Skip to main content

Localizing the alpha-1 Adrenergic Receptor in the Central Nervous System

Relating Pharmacology to Structure and Function

  • Chapter

Part of the book series: The Receptors ((REC))

Abstract

Two discoveries concerning adrenergic pharmacology that were made in the late 1940s and 1950s have proven to be pivotal elements in delineating research goals in adrenergic pharmacology even up to the present time. The first of these was the descriptions by Ahlquist and coworkers (Ahlquist, 1948; Ahlquist and Levy, 1959) of multiple adrenergic receptors, which were classified as either alpha or beta. The second key discovery was by Vogt (1954), who proposed that epinephrine and norepinephrine were neurotransmitters not only in the peripheral nervous system, but also in the central nervous system (CNS). Finally, with the development of histochemical and immunological techniques to localize the catecholamine neurotransmitters and their synthesizing enzymes (for a review, see Moore and Bloom, 1979), the concept that epinephrine and norepinephrine were central neurotransmitters became firmly established.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlquist, R. P. (1948) A study of the adrenotropic receptors. Am. J. Physiol. 153, 586–600.

    PubMed  CAS  Google Scholar 

  • Ahlquist, R. P. and Levy, B. (1959) Adrenergic receptive mechanisms of the canine ileum. J. Pharmacol. Exp. Ther. 153, 146–149.

    Google Scholar 

  • Alexander, G. M., Schwartzmann, R. J., Bell, R. D., Yu, J., and Renthal, A. (1981) Quantitative measurement of local cerebral metabolic rate for glucose utilizing tritiated 2-deoxyglucose. Brain Res. 223, 59–67.

    Article  PubMed  CAS  Google Scholar 

  • Baraban, J. M. and Aghajanian, G. K. (1980) Suppression of firing activity of 5-HT neurons in the dorsal raphe by alpha-adrenoceptor antagonists. Neuropharmacology 19, 355–363.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, P. J., Basbaum, C. B., Nadel, A., and Roberts, J. M. (1983) Pulmonary α-adrenoceptors: Autoradiographic localization using [3H]-prazo-sin. Eur. J. Pharmacol. 88, 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet, A. and Descarries, L. (1978) The monoamine innervation of the rat cerebral cortex: Synaptic and non-synaptic terminals. Neurosience 3, 851–860.

    Article  CAS  Google Scholar 

  • Dale, H. H. (1906) On some physiological actions of ergot. J. Physiol. 34, 163–206.

    PubMed  Google Scholar 

  • Dashwood, M. R. (1983) Central and peripheral prazosin binding: An in vitro autoradiographic study in the rat. Eur. J. Pharmacol. 86, 51–58.

    Article  Google Scholar 

  • Dashwood, M. R. and Bagnall, J. (1982) An autoradiographic demonstration of prazosin binding to arterial vessels in the rat. Eur.. Pharmacol. 78, 121–123.

    Article  CAS  Google Scholar 

  • Deskin, R., Seidler, F. J., Whitmore, W. L., and Slotkin, T. A. (1981) Development of alpha-noradrenergic and dopaminergic receptor systems depends on maturation of their presynaptic nerve terminals in the rat brain. J. Neurochem. 36, 1683–690.

    Article  PubMed  CAS  Google Scholar 

  • Engel, G. and Hoyer, D. (1981) [125Iodo]Be 2254, a new high-affinity radioligand for α1-adrenoceptors. Eur. J. Pharmacol. 73, 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, J. H. and Moore, R. Y. (1978) Catecholamine innervation of the basal forebrain. III. Olfactory bulb, anterior olfactory nuclei, olfactory tubercle and piriform cortex. J. Comp. Neurol. 170, 533–544.

    Article  Google Scholar 

  • Fallon, J. H., Koziell, D. A., and Moore, R. Y. (1978) Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex. J. Comp. Neurol. 180, 509–532.

    Article  PubMed  CAS  Google Scholar 

  • Foote, S. L., Bloom, F. E., and Aston-Jones, G. (1983) Nucleus locus coeruleus: New evidence of anatomical and physiological specificity. Physiol. Rev. 63, 844–914.

    PubMed  CAS  Google Scholar 

  • Geary, W. A., III, Toga, A. W., and Wooten, G. F. (1985) Quantitative film autoradiography for tritium: Methodological considerations. Brain Res. 337, 99–108.

    Article  PubMed  CAS  Google Scholar 

  • Glossman, H., Lubbecke, F., and Bellemann, P. (1981) [125I]HEAT, a selective, high-affinity, high specific activity ligand for α1-adrenoceptors. Naunyn Schmiedebergs Arch. Pharmacol. 318, 1–9.

    Article  Google Scholar 

  • Glossman, H. and Lubbecke, F. (1982) [125I[HEAT: Fifty percent of the ligand can bind to the alpha-1 adrenoceptors with high affinity. Naunyn Schmiedebergs Arch. Pharmacol. 321, 7–10.

    Article  Google Scholar 

  • Goethert, M., Nolte, J., and Weinheimer, G. (1981) Preferential blockade of postsynaptic α-adrenoceptors by BE 2254. Eur. J. Pharmacol. 70, 35–42.

    Article  CAS  Google Scholar 

  • Greengrass, P. and Bremner, R. (1979) Binding characteristics of [3H]prazosin to rat brain α-adrenergic receptors. Eur. J. Pharmacol. 55, 323–326.

    Article  PubMed  CAS  Google Scholar 

  • Heinz, N. and Hofferber, E. (1980) Zur Pharmakologie des α-Rezeptoren-Blockers BE 2254 (HEAT). Arzneimittel-forsch. 12, 2135–2139.

    Google Scholar 

  • Herkenham, M. and Pert, C. B. (1982) Light microscopic localization brain opiate receptors: A general autoradiographic method which preserves tissue quality. J. Neurosci. 2, 1129–1149.

    PubMed  CAS  Google Scholar 

  • Herkenham, M. and Sokoloff, L. (1984) Quantitative receptor autoradiography: Tissue defatting eliminates differential self-absorption of tritium radiation in gray and white matter of brain. Brain Res. 321, 363–368.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, B. B. and Lefkowitz, R. J. (1980) [3H]WB4101—Caution about its role as an alpha-adrenergic subtype selective radioligand. Biochem. Pharmacol 29, 1537–1541.

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt, T., Fuxe, K., Goldstein, M., and Johansson, O. (1974) Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res. 66, 235–251.

    Article  CAS  Google Scholar 

  • Hornung, R., Presek, P., and Glossman, H. (1979) Alpha adrenoceptors in rat brain: Direct identification with prazosin. Naunyn Schmiedebergs Arch. Pharmacol. 308, 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Itakura, T., Kasamatsu, T., and Pettigrew, J. D. (1981) Norepinephrine -containing terminals on kitten visual cortex: Lamina distribution and ultrastructure. Neuro Science 6, 159–175.

    CAS  Google Scholar 

  • Jones, B. E. and Moore, R. Y. (1977) Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain. Res. 127, 23–53.

    Article  Google Scholar 

  • Jones, L. S., Gauger, L. L., and Davis, J. N. (1983) Brain alpha1-adrenergic receptors: Suitability of [125I]HEAT as a radioligand for in vitro autoradiography. Eur. J. Pharmacol. 93, 291–292.

    Article  PubMed  CAS  Google Scholar 

  • Jones, L. S., Gauger, L. L., and Davis, J. N. (1985a) Anatomy of brain alpharadrenergic receptors: in vitro autoradiography with [125I]HEAT. J. Comp. Neurol. 231, 190–208.

    Article  PubMed  CAS  Google Scholar 

  • Jones, L. S., Gauger, L. L., Davis, J. N., Slotkin, T. A., and Bartolomé, J. V. (1985b) Postnatal development of brain alpha-adrenergic receptors: in vitro autoradiography with [125I]HEAT in normal rats and rats treated with alpha-difluormethylornithine, a specific, irreversible inhibitor of ornithine decarboxylase. Neuroscience 15, 1195–1202.

    Article  PubMed  CAS  Google Scholar 

  • Jones, L. S., Miller, G., Gauger, L. L., and Davis, J. N. (1985c) Regional distribution of rat brain alpha1-adrenergic receptors: Correlation between [125I]HEAT membrane binding and in vitro autoradiography. Life Sci. 36, 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Jouvet, M. (1972) The role of monoamines and acetycholine-containing neurons in the regulation of the sleep-waking cycle. Ergebn. Physiol. 64, 166–307.

    PubMed  CAS  Google Scholar 

  • Kasamatsu, T. and Pettigrew, J. D. (1976) Depletion of brain catecholamines: Failure of ocular dominance shift after monocular occlusion in kittens. Science 194, 206–209.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T. and Pettigrew, J. D. (1979) Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hydroxydopamine. J. Comp. Neurol. 185, 139–162.

    Article  PubMed  CAS  Google Scholar 

  • Kasamatsu, T., Pettigrew, J. D., and Ary, M. (1979) Restoration of visual cortical plasticity by local microperfusion of norepinephrine. J. Comp. Neurol. 185, 163–182.

    Article  PubMed  CAS  Google Scholar 

  • Kuhar, M. J. (1985) Receptor Localization with the Microscope, in Neurotransmitter Receptor Binding, Second Edition (Yamamura, H. I., Enna, S. J., and Kuhar, M. J. eds.) Raven, New York.

    Google Scholar 

  • Kuhar, M. J. and Unnerstall, J. R. (1982) in vitro receptor autoradiography: Loss of label during ethanol dehydration and preparative procedures. Brain Res. 244, 178–181.

    Article  PubMed  CAS  Google Scholar 

  • Kuhar, M. J. and Unnerstall, J. R. (1985) Quantitative receptor mapping by autoradiography: Some current technical problems. Trends Neurosci. 8, 49–53.

    Article  CAS  Google Scholar 

  • Leppavuori, A. and Putkonen, P. T. S. (1980) Alpha-adrenoceptive influences on the control of the sleep-waking cycle in the cat. Brain Res. 193, 95–115.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, P. and Moore, R. Y. (1979) Origin and organization of brainstem catecholamine innervation in the rat. J. Comp. Neurol. 186, 505–528.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, P., Rakic, P., and Goldman-Rakic, P. (1984) Region-specific distribution of catecholamine afferents in primate cerebral cortex: A fluorescence histochemical analysis. J. Comp. Neurol. 227, 23–36.

    Article  PubMed  CAS  Google Scholar 

  • Lidov, H., Rice, F., and Molliver, M. E. (1978) The organization of the catecholamine innervation of somatosensory cortex: The barrel field of the mouse. Brain. Res. 153, 577–584.

    Article  PubMed  CAS  Google Scholar 

  • Loewy, A. D., McKeller, S., and Saper, C. B. (1979) Direct projections from the A5 catecholamine cell group to the intermediolateral cell column. Brain Res. 174, 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Loizou, L. A. (1969) Projections of the nucleus locus coeruleus in the albino rat. Brain. Res. 15, 563–566.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, T. F. and Randall, W. C. (1980) Multiple central WB4101 binding sites and the selectivity of prazosin. Life Sci. 26, 1121–1129.

    Article  PubMed  CAS  Google Scholar 

  • Menkes, D. B. and Aghajanian, G. K. (1981) α1-Adrenoceptor-mediated responses in the lateral geniculate nucleus are enhanced by chronic antidepressant treatment. Eur. J. Pharmacol. 74, 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Menkes, D. B. Baraban J. M., and Aghajanian, G. K. (1981) Prazosin selectively antagonizes neuronal responses mediated by (α1-adrenoceptors in brain. Naunyn Schmiedebergs Arch. Pharmacol. 317, 273–275.

    Article  PubMed  CAS  Google Scholar 

  • Miach, P. J., Dausse, J.-P., Cardot, A., and Meyer, P. (1980) [3H]Prazosin binds specifically to “α1 ”-adrenoceptors in rat brain. Naunyn Schmiedebergs Arch. Pharmacol. 312, 23–26.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y. and Bloom, F. E. (1979) Central catecholamine neuron systems: Anatomy and physiology of the norepinephrine and epinephrine systems. Ann. Rev. Neurosci. 2, 113–168.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J. H., Grzanna, R., Molliver, M. E., and Coyle, J. T. (1978) The distribution and orientation of noradrenergic fibers in the neocortex of the rat: An immunofluorescence study. J. Comp. Neurol. 181, 17–40.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J. H., Molliver, M. E., Grzanna, R., and Coyle, J. T. (1981) The intra-cortical trajectory of the coeruleo-cortical projection in the rat: A tangentially organized cortical afferent. Neuroscience 6, 139–158.

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle, V. B. (1979) An Organizing Principle for Cerebral Function: The Unit Module and the Distributed System, in The Neurosciences (Schmitt, J. O. and Worden, F. G., eds.) Massachusetts Institute of Technology, Press, Cambridge, Massachusetts.

    Google Scholar 

  • Munson, P. J. and Rodbard, D. (1980) A versatile computerized approach for the characterization of ligand binding systems. Anal. Biochem. 197, 220–239.

    Article  Google Scholar 

  • Olschowka, J. A., Molliver, M. E., Grzanna, R., Rice, F. L., and Coyle, J. T. (1981) Ultrastructural demonstration of noradrenergic synapses in the rat central nervous system by dopamine-ß-hydroxylase immunocytochemistry. J. Histochem. Cytochem. 29, 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Palacios, J. M. and Kuhar, M. J. (1982) Beta-adrenergic receptor localization in the rat brain by light microscopic autoradiography. Neurochem. Int. 4, 473–490.

    Article  PubMed  CAS  Google Scholar 

  • Palkovits, M. and Zaborszky, L. (1977) Neuroanatomy of central cardiovascular control. Nucleus tractus solitarii: Afferent efferent neuronal connections in relation to the baro receptor reflex arc. Prog. Brain Res. 47, 9–34.

    Article  PubMed  CAS  Google Scholar 

  • Palkovits, M., Mezey, E., and Zaborszky, L. (1979) Neuroanatomical Evidence for Direct Neural Connections Between the Brainstem Baroreceptor Centers and the Forebrain Areas Involved in the Neural Regulation of the Blood Pressure, in Nervous System and Hypertension (Meyer, P. and Schmitt, H., eds.) John Wiley, New York.

    Google Scholar 

  • Pickel, V. M., Segal, M., and Bloom, F. E. (1974) A radioautographic study of the efferent pathways of the nucleus locus coeruleus. J. Comp. Neurol. 155, 15–42.

    Article  PubMed  CAS  Google Scholar 

  • Rainbow, T. C. and Biegon, A. (1983) Quantitative autoradiography of [3H]prazosin binding sites in rat forebrain. Neuroscience Lett. 40, 221–226.

    Article  CAS  Google Scholar 

  • Rainbow, T. C, Parsons, B., and Wolfe, B. B. (1984) Quantitative autoradiography of β1- and α2-adrenergic receptors in rat brain. Proc. Natl. Acad. Sci. USA 81, 1585–1589.

    Article  PubMed  CAS  Google Scholar 

  • Rehavi, M., Yavetz, B., Ramot, O., and Sokolovsky, M. (1980) Regional heterogeneity of two high affinity binding sites for [3H]WB-4101 in mouse brain. Life Sci. 26, 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Riemer, R. K. and Kuhn, R. W. (1985) Rapid and simple purification of the [125I]-labeled α-1 adrenergic radioligand 2-[ß-(4-hydroxyl-phenylethyl)-aminomethyl] tetralone (BE 2254) using reversed-phase high performance liquid chromatography. J. Chromatog. Biomed. Appl. 338, 236–241.

    Article  CAS  Google Scholar 

  • Rogawski, M. A. and Aghajanian, G. K. (1980) Activation of lateral geniculate neurons by norepinephrine: Mediation by an α-adrenergic receptor. Brain Res. 182, 345–359.

    Article  PubMed  CAS  Google Scholar 

  • Ross, C. A., Armstrong, D. M., Ruggiero, D. A., Pickel, V. M., Joh, T.-H., and Reis, D. J. (1981a) Adrenaline neurons in the rostral ventrolateral medulla innervate thoracic spinal cord: A combined immunocytochemical and retrograde transport demonstration. Neurosci. Lett. 25, 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Ross, C. A., Ruggiero, D. A., and Reis, D. J. (1981b) Afferent projections to cardiovascular portions of the nucleus tractus solitarius in the rat. Brain. Res. 223, 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Ross, C. A., Ruggiero, D. A., Joh, T.-H., Park, D. H., and Reis, D. J. (1983) Adrenaline synthesizing neurons in the rostral ventrolateral medulla: A possible role in tonic vasomotor control. Brain Res. 273, 356–361.

    Article  PubMed  CAS  Google Scholar 

  • Roth, L. J., Diab, I. M., Watanbe, M., and Dinerstein, R. J. (1974) A correlative radioautographic, fluorescent and histochemical technique for cytopharmacology. Mol. Pharmacol. 10, 986–998.

    PubMed  CAS  Google Scholar 

  • Saper, C. B. and Loewy, A. D. (1980) Efferent connections of the parabrachial nucleus of the rat. Brain. Res. 197, 291–317.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko, P. E. and Swanson, L. W. (1982) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res. Rev. 4, 275–325.

    Article  Google Scholar 

  • Spyer, K. M. (1982) Central nervous integration of cardiovascular control. J. Exp. Biol. 100, 109–128.

    PubMed  CAS  Google Scholar 

  • Stumpf, W. E. and Roth, L. J. (1966) High resolution autoradiography with dry mounted, freeze-dried frozen sections: Comparative study of six methods using twodiffusible compounds [3H]estradiol and [3H]mesobilirubiongen. J. Histochem. Cytochem. 14, 274–287.

    Article  PubMed  CAS  Google Scholar 

  • Summers, R. J., Jarrott, B., and Louis, W. J. (1980) Selectivity of a series of clonidine-like drugs for α1 and α2-adrenoceptors in rat brain. Neurosa. Lett. 20, 347–350.

    Article  CAS  Google Scholar 

  • Swanson, L. W. and Hartman, B. K. (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-ß-hyroxylase as a marker. J. Comp. Neurol. 163, 467–506.

    Article  PubMed  CAS  Google Scholar 

  • Szabadi, E. (1979) Adrenoceptors on central neurones: Microelectrophoretic studies. Neuropharmacology 18, 831–843.

    Article  PubMed  CAS  Google Scholar 

  • Torvik, A. (1956) Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures. J. Comp. Neurol. 106, 51–142.

    Article  PubMed  CAS  Google Scholar 

  • Unnerstall, J. R., Fernandez, I., and Orensanz, L. M. (1985) The alpha-adrenergic receptor: Radiohistochemical analysis of functional characteristics and biochemical differences. Pharmacol. Biochem. Behav. 22, 859–874.

    Article  PubMed  CAS  Google Scholar 

  • Unnerstall, J. R., Kopajtic, T. A., and Kuhar, M. J. (1984) Distribution of α2 agonist binding sites in the rat and humaan central nervous system: Analysis of some functional, anatomic correlates of the pharmacologic effects of Clonidine and related adrenergic agents. Brain Res. Rev. 7, 69–101.

    Article  CAS  Google Scholar 

  • Unnerstall, J. R., Kuhar, M. J., Niehoff, D. L., and Palacios, J. M. (1981) Benzodiazepine receptors are coupled to a subpopulation of GABA receptors: Evidence from a quantitative autoradiographic study. J. Pharmacol. Exp. Ther. 218, 797–804.

    PubMed  CAS  Google Scholar 

  • Unnerstall, J. R., Niehoff, D. L., Kuhar, M. J., and Palacios, J. M. (1982a) Quantitative receptor autoradiography using [3H]Ultrofilm: Application to multiple benzodiazepine receptors. J. Neurosa. Methods 6, 59–73.

    Article  CAS  Google Scholar 

  • Unnerstall, J. R., Orensanz, L. M., Fernandez, I., and Kuhar, M. J. (1982b) On the selectivity of WB4101 as an α1 ligand: An autoradiographic study. Neurosci. Lett, (suppl.) 10, S494.

    Google Scholar 

  • UTrichard, D. C, Greenberg, D. A., and Snyder, S. H. (1977) Binding characteristics of a radiolabeled agonist and antagonist at central nervous system α-noradrenergic receptors. Mol. Pharmacol. 13, 45–473.

    Google Scholar 

  • Vogt, M. (1954) The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. 123, 451–481.

    PubMed  CAS  Google Scholar 

  • Young, W. S., III and Kuhar, M. J. (1978) Opiate Receptor Autoradiography: in vitro Labelling of Tissue Slices, in Characteristics and Function of Opioids (Van Ree, J. M. and Terenius, L. eds.) Elsevier/North Holland Biomedical, Amsterdam.

    Google Scholar 

  • Young, W. S., III and Kuhar, M. J. (1979a) A new method for receptor autoradiography: [3H]-opioid receptors in rat brain. Brain Res. 179, 255–270.

    Article  PubMed  CAS  Google Scholar 

  • Young, W. S., III and Kuhar, M. J. (1979b) Noradrenergic α1 and α2 receptors: Autoradiographic localization. Eur. J. Pharmacol. 59, 317–319.

    Article  PubMed  CAS  Google Scholar 

  • Young, W. S., III and Kuhar, M. J. (1980) Noradrenergic α1 and α2 receptors: Light microscopic autoradiographic localization. Proc. Natl. Acad. Sci. USA 77, 1696–1700.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Humana Press Inc.

About this chapter

Cite this chapter

Unnerstall, J.R. (1987). Localizing the alpha-1 Adrenergic Receptor in the Central Nervous System. In: Ruffolo, R.R. (eds) The alpha-1 Adrenergic Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4582-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4582-7_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8936-4

  • Online ISBN: 978-1-4612-4582-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics