Skip to main content

Release of Endothelium-Derived Relaxing Factor(s) by Physicochemical Stimuli

  • Chapter

Part of the book series: The Endothelium ((TEEN))

Abstract

When Furchgott and Zawadzki (1980) published their pioneering observations on endothelium-dependent vascular responses, their results looked somewhat like a biological curiosity. Most of the endothelial stimulators do not circulate and therefore do not reach the endothelium from the luminal side in significant concentrations. The principal stimulator, acetylcholine, is rapidly inactivated by cholinesterases. Obviously, the biological concept and physiological relevance of endothelium-stimulated vasomotion by serotonin, norepinephrine, thrombin, substance P, bradykinin, adenosine triphosphate (ATP), and diphosphate (ADP) is not well understood so far. From this uncertainty, the question arises as to whether endothelium-dependent vasomotion plays a significant role in the regulation of blood flow to the organs under physiological or pathophysiological conditions. If such regulation plays a significant part, one would expect a continuous basal release of endothelium-derived vasoactive compounds, which would be effectively modulated or amplified by a number of physiological activators like metabolites, changes in PO2 and PCO2 (or pH), and similar parameters affected by increased activity of the tissues. Such basal release has indeed benn demonstrated, and various physiological factor associated with increased activity of the organs have a modulatory role on the continuous liberation of endothelium-derived relaxing factor (EDRF).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bassenge, E. and Busse, R.: Endothelial modulation of coronary tone. Prog. Cardiovasc. Dis. 30: 000, 1987.

    Google Scholar 

  • Bassenge, E., Busse, R., and Pohl, U.: Abluminal release and asymmetrical response of the rabbit arterial wall to endothelium-derived relaxant factor. Circ. Res. in press, 1987.

    Google Scholar 

  • Berne, R. M. and Rubio, R.: Circulatory Effects of Tissue Oxygen Tension Sensors, in Tissue Hypoxia and Ischemia (Reivich, M., Coburn, R., Lahiri, S., and Chance, B., eds.) Plenum, New York, London, 1977.

    Google Scholar 

  • Boulton, T. B., Lang, R. J., and Takewaki, T.: Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. J. Physiol. 351:549–572, 1984.

    Google Scholar 

  • Borda, L. J., Shuchleib, R., and Henry, P. D.: Hypoxic contraction of isolated canine coronary artery. Mediation by potassium-dependent exocytosis of norepinephrine. Circ. Res. 46:870–879, 1980.

    PubMed  CAS  Google Scholar 

  • Buonassisi, V. and Venter, J. C., Hormone and neurotransmitter receptors in an established vascular endothelial cell line. Proc. Natl. Acad. Sci. USA 73: 1612–1616, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Burnstock, G. and Kennedy, C.: A dual function for adenosine 5′-triphosphate in the regulation of vascular tone. Excitatory cotransmitter with noradrenaline from perivascular nerves and locally released inhibitory intravascular agent. Circ. Res. 58: 319–330, 1985.

    Google Scholar 

  • Busse, R., Pohl, U., Kellner, C., and Klemm, U.: Endothelial cells are involved in the vasodilatory response to hypoxia. Pflugers Arch. 397: 78–80, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Busse, R., Forstermann, U., Matsuda, H., and Pohl, U.: The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia. Pflugers Arch. 401: 77–83, 1984.

    Article  CAS  Google Scholar 

  • Busse, R., Trogisch, G., and Bassenge, E.: The role of endothelium in the control of vascular tone. Basic Res. Cardiol. 80: 475–490, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Busse, R., Luckhoff, A., and Bassenge, E.: Endothelium-derived relaxant factor inhibits platelet activation. Naunyn Schmiedebergs Arch. Pharmacol. 1987, in press.

    Google Scholar 

  • Chand, N. and Altura, B. M.: Acetylcholine and bradykinin relax intrapulmonary arteries by acting on endothelial cells: Role in lung vascular disease. Science 213: 1376–1379, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Charo, I. F., Shak, S., Karasek, M. A., Davison, P. M., and Goldstein, I. M.: Prostaglandin I2 is not a major metabolite of arachidonic acid in cultured endothelial cells from human foreskin microvessels. J. Clin. Invest. 74: 914–919, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Coburn, R. F., Grubb, B., and Aronson, R. D.: Effect of cyanide on oxygen tension-dependent mechanical tension in rabbit aorta. Circ. Res. 44: 368–378, 1979.

    PubMed  CAS  Google Scholar 

  • Coburn, R. F., Eppinger, R., and Scott, D. P.: Oxygen-dependent tension in vascular smooth muscle. Does the endothelium play a role? Circ. Res. 58: 341–347, 1986.

    PubMed  CAS  Google Scholar 

  • Cocks, T. M., Angus, J. A., Campbell, J. H., and Campbell, G. R.: Nature and role of endothelium-derived relaxing factor (EDRF). J. Mol. Cell. Cardiol. 18:(suppl. I):17, 1986.

    Google Scholar 

  • Cohen, R. A., Shepherd, J. T., and Vanhoutte, P. M.: Endothelium and asymmetrical responses of the coronary arterial wall. Am. J. Physiol. 247: H403-H408, 1984.

    PubMed  CAS  Google Scholar 

  • Davies, P. F., Dewey, C. F., Bussolari, S. R., Gordon, E. J., and Gimbrone, M. A.: Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J. Clin. Invest. 73: 1121–1129, 1984.

    Article  PubMed  CAS  Google Scholar 

  • DeForrest, J. M. and Hollis, D. M.: Shear stress and aortic histamine synthesis. Am. J. Physio. 234: H701-H705, 1978.

    CAS  Google Scholar 

  • De Mey, J. G. and Vanhoutte, P. M.: Oxygen-dependency of the acetylcholine induced relaxation in vascular smooth muscle. Arch. Int. Pharmcodyn. 234:339, 1978.

    Google Scholar 

  • De Mey, J. G and Vanhoutte, P. M.: Contribution of the endothelium to the response to anoxia in the canine femoral artery. Arch. Int. Pharmacodyn. 253: 325–326, 1981.

    PubMed  Google Scholar 

  • De Mey, J. G. and Vanhoutte, P. M.: Anoxia and endothelium dependent reactivity of the canine femoral artery. J. Physiol. 335: 65–74, 1983.

    PubMed  Google Scholar 

  • De Mey, J. G. and Vanhoutte, P. M.: Heterogeneous behavior of the canine arterial and venous wall: Importance of the endothelium. Circ. Res. 51: 439–447, 1982.

    PubMed  Google Scholar 

  • Dewey, C. F., Gimbrone, M. A., Bussolari, S. R., White, G. W., and Davies, P. F.: Response of Vascular Endothelium to Unsteady Fluid Shear Stress In Vitro, in Fluid Dynamics as as Localizing Factor for Atherosclerosis (Schettler, G., Nerem, R. M., Schmid-Schonbein, H., Mori, H., and Diehm, C., eds.) Springer, Berlin, Heidelberg, New York, Tokyo, 1983.

    Google Scholar 

  • Dobrina, A. and Rossi, F.: Metabolic properties of freshly isolated bovine endothelial cells. Biochim. Biophys. Acta 762:295–301, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Duance, V. C. and Bailey, A. J.: The Nature Structure and Function of the Vascular Basement Membrane, in Biochemical Interactions at the En-dothelium (Cryer, A., ed.) Elsevier, Amsterdam, New York, Oxford, 1983.

    Google Scholar 

  • Duling, B. R. and Berne, R. M.: Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ. Res. 27:669–678, 1970.

    PubMed  CAS  Google Scholar 

  • Duruble, M., Duvelleroy, M., Gauduel, Y., Martin, J. L., and Teisseire, B.: Transient responses of coronary flow in the blood-perfused isolated rat heart submitted to changes in oxygen content. J. Physiol 358: 321–334, 1985.

    PubMed  CAS  Google Scholar 

  • Feletou, M. and Vanhoutte, P. M.: Endothelium-derived factor(s) and membrane potential of vascular smooth muscle. Blood Vess. 23: 68, 1986.

    Google Scholar 

  • Feletou, M. and Vanhoutte, P. M.: Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br. J. Pharmacol. 93: 515–524, 1988.

    PubMed  CAS  Google Scholar 

  • Ferreira, S. H. and Vane, J. R.: Prostaglandins: Their disappearance from and release into the circulation. Nature 216: 868–873, 1967.

    Article  PubMed  CAS  Google Scholar 

  • Fleisch, A.: Les reflexes nutritifs ascendants producteurs de dilatation arterielle. Arch. Int. Physiol. 41: 141–167, 1935.

    Google Scholar 

  • Forstermann, U., Hertting, G., and Neufang, B.: The importance of endogenous prostaglandins other than prostacyclin for the modulation of contractility of some rabbit blood vessels. Br. J. Pharmacol. 81: 623–630, 1984.

    PubMed  CAS  Google Scholar 

  • Forstermann, U., Goppelt-Strube, M., Frolich, J. C., and Busse, R.: Inhibitors of acyl-coenzyme A: lysolecithin acyltransferase activate the production of endothelium-derived vascular relaxing factor (EDRF). J. Pharmacol. Exp. Ther. 238: 352–359, 1986a.

    PubMed  CAS  Google Scholar 

  • Forstermann, U., Mulsch, A., Bohme, E., and Busse, R.: Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ. Res. 58: 531–538, 1986b.

    PubMed  CAS  Google Scholar 

  • Frangos, J. A., Eskin, S. G., Mclntire, L. V., and Ives, C. L.: Flow effects on prostacyclin production by cultured human endothelial cells. Science 227: 1477–1479, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Franke, R.-P., Grafe, M., Schnittler, H., Seiffge, D., and Mittermayer, C.: Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307: 648–649, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R. F. and Zawadzki, J. V.: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach, E., Nees, S., and Becker, B. F.: The vascular endothelium: A survey of some newly evolving biochemical and physiological features. Basic Res. Cardiol. 80: 459–474, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Gerova, M., Gero, J., Barta, E., Dolezel, S., Smiesko, V., and Levicky, V.: Neurogenic and myogenic control of conduit coronary artery: A possible interference. Basic Res. Cardiol. 76: 503–507, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Giddings, J. C.: The Control of Intravascular Blood Coagulation and Haemostasis at Endothelial Surface, in Biochemical Interactions at the Endothelium (Cryer, A., ed.) Elsevier, Amsterdam, New York, Oxford, 1983.

    Google Scholar 

  • Gillespie, M. N., Owasoyo, J. O., McMurtry, I. F., and O’Brien, R. F.: Sustained coronary vasoconstriction provoked by a peptidergic substance released from endothelial cells in culture. J. Pharmacol. Exp. Ther. 236: 339–343, 1986.

    PubMed  CAS  Google Scholar 

  • Graham, J. M. and Keatinge, W. R.: Differences in sensitivity to vasoconstrictor drugs within the wall of the sheep carotid artery. J. Physiol. 221: 477–492, 1972.

    PubMed  CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Lewis, M. J., Newby, A. C., and Henderson, A. H.: The nature of endothelium-derived vascular relaxant factor. Nature 308: 645–647, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, T. M., Edwards, D. H., Davies, R. L., Harrison, T. J., and Evans, K. T.: The role of EDRF in the microcirculation. Int. J. Microcirc. Clin. Exp. 5: 168, 1986a.

    Google Scholar 

  • Griffith, T. M., Edwards, D. H., Newby, A. C., Lewis, M. J., and Henderson, A. H.: Production of endothelium derived relaxant factor is dependent on oxidative phosphorylation and extracellular calcium. Cardiovasc. Res. 20: 7–12, 1986b.

    Article  PubMed  CAS  Google Scholar 

  • Gryglewski, R. J., Palmer, R. M. J., and Moncada, S.: Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320: 454–456, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Hammersen, F. and Hammersen, E.: Some structural and functional aspects of endothelial cells. Basic Res. Cardiol. 80: 491–501, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Harder, D. R., Madden, J. A., and Dawson, C.: Hypoxic induction of Ca2+-dependent action potentials in small pulmonary arteries of the cat. J. Appl. Physiol. 59: 1389–1393, 1985.

    PubMed  CAS  Google Scholar 

  • Hellstrand, P.: Effects of hypoxia on the rat portal vein in vitro: pO2 gradients in tissue and surrounding fluid. Acta Physiol. Scand. 103: 472–474, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Hickey, K. A., Rubanyi, G., Paul, R. J., and Highsmith, R. F.: Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am. J. Physiol. 248: C550-C556, 1985.

    PubMed  CAS  Google Scholar 

  • Hilton, S. M.: A peripheral arterial conducting mechanism underlying dilatation of the femoral artery and concerned in functional vasodilatation in skeletal muscle. J. Physiol. (Lond.) 149: 93–111, 1959.

    CAS  Google Scholar 

  • Hintze, T. H. and Vatner, S. F.: Reactive dilation of large coronary arteries in conscious dogs. Circ. Res. 54: 50–57, 1984.

    PubMed  CAS  Google Scholar 

  • Holtz, J., Busse, R., and Giesler, M.: Flow-dependent dilation of canine epicar-dial coronary arteries in vivo and in vitro: Mediated by the endothelium. Naunyn Schmiedebergs Arch. Pharmacol. 322(suppl.):R44, 1983a.

    Google Scholar 

  • Holtz, J., Giesler, M., and Bassenge, E.: Two dilatory mechanisms of antianginal drugs on epicardial coronary arteries in vivo: Indirect, flow-dependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z. Kardiol. 72 (suppl. 3):98–106, 1983b.

    PubMed  CAS  Google Scholar 

  • Holtz, J., Forstermann, U., Pohl, U., Giesler, M., and Bassenge, E.: Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: Effects of cyclooxygenase inhibition. J. Cardiovasc. Pharmacol. 6: 1161–1169, 1984.

    PubMed  CAS  Google Scholar 

  • Jackson, W. F.: Prostaglandins do not mediate arteriolar oxygen reactivity. Am. J. Physiol. 250: H1102-H1108, 1986.

    PubMed  CAS  Google Scholar 

  • Jackson, W. F. and Duling, B. R.: The oxygen sensitivity of hamster cheek pouch arterioles. In vitro and in situ studies. Circ. Res. 53: 515–525, 1983.

    PubMed  CAS  Google Scholar 

  • Kaiser, L., Hull, S. S., and Sparks, H. V.: Methylene blue and ETYA block flow-dependent dilation in canine femoral artery. Am. J. Physiol. 251: H974-H981, 1986.

    Google Scholar 

  • Kamiya, A. and Togawa, T.: Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239: H14-H21, 1980.

    PubMed  CAS  Google Scholar 

  • Keatinge, W. R. and Torrie, M. C.: Action of sympathetic nerves on inner and outer muscle of sheep carotid artery and effect of pressure on nerve distribution. J. Physiol. 257: 699–712, 1976.

    PubMed  CAS  Google Scholar 

  • Lands, W. E. M., Sauter, J., and Stone, G. W.: Oxygen requirement for prostaglandin biosynthesis. Prostaglandins Med. 1: 117–120, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Langille, B. L. and O’Donnell, F.: Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231: 405–407, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Lapetina, E. G.: Regulation of arachidonic acid production: Role of phospholipases C and A2. Trends Pharmacol. Sci. 3: 115–118, 1982.

    Article  CAS  Google Scholar 

  • Leitman, D. C. and Murad, F.: Comparison of binding and cyclic GMP accumulation by atrial natriuretic peptides in endothelial cells. Biochim. Biophys. Acta 885: 74–79, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Lie, M., Sejersted, O. M., and Kiil, F.: Local regulation of vascular cross section during changes in femoral arterial blood flow in dogs. Circ. Res. 27: 727–737, 1970.

    PubMed  CAS  Google Scholar 

  • Luckhoff, A., Busse, R., Winter, I., and Bassenge, E.: Characterization of vascular relaxant factor released from cultured endothelial cells. Hypertension 9: 295–303, 1987.

    PubMed  CAS  Google Scholar 

  • Martin, M., Villani, G. M., Jothianandan, D., and Furchgott, R. F.: Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Ther. 232: 708–716, 1985.

    PubMed  CAS  Google Scholar 

  • Moss, A. J., Samuelson, P., Angell, C., and Minken, S. L.: Polarographic evaluation of transmural oxygen availability in intact muscular arteries. J. Atheroscler. Res. 8: 803–810, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Owen, M. P. and Bevan, J. A.: Acetylcholine induced endothelial-dependent vasodilation increases as artery diameter decreases in the rabbit ear. Ex-perientia 41: 1057–1058, 1985.

    CAS  Google Scholar 

  • Peach, M. J., Singer, H. A., and Loeb, A. L.: Mechanisms of endothelium-dependent vascular smooth muscle relaxation. Biochem. Pharmacol. 34: 1867–1874, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Pittman, R. N. and Duling, B. R.: Oxygen sensitivity of vascular smooth muscle. I. In vitro studies. Microvasc. Res. 6: 202–211, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Pohl, U., Busse, R., and Kessler, M.: Vascular Resistance and Tissue pO2 in Skeletal Muscle During Perfusion with Hypoxic Blood, in Cardiovascular System Dynamics (Kenner, T., Busse, R., and Hinghofer-Szalkay, H., eds.) Plenum, New York, London, 1982.

    Google Scholar 

  • Pohl, U., Busse, R. Kuon, E., and Bassenge, E.: Pulsatile perfusion stimulates the release of endothelial autacoids. J. Appl. Cardiol 1: 235–255, 1986b.

    Google Scholar 

  • Pohl, U., Busse, R., and Bassenge, E: Endothelial Cells as Oxygen Sensors, in Mechanisms of Vasodilatation IV (Vanhoutte, P. M., ed.) Raven, New York, in press, 1987a.

    Google Scholar 

  • Pohl, U., Dezsi, L., Simon, B., and Busse, R.: Selective inhibition of endothelium-dependent dilation in resistance-sized vessels in vivo. Am. J. Physiol 253: H000-H000, 1987b.

    Google Scholar 

  • Pohl, U., Holtz, J., Busse, R., and Bassenge, E.: Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 7: 37–44, 1986a.

    Google Scholar 

  • Quadt, J. F. A., Voss, R., and TenHoor, F.: Prostacyclin production of the isolated pulsatingly perfused rat aorta. J. Pharmacol Meth. 7: 263–270, 1982.

    Article  CAS  Google Scholar 

  • Rhodin, J. A. G.: The ultrastructure of mammalian arterioles and precapillary sphincters. J. Ultrastruct. Res. 18: 181–223, 1967.

    Article  CAS  Google Scholar 

  • Rodbard, S.: Vascular caliber. Cardiology 60: 4–49, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Rubanyi, G. M. and Vanhoute, P. M.: Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J. Physiol. 364: 45–56, 1985.

    PubMed  CAS  Google Scholar 

  • Rubanyi, G. M. and Vanhoutte, P. M.: Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am. J. Physiol. 250: H822-H827, 1986.

    PubMed  CAS  Google Scholar 

  • Rubanyi, G. M., Lorenz, R. R., and Vanhoutte, P. M.: Bioassay of endothelium-derived relaxing factor(s). Inactivation by catecholamines. Am. J. Physiol. 249: H95-H101, 1985.

    PubMed  CAS  Google Scholar 

  • Rubanyi, G. M., Romero, J. C., and Vanhoutte, P. M.: Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol. 250: H1145-H1149, 1986.

    PubMed  CAS  Google Scholar 

  • Ryan, U. S. and Ryan, J. W.: Cell biology of pulmonary endothelium. Circulation 70(suppl. III):III46–62, 1984.

    PubMed  CAS  Google Scholar 

  • Schretzenmayr, A.: uber kreislaufregulatorische Vorgange an den groβen Arterien bei der Muskelarbeit. Pflugers Arch. Ges. Physiol. 232: 743–748, 1933.

    Article  Google Scholar 

  • Smiesko, V., Kozik, J., and Dolezel, S.: The control of arterial diameter by blood flow velocity is dependent upon intact endothelium. Physiol. Bohemoslow 32: 558A, 1983.

    Google Scholar 

  • Smiesko, V., Kozik, J., and Dolezel, S.: Role of endothelium in the control of arterial diameter by blood flow. Blood Vess. 22: 247–251, 1985.

    CAS  Google Scholar 

  • Smith, R. H., Palmer, R. M., and Reeds, P. J.: Protein synthesis in isolated rabbit forelimb muscles. The possible role of metabolites of arachidonic acid in the response to intermittent stretching. Biochem. J. 214: 153–161, 1983.

    PubMed  CAS  Google Scholar 

  • Thoma, R.: Untersuchungen Uber die Histogenese und Histomechanik des GefaßF systems. Enke, Stuttgart, 1893.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this chapter

Cite this chapter

Bassenge, E., Busse, R., Pohl, U. (1988). Release of Endothelium-Derived Relaxing Factor(s) by Physicochemical Stimuli. In: Vanhoutte, P.M. (eds) Relaxing and Contracting Factors. The Endothelium. Humana Press. https://doi.org/10.1007/978-1-4612-4588-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4588-9_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8939-5

  • Online ISBN: 978-1-4612-4588-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics