Arch. Pharmacol. 332:R44, 1983a.Google Scholar
  43. Holtz, J., Giesler, M., and Bassenge, E.: Two dilatory mechanisms of anti-anginal drugs on epicardial coronary arteries in vivo: Indirect, flow-dependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z. Cardiol. 72 (suppl.3): 98–106, 1983b.Google Scholar
  44. Holtz, J., Forstermann, U., Pohl, U., Giesler, M., and Bassenge, E.: Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: Effects of cyclooxygenase inhibition. J. Cardiovasc. Pharmacol. 6: 1161–1169, 1984.Google Scholar
  45. Holzmann, S.: Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J. Cyclic. Nucl. Res. 8: 409–419, 1982.Google Scholar
  46. Hwa, J. J. and Bevan, J. A.: Stretch dependent (myogenic) tone in rabbit ear resistance arteries. Am. J. Physiol. 250: H87-H95, 1986.PubMedGoogle Scholar
  47. Isabey, D.: Steady and pulsatile flow distribution in a multiple branching network with physiological applications. J. Biomech. 15: 395–404, 1982.PubMedCrossRefGoogle Scholar
  48. Jarasch, E. D., Grund, C, Bruder, G., Heid, H. W., Keenan, T. W., and Franke, W. W.: Localisation of xanthine oxidase in mammary gland epithelium and capillary endothelium. Cell 25: 67–82, 1981.PubMedCrossRefGoogle Scholar
  49. Johnson, P. C: The Myogenic Response, in Handbook of Physiology vol. 2 (Bohr, D., ed.) Waverly, Maryland, 1980.Google Scholar
  50. Kalsner, S.: Cholinergic mechanisms in human coronary artery preparations: Implications of species differences. J. Physiol. (Lond.) 358: 509–526, 1985.PubMedGoogle Scholar
  51. Kamiya, A. and Togawa, T.: Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239: H14–21, 1980.PubMedGoogle Scholar
  52. Katusic, Z. S., Shepherd, J. T., and Vanhoutte, P. M.: Vasopressin causes endothelium-dependent relaxations of the canine basilar artery. Circ. Res. 55: 575–579, 1984.PubMedGoogle Scholar
  53. Konishi, M. and Su, C: Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension 5: 881–886, 1983.PubMedGoogle Scholar
  54. Krishnakumar, C. K., Rovick, A. A., and Lavan, Z.: The effect of pressure pulsatations on time mean flow rate. Microvasc. Res. 11: 41–49, 1976.PubMedCrossRefGoogle Scholar
  55. Lew, H. S. and Fung, Y. C: On the low-Reynolds-number entry flow into a circular cylindrical tube. 7. Biomech. 2: 105–119, 1969.CrossRefGoogle Scholar
  56. Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, R. F.: Selective blockade of endothelium-dependent and glyceryl trinitrate induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pham. Exp. Ther. 232: 708–716, 1985.Google Scholar
  57. Mayrovitz, H. N. and Roy, J.: Microvascular blood flow: Evidence indicating a cubic dependence on arteriolar diameter. Am. J. Physiol. 245: H1031–H1038, 1983.PubMedGoogle Scholar
  58. Mulvey, R. and Newman, C. D.: Scanning electron microscopy-systems and applications. Inst. Phys. Conf. Series 16–21, 1973.Google Scholar
  59. Murray, C.D.: The physiological principle of minimum work. Proc. Natl. Acad. Sci. USA 12: 207–214, 1926.PubMedCrossRefGoogle Scholar
  60. Nilsson, H. and Sjoblom, N.: Distension-dependent changes in noradrenaline sensitivity in small arteries from the rat. Acta. Physiol. Scand. 125: 429–435, 1985.PubMedCrossRefGoogle Scholar
  61. Owen, M. P. and Bevan, J. A.: Acetylcholine induced endothelial-dependent vasodilation increases as artery diameter decreases in the rabbit ear. Ex-perentia 41: 1057–1058, 1985.Google Scholar
  62. Pedley, T. J., Schroter, R. C, and Sudlow, M. F.: Flow and pressure drop in systems of repeatedly branching tubes. J. Fluid. Mech. 46: 365–383, 1971.CrossRefGoogle Scholar
  63. Price, J. M., Davis, D. L., and Knauss, E. B.: Length-dependent sensitivity at lengths greater than L max in vascular smooth muscle. Am. J. Physiol. 245: H379-H384, 1983.PubMedGoogle Scholar
  64. Rapoport, R. M., Draznin, M. B., and Murad, F.: Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP dependent protein phosphorylation. Nature 306: 174–176, 1983.PubMedCrossRefGoogle Scholar
  65. Rubanyi, G. M., Romero, J. C, and Vanhoutte, P. M.: Flow-induced release of endothelium-derived relaxing factor. Am. J .Physiol. 250: H1145–H1149, 1986.PubMedGoogle Scholar
  66. Schnaar, R. L. and Sparks, H. V.: Response of large and small coronary arteries to nitroglycerin, NaNO2and adenosine. Am. J. Physiol. 223: 223–228, 1972.PubMedGoogle Scholar
  67. Schretzenmayr, A.: Uber kreislaufregulatorische Vorgange an den grossen Arterien bei der Muskelarbeit. Pfluegers Arch. Ges. Physiol. 232: 743–748, 1933.CrossRefGoogle Scholar
  68. Sparks, H. V.: Effect of Local Metabolic Factors on Vascular Smooth Muscle, in Handbook of Physiology vol. 2. (Bohr, D., ed.) Waverly, Maryland, 1980.Google Scholar
  69. Speden, R. N.: Active reactions of the rabbit ear to distension. J. Physiol. (Lond.) 351: 631–643, 1984.Google Scholar
  70. Speden, R. N.: The use of excised, pressurized blood vessels to study the physiology of vascular smooth muscle. Experentia 41: 1026–1028, 1985.CrossRefGoogle Scholar
  71. Sutter, M. C, Hallback, M., Jones, J. V., and Folkow, B.: Contractile responses to noradrenaline: Varying dependance on external calcium of consecutive vascular segments of perfused rat hindquarters. Acta. Physiol. Scand. 99: 166–172, 1977.PubMedCrossRefGoogle Scholar
  72. Weihe, E., Reinecke, M., and Forssmann, W. G.: Distribution of vasoactive intestinal polypeptide-like immunoreactivity in the mammalian heart. Cell. Tissue. Res. 236: 527–540, 1984.PubMedCrossRefGoogle Scholar
  73. Winbury, M. M., Howe, B. B., and Hefner, M. A.: Effects of nitrates and other coronary dilators on large and small coronary vessels: An hypothesis for the mechanism of action of nitrates. J. Pharm. Exp. Ther. 168: 70–95, 1969.Google Scholar
  74. Zaidi, M., Bevis, P. J. R., Girgis, S. I., Lynch, C, Stevenson, J. C., and MacIn-tyre, I.: Circulating CGRP coes from the perivascular nerves. Eur. J. Pharm. 117: 283–284, 1985.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • T. M. Griffith
  • D. H. Edwards
  • R. L. Davies
  • T. J. Harrison
  • K. T. Evans

There are no affiliations available

Personalised recommendations