Skip to main content

Phosphoinositides and alpha-1 Adrenergic Receptors

  • Chapter
The alpha-1 Adrenergic Receptors

Part of the book series: The Receptors ((REC))

Abstract

In 1953, Hokin and Hokin demonstrated that muscarinic cholinergic stimulation of pancreatic fragments increased the turnover of cellular phosphatidylinositol (PI), as measured by an increased incorporation of radioactive phosphorus from inorganic phosphate in the incubation medium (Hokin and Hokin, 1953, 1954). In the 20 yr that followed, the Hokins and other investigators sought to understand the significance of the striking metabolic perturbation to cell function. Many of the early investigations on the “PI effect,” as it came to be called, sought roles for this phenomenon in the specific responses of cells to appropriate extracellular stimuli. However, it soon became obvious that PI turnover was a reaction associated with a wide variety of receptors linked to diverse biological responses. The current view recognizes that accelerated inositol lipid turnover is not involved in specific cellular responses, but is a reaction closely coupled to the activation of certain receptors (including the alpha-1 adrenergic receptor) and represents a general signaling system involving calcium mobilization and activation of protein kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif, A. A., Akhtor, R. A., and Hawthorne, J. N. (1977) Acetycholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P] phosphate. Biochem. J. 162, 61–73.

    PubMed  CAS  Google Scholar 

  • Aub, D. L. and Putney, J. W., Jr. (1985) Properties of receptor-controlled inositol trisphosphate formation in parotid acinar cells. Biochem. J. 225, 263–266.

    PubMed  CAS  Google Scholar 

  • Aub, D. L., Kinney, J. S., and Putney, J. W., Jr. (1982) Nature of the receptor-regulated calcium pool in the rat parotid gland. J. Physiol. (Lond.) 331, 557–565.

    PubMed  CAS  Google Scholar 

  • Aub, D. L. and Putney, J. W., Jr. (1984) Metabolism of inositol phosphates in parotid cells: Implications for the pathways of the phosphoinositide effect and for the possible messenger role of inositol trisphosphate. Life Sci. 34, 1347–1355.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J. (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 212, 849–858.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J. (1984) Inositol triphosphate and diacylglycerol as second messengers. Biochem. J. 220, 345–360.

    PubMed  CAS  Google Scholar 

  • Billah, M. M. and Michell, R. H. (1979) Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones. Effects of angiotensin, vasopressin, adrenaline, ionophore A23187 and calcium-ion deprivation. Biochem. J. 182, 661–668.

    PubMed  CAS  Google Scholar 

  • Burgess, G. M., Godfrey, P. P., McKinney, J. S., Berridge, M. J., Irvine, R. F., and Putney, J. W., Jr. (1984b) The second messenger linking receptor activation to internal Ca release in liver. Nature 309, 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, G. M., Irvine, R. F., Berridge, M. J., McKinney, J. S., and Putney, J. W., Jr. (1984a) Actions of inositol phosphates on Ca pools in guinea-pig hepatocytes. Biochem. J. 224, 741–746.

    PubMed  CAS  Google Scholar 

  • Burgess, G. M., McKinney, J. S., Fabiato, A., Leslie, B. A., and Putney, J. W., Jr. (1983) Calcium pools in saponin-permeabilized guinea-pig hepatocytes. J. Biol. Chem. 258, 15336–15345.

    PubMed  CAS  Google Scholar 

  • Burgess, G. M., McKinney, J. S., Irvine, R. F., and Putney, J. W., Jr. (1985) Inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+-mobilizing hormone-activated cells. Biochem. J. 232, 237–243.

    PubMed  CAS  Google Scholar 

  • Butcher, F. R. and Putney, J. W., Jr. (1980) Regulation of Parotid Gland Function by Cyclic Nucleotides and Calcium, in Advances in Cyclic Nucleotide Research vol. 13 (Greengard, P. and Robison, G. A., eds.), Raven, New York.

    Google Scholar 

  • Cockcroft, S. and Gomperts, B. D. (1985) Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature 314, 534–536.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, A. P. (1985) GTP enhances inositol trisphosphate-stimulated Ca2+ release from rat liver microsomes. FEBS Lett. 185, 147–150.

    Article  PubMed  CAS  Google Scholar 

  • DeTorrontegui, G. and Berthet, J. (1966) The action of adrenalin and glucagon on the metabolism of phospholipids in rat liver. Biochim. Biophys. Acta 116, 467–476.

    CAS  Google Scholar 

  • Downes, C. P. and Wusterman, M. M. (1983) Breakdown of polyphosphoinositides and not phosphatidylinositol accounts for muscarinic agonist-stimulated inositol phospholipid metabolism in rat parotid glands. Biochem. J. 216, 633–640.

    PubMed  CAS  Google Scholar 

  • El-Rafai, M. F., Blackmore, P. F., and Exton, J. H. (1979) Evidence for two alpha-adrenergic binding sites in liver plasma membranes. Studies with [3H]epinephrine and [3H]dihyroergocryptine. J. Biol. Chem. 254, 4375–4386.

    Google Scholar 

  • Evans, T., Martin, M. W., Hughes, A. R., and Harden, T. K. (1985) Guanine nucleotide-sensitive, high affinity binding of carbachol to muscarinic cholinergic receptors of 1321N1 astrocytoma cells is insensitive to pertussis toxin. Mol. Pharmacol. 27, 32–37.

    PubMed  CAS  Google Scholar 

  • Exton, J. H. (1980) Mechanisms involved in α-adrenergic phenomena: Role of calcium ions in actions of catecholamines in liver and other tissues. Am. J. Physiol. 238, E3-E12.

    PubMed  CAS  Google Scholar 

  • Fain, J. N. and Garcia-Sainz, J. A. (1980) Role of phosphatidylinositol turnover in alpha1 and adenylate cyclase inhibition in alpha2 effects of catecholamines. Life Sci. 26, 1183–1194.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sainz, J. A. and Fain, J. N. (1980) Effect of insulin, catecholamines and calcium ions on phospholipid metabolism in isolated white fat cells. Biochem. J. 186, 781–789.

    PubMed  CAS  Google Scholar 

  • Girard, J-P., Thomson, A. J., and Sargent, J. R. (1977) Adrenalin induced turnover of phosphatidic acid and phosphatidylinositol in chloride cells from the gills of Anguilla anguilla. FEBS Lett. 73, 267–270.

    Article  CAS  Google Scholar 

  • Goodhardt, M., Ferry, N., Geynet, P., and Hanoune, J. (1982) Hepatic α-adrenergic receptors show agonist-specific regulation by guanine nucleotides. Loss of nucleotide effect after adrenalectomy.J. Biol. Chem. 257, 11577–11583.

    PubMed  CAS  Google Scholar 

  • Hems, D. A., and Whitton, P. D. (1980) Control of hepatic glycogenosis. Physiol. Rev. 60, 1–50.

    PubMed  CAS  Google Scholar 

  • Hokin, L. E. and Sherwin, A. L. (1957) Protein secretion and phosphate turnover in the phosppholipids in salivary glands in vitro. J. Physiol. (Lond.) 135, 18–29.

    PubMed  CAS  Google Scholar 

  • Hokin, M. R. and Hokin, L. E. (1953) Enzyme secretion and the incorporation of P32 in to phospholipids of pancreas slices. J. Biol. Chem. 203, 967–977.

    PubMed  CAS  Google Scholar 

  • Hokin, M. R. and Hokin, L. E. (1954) Effects of acetylcholine on phospholipides in the pancreas. J. Biol. Chem. 209, 549–558.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Anggard, E. A., Letcher, A. J., and Downes, C. P. (1985) Metabolism of inositol (1,4,5) trisphosphate and inositol (1,3,4) trisphosphate in rat parotid glands. Biochem. J., 229, 505–511.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Lander, D. J., and Downes, C. P. (1984) Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochem. J. 223, 237–243.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., Thomas, A. P., Williams, R. J., Irvine, R. F., and Williamson, J. R. (1984) myo-Inositol 1,4,5-trisphosphate. A second messenger for the hormonal mobilization of intracellular Ca2+ in liver. J. Biol. Chem. 259, 3077–3081.

    PubMed  CAS  Google Scholar 

  • Kirk, C. J., Creba, J. A., Downes, C. P., and Michell, R. H. (1981) Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function. Biochem. Soc. Trans. 9, 377–379.

    PubMed  CAS  Google Scholar 

  • Lawrence, J. C. and Larner, J. (1978) Effects of insulin, methoxamine and calcium on glycogen synthase in rat adipocytes. Mol. Pharmacol. 14, 1079–1091.

    PubMed  CAS  Google Scholar 

  • Litosch, I., Wallis, C, and Fain, J. N. (1985) 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown. J. Biol. Chem. 260, 5464–5471.

    PubMed  CAS  Google Scholar 

  • Masters, S. B., Martin, M. W., Harden, T. K., and Brown, J. H. (1985) Pertussis toxin does not inhibit muscarinic-receptor-mediated phosphoinositide hydrolysis or calcium mobilization. Biochem. J. 227, 933–937.

    PubMed  CAS  Google Scholar 

  • Merritt, J. E., Taylor, C. W., Rubin, R. P., and Putney, J. W., Jr. (1985) Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem. J. 236, 337–343.

    Google Scholar 

  • Michell, R. H. (1975) Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415, 81–147.

    PubMed  CAS  Google Scholar 

  • Michell, R. H. and Jones, L. M. (1974) Enhanced phosphatidylinositol labelling in rat parotid fragments exposed to α-adrenergic stimulation. Biochem. J. 138, 47–52.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y. (1983) Calcium, phospholipid turnover and transmembrane signalling. Phil. Trans. R. Soc. Lond. B. 302, 101–112.

    Article  CAS  Google Scholar 

  • Nishizuka, Y. (1984) Turnover of inositol phospholipids and signal transduction. Science 225, 1365–1370.

    Article  PubMed  CAS  Google Scholar 

  • Oron, Y., Lowe, M., and Selinger, Z. (1973) Involvement of the α-adrenergic receptor in the phospholipid effect in rat parotid. FEBS Lett. 34, 198–200.

    Article  PubMed  CAS  Google Scholar 

  • Oron, Y., Lowe, M., and Selinger, Z. (1975) Incorporation of inorganic [32P] phosphate into rat parotid phosphatidylinositol. Induction through activation of alpha adrenergic and cholinergic receptors and relation to K+ release. Mol. Pharmacol. 11, 79–86.

    PubMed  CAS  Google Scholar 

  • Petersen, O. H. and Maruyama, Y. (1983) What is the mechanism of the calcium influx to pancreatic acinar cells evoked by secretagogues? Pflugers Arch. 396, 82–84.

    Article  PubMed  CAS  Google Scholar 

  • Poggioli, J. and Putney, J. W., Jr. (1982) Net calcium fluxes in rat parotid acinar cells. Evidence for a hormone-sensitive calcium pool in or near the plasma membrane. Pflugers Arch. 392, 239–243.

    Article  PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr. (1977) Muscarinic, α-adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland. J. Physiol. (Lond.) 268, 139–149.

    PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr. (1983) Phosphatidylinositol Metabolism and α-Adrenergic Receptors, in Adrenoceptors and Catecholamine Actions Part B (Kunos G., ed.) Wiley Interscience, New York.

    Google Scholar 

  • Putney, J. W., Jr. (1985) A model for receptor-regulated calcium entry. Cell Calcium, 7, 1–12.

    Article  Google Scholar 

  • Putney, J. W., Jr., McKinney, J. S., Aub, D. L., and Leslie, B. A. (1984) Phorbol ester-induced protein secretion in rat parotid gland. Relationship to the role of inositol lipid breakdown and protein kinase C activation in stimulus-secretion coupling. Mol. Pharmacol. 26, 261–266.

    PubMed  CAS  Google Scholar 

  • Putney, J. W., Jr., Weiss, S. J., Van De Walle, C. M., and Haddas, R. A. (1980) Is phosphatidic acid a calcium ionophore under neurohumoral control? Nature 284, 345–347.

    Article  PubMed  CAS  Google Scholar 

  • Rink, T. J., Sanchez, A., and Hallam, T. J. (1983) Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 305, 317–319.

    Article  PubMed  CAS  Google Scholar 

  • Rink, T. J., Smith, S. W., and Tsien, R. Y. (1982) Cytoplasmic free Ca2+ in human plateleets: Ca2+ thresholds and Ca-independent activation for shape-change and secretion. FEBS Lett. 148, 21–26.

    Article  PubMed  CAS  Google Scholar 

  • Salmon, D. M. and Honeyman, T. W. (1979) Increased phosphatidate accumulation during single contractions of isolated smooth muscle cells. Biochem. Soc. Trans. 7, 986–988.

    PubMed  CAS  Google Scholar 

  • Schramm, M. and Selinger, Z. (1975) The functions of cyclic AMP and calcium as alternative second messengers in parotid gland and pancreas. J. Cyclic Nucleotide Res. 1, 181–192.

    PubMed  CAS  Google Scholar 

  • Snavely, M. D. and Insel, P. A. (1982) Characterization of alpha-adrenergic receptor subtypes in the rat renal cortex. Differential regulation of alpha 1 - and alpha 2-adrenergic receptors by guanyl nucleotides and Na+. Mol. Pharmacol. 22, 532–546.

    PubMed  CAS  Google Scholar 

  • Storey, D. J., Shears, S. B., Kirk, C. J., and Michell, R. H. (1984) Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver. Nature 312, 374–376.

    Article  PubMed  CAS  Google Scholar 

  • Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I. (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 67–68.

    Article  PubMed  CAS  Google Scholar 

  • Streb, H., Bayerdorffer, E., Haase, W., Irvine, R. F., and Schulz, I. (1984) Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. J. Membrane Biol. 81, 241–253.

    Article  CAS  Google Scholar 

  • Taylor, C. W. and Putney, J. W., Jr. (1985) Size of the inositol 1,4,5-trisphosphate-sensitive calcium pool in guinea-pig hepatocytes. Biochem. J. 232, 435–438.

    PubMed  CAS  Google Scholar 

  • Tolbert, M. E. M., White, A. C, Ospry, K., Cutts, J., and Fain, J. N. (1980) Stimulation by vasopressin and α-catecholamines of phosphatidylinositol formation in isolated rat liver parenchymal cells. J. Biol. Chem. 255, 1938–1944.

    PubMed  CAS  Google Scholar 

  • Ui, M., Okajima, F., Murayama, T., Nakamura, T., Kurose, H., Itoh, H., and Ohta, H. (1985) A Role of the Inhibitory Guanine Nucleotide-Binding Regulatory Protein in Signal Transduction via Ca2+-Mobilizing Receptors, in Adrenergic Receptors: Molecular Properties and Therapeutic Implications (Lefkowitz, R. S. and Lindenlaub, E., eds) F. K. Schattauer Verlag, Stuttgart, New York.

    Google Scholar 

  • Wallace, M. A. and Fain, J. N. (1985) Guanosine 5′-0-thiotriphosphate stimulates phospholipase C activity in plasma membranes of rat hepatocytes. J. Biol. Chem. 260, 9527–9530.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Humana Press Inc.

About this chapter

Cite this chapter

Putney, J.W. (1987). Phosphoinositides and alpha-1 Adrenergic Receptors. In: Ruffolo, R.R. (eds) The alpha-1 Adrenergic Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4582-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4582-7_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8936-4

  • Online ISBN: 978-1-4612-4582-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics