Skip to main content

alpha-1 Adrenergic Receptors in the Central Nervous System

  • Chapter
The alpha-1 Adrenergic Receptors

Part of the book series: The Receptors ((REC))

Abstract

The cell bodies of norepinephrine-containing central neurons are localized in nuclei in the reticular formation of the lower brain stem. These nuclei are labeled A1-A7 (Dahlstrom and Fuxe, 1964), and can be divided into two groups: (1) the lateral tegmental system, innervating the hypothalamus, brainstem, spinal cord, and basal ganglia, and (2) the locus ceruleus (area A6), innervating the neocortex, hippocampus, thalamus, cerebellum, and spinal cord (Moore, 1982; Moore and Card, 1984). Fibers from the lateral tegmental nuclei ascend in the “ventral norepinephrine bundle,” whereas fibers from the locus ceruleus ascend in the “dorsal norepinephrine bundle,” enabling the separate denervation of the hypothalamus and neocortex by appropriately placed lesions. The norepinephrine-containing fibers arborize widely, and a single neuron may innervate a large area of brain. Apart from classical synaptic contacts, noradrenergic neurons also form nonsynaptic varicosities, which may be the anatomical basis for a local hormone-like (“paracrine”) function of norepinephrine (see Beaudet and Descarries, 1978; Mobley and Greengard, 1985); these varicosities are similar to those of the peripheral sympathetic ground plexus (cf. Livett, 1973).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, A. and Jarrott, B. (1984) Deafferentation of the rat hippocampus does not alter the affinity or binding capacity for the α1-adrenoceptor radioligand [125I] BE 2254. Neurosci. Lett. 52, 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian, G. K. and Rogawski, M. A. (1983) The physiological role of α-adrenoceptors in the CNS: New concepts from single cell studies. Trends Pharmacol Sci. 4, 315–317.

    Article  CAS  Google Scholar 

  • Akasu, T., Gallagher, J. P., Nakamura, T., Shinnick-Gallagher, P., and Yoshimura, M. (1985) Noradrenaline hyperpolarization and depolarization in cat vesical parasympathetic neurones. J. Physiol. (Lond.) 361, 165–184.

    PubMed  CAS  Google Scholar 

  • Alphs, L. and Lovenberg, W. (1984) Modulation of rat pineal acetyl-CoA: Arylamine N-acetyltransferase induction by alpha adrenergic drugs. J. Pharmacol. Exp. Ther. 230, 431–437.

    PubMed  CAS  Google Scholar 

  • Ariens, E. J., Simonis, A. M, and van Rossum, J. M. (1964) Drug-Receptor Interaction: Interaction of One or More Drugs with One Receptor System, in Molecular Pharmacology (Ariens, E. J., ed.) Academic, New York.

    Google Scholar 

  • Armstrong-James, M. and Fox. K. (1983) Effects of ionophoresed noradrenaline on the spontaneous activity of neurones in rat primary somatosensory cortex. J. Physiol. (Lond.) 335, 427–447.

    PubMed  CAS  Google Scholar 

  • Atlas, D. and Adler, M. (1981) α-Adrenergic antagonists as possible calcium channel inhibitors. Proc. Natl. Acad. Sci. USA 78, 1237–1241.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod, J. (1974) The pineal gland: A neurochemical transducer. Science 184, 1341–1348.

    Article  PubMed  CAS  Google Scholar 

  • Badger, T. M. and Cicero, T. J. (1977) Norepinephrine-sensitive adenylate cyclase in rat hypothalamus: Effects of adrenergic blockers and narcotics. Res. Commun. Chem. Pathol. Pharmacol. 18, 175–188.

    PubMed  CAS  Google Scholar 

  • Baraban, J. M. and Aghajanian, G. K. (1980a) Suppression of activity of 5-HT neurons in the dorsal raphe by alpha-adrenoceptor antagonists. Neuropharmacology 19, 355–363.

    Article  PubMed  CAS  Google Scholar 

  • Baraban, J. M. and Aghajanian, G. K. (1980b) Suppression of serotonergic neuronal firing by α-adrenoceptor antagonists: Evidence against GABA mediation. Eur. J. Pharmacol. 66, 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Baraban, J. M., Wang, R. Y., and Aghajanian, G. K. (1978) Reserpine suppression of dorsal raphe neuronal firing: Mediation by adrenergic system. Eur. J. Pharmacol. 52, 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Barasi, S. and Roberts, M. H. T. (1975) The effects of cinanserin and phentolamine applied by microiontophoresis in the spinal cord. Br. J. Pharmacol. 54, 237P.

    Google Scholar 

  • Barasi, S. and Roberts, M. H. T. (1971) Responses of motoneurones to electrophoretically applied dopamine. Br. J. Pharmacol. 60, 29–34.

    Google Scholar 

  • Barker, J. L., Crayton, J. W., and Nicoll, R. A. (1977) Noradrenaline and acetylcholine responses of supraoptic neurosecretory cells. J. Physiol. (Lond.) 218, 19–32.

    Google Scholar 

  • Battaglia, G., Shannon, M., Borgundvaag, B., and Titeler, M. (1983) Properties of [3H]prazosin-labelled α1-adrenergic receptors in rat brain and porcine neurointermediate lobe tissue. J. Neurochem. 41, 538–542.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet, A. and Descarries, L. (1978) The monoamine innervation of rat cerebral cortex: Synaptic and nonsynaptic terminals. Neuroscience 3, 851–860.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J. (1981) Phosphatidylinositol hydrolysis: A multifunctional transducing mechanism. Mol. Cell. Endocrinol. 24, 115–140.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J. (1983) The Role of Membrane Phospholipids in Receptor Transducing Mechanisms, in Cell Surface Receptors (Strange, P. G., ed.) Ellis Horwood, Chichester.

    Google Scholar 

  • Berridge, M. J. (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220, 345–360.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., Downes, C. P., and Hanley, M. R. (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587–595.

    PubMed  CAS  Google Scholar 

  • Bevan, P., Bradshaw, C. M., Pun, R. Y. K., Slater, N. T., and Szabadi, E. (1978) Responses of single cortical neurones to noradrenaline and dopamine. Neuropharmacology 17, 611–617.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, P., Bradshaw, C. M., Pun, R. Y. K., Slater, N. T., and Szabadi, E. (1979) The action of microelectrophoretically applied (3,4-dihydroxy-phenylamino)-2-imidazoline (DPI) on single cortical neurones. Br. J. Pharmacol. 65, 701–706.

    PubMed  CAS  Google Scholar 

  • Bevan, P., Bradshaw, C. M., and Szabadi, E. (1977) The pharmacology of adrenergic neuronal responses in the cerebral cortex: Evidence for excitatory α- and inhibitory ß-receptors. Br. J. Pharmacol. 59, 635–641.

    PubMed  CAS  Google Scholar 

  • Bloom, F. E. (1985) Neurohumoral Transmission and the Central Nervous System, in The Pharmacological Basis of Therapeutics 7th Ed. (Goodman Gilman, A., Goodman, L. S., Rall, T. W., and Murad, F., eds.) Macmillan, New York.

    Google Scholar 

  • Blumberg, J. B., Vetulani, J., Stawarz, R. J., and Sulser, F. (1976) The noradrenergic cyclic AMP generating system in the limbic forebrain: Pharmacological characterization in vitro and possible role of limbic noradrenergic mechanisms in the mode of action of antipsychotics. Eur. J. Pharmacol. 37, 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Boakes, R. J., Bradley, P. B., Brookes, N., Candy, J. M., and Wolstencroft, J. H. (1971) Actions of noradrenaline and other sympathomimetic amines and antagonists on neurones in the brain stem of the cat. Br. J. Pharmacol. 41, 462–479.

    PubMed  CAS  Google Scholar 

  • Bradley, P. B., Wolstencroft, J. H., Hosli, L., and Avanzino, G. L. (1966) Neuronal basis for the central actions of chlorpromazine. Nature Lond. 213, 1425–1427.

    Article  Google Scholar 

  • Bradshaw, C. M., Pun, R. Y. K., Slater, N. T., and Szabadi, E. (1981) Comparison of the effects of methoxamine with those of noradrenaline and phenylephrine on single cortical neurones. Br. J. Pharmacol. 73, 47–54.

    PubMed  CAS  Google Scholar 

  • Bradshaw, C. M., Pun, R. Y. K., Slater, N. T., Stoker, M. J., and Szabadi, E. (1983a) Differential antagonistic effects of haloperidol on excitatory responses of cortical neurones to phenylephrine, noradrenaline and dopamine. Evidence for three excitatory catecholamine-sensitive receptors. Neuropharmacology 22, 945–952.

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw, C. M., Sheridan, R. D., and Szabadi, E. (1984a) An investigation of the specificity of prazosin as an α1-adrenoceptor antagonist on single cortical neurones. Br. J. Pharmacol. 81, 47P.

    Google Scholar 

  • Bradshaw, C. M., Sheridan, R. D., and Szabadi, E. (1984b) Neuronal responses to noradrenaline in the cerebral cortex: Evidence against the involvement of α2-adrenoceptors. Br. J. Pharmacol. 82, 453–458.

    PubMed  CAS  Google Scholar 

  • Bradshaw, C. M., Sheridan, R. D., and Szabadi, E. (1985a) The Pharmacology of the Neuronal α-Adrenoceptor in the Cerebral Cortex, in Pharmacology of Adrenoceptors (Szabadi, E., Bradshaw, C. M., and Nahorski, S. R., eds.) Macmillan, Basingstoke.

    Google Scholar 

  • Bradshaw, C. M., Sheridan R. D., and Szabadi, E. (1985b) Excitatory neuronal responses in the cerebral cortex: Involvement of D2 but not D1 dopamine receptors. Br. J. Pharmacol. 86, 483–490.

    PubMed  CAS  Google Scholar 

  • Bradshaw, C. M., Stoker, M. J., and Szabadi, E. (1982) The effect of microelectrophoretically applied Clonidine on single cerebral cortical neurones in the rat: Evidence for interaction with α1-adrenoceptors. Naunyn Schmiedebergs Arch. Pharmacol. 320, 230–231.

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw, C. M., Stoker, M. J., and Szabadi, E. (1983b) Comparison of the neuronal responses to 5-hydroxytryptamine, noradrenaline and phenylephrine in the cerebral cortex: Effects of haloperidol and methysergide. Neuropharmacology 22, 677–685.

    Article  PubMed  CAS  Google Scholar 

  • Brittain, R. P., Jack, D., and Ritchie, A. C. (1970) Recent ß-Adrenoceptor Stimulants, in Advances in Drug Research vol. 5 (Harper, N. J. and Simmonds, A. B., eds.), Academic, London.

    Google Scholar 

  • Brown, D. A. and Caulfield, M. P. (1979) Hyperpolarizing α2-adrenoceptors in rat sympathetic ganglia. Br. J. Pharmacol. 65, 435–445.

    PubMed  CAS  Google Scholar 

  • Brown, D. A. and Dunn, P. M. (1983) Depolarization of rat isolated superior cervical ganglia mediated by ß2-adrenoceptors. Br. J. Pharmacol. 79, 429–439.

    PubMed  CAS  Google Scholar 

  • Brown, E., Kendall, D. A., and Nahorski, S. R. (1984) Inositol phospholipid hydrolysis in rat cerebral cortical slices. I. Receptor characterization. J. Neurochem. 42, 1379–1387.

    Article  PubMed  CAS  Google Scholar 

  • Bylund, D. B. (1981) Interactions of neuroleptic metabolites with dopaminergic, alpha adrenergic and muscarinic cholinergic receptors. J. Pharmacol. Exp. Ther. 217, 81–86.

    PubMed  CAS  Google Scholar 

  • Bylund, D. B. and U’Prichard, D. C. (1983) Characterization of α1- and α2-Adrenergic Receptors, in International Review of Neurobiology vol. 24 (Smythies, J. R. and Bradley, R. J., eds.), Academic, New York.

    Google Scholar 

  • Cahusac, P. M. B. and Hill, R. G. (1983) Alpha-2 adrenergic receptors on neurones in the region of the lateral reticular nucleus of the rat. Neurosci. Lett. 42, 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, I. C. and McKernan, R. M. (1982) Central and peripheral changes in α-adrenoceptors in the rat after chronic tricyclic antidepressants. Br. J. Pharmacol. 75, 100P.

    Google Scholar 

  • Cash, R., Ruberg, M., Raisman, R., and Agid, Y. (1984) Adrenergic receptors in Parkinson’s disease. Brain Res. 322, 269–275.

    Article  PubMed  CAS  Google Scholar 

  • Cederbaum, J. M. and Aghajanian, G. K. (1977) Catecholamine receptors of locus coeruleus neurons: Pharmacological characterization. Eur. J. Pharmacol. 44, 375–386.

    Article  Google Scholar 

  • Chasin, M., Mamrak, F., Samaniego, S. G., and Hess, S. M. (1973) Characteristics of catecholamine and histamine receptor sites mediating accumulation of cyclic adenosine 3′,5′-monophosphate in guinea pig brain. J. Neurochem. 21, 1415–1427.

    Article  PubMed  CAS  Google Scholar 

  • Chasin, M. I., Rivkin, I., Mamrak, F., Samaniego, G., and Hess, S. M. (1971) α- and ß-adrenergic receptors as mediators of accumulation of cyclic adenosine 3′,5′-monophosphate in specific areas of guinea pig brain. J. Biol. Chem. 246, 3037–3041.

    PubMed  CAS  Google Scholar 

  • Cheung, Y., Nahorski, S. R., Rhodes, K. F., and Waterfall, J. F. (1984) Studies of the α2-adrenoceptor affinity and the α2- and α1-adrenoceptor selectivity of some substituted benzoquinolizines using receptor-binding techniques. Biochem. Pharmacol. 33, 1566–1568.

    Article  PubMed  CAS  Google Scholar 

  • Closse, A., Frick, W., Dravid, A., Bolliger, G., Hauser, D., Sauter, A., and Tobler, H.-J. (1984) Classification of drugs according to receptor binding profiles. Naunyn Schmiedebergs Arch. Pharmacol. 327, 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Creese, I. (1983) Receptor Interactions of Neuroleptics, in Neuroleptics: Neurochemical, Behavioral, and Clinical Perspectives (Coyle, J. T., and Enna, S. J., eds.), Raven, New York.

    Google Scholar 

  • Curtis, D. R. and Davis, R. (1962) Pharmacological studies upon neurones of the lateral geniculate nucleus of the cat. Br. J. Pharmacol. 18, 217–246.

    CAS  Google Scholar 

  • Dahl, J. L. and Kokin, L. E. (1974) The sodium-potassium adenosinetriphosphatase. Ann. Rev. Biochem. 43, 327–356.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, S. G. and Hall, H. (1981) Binding affinity of levomepromazine and two of its major metabolites to central dopamine and α-adrenergic receptors in the rat. Psychopharmacology 74, 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrom, A. and Fuxe, K. (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. (suppl.) 232, 1–55.

    Google Scholar 

  • Daly, J. W. (1977) The Role of Cyclic Nucleotides in the Nervous System Plenum, New York.

    Google Scholar 

  • Daly, J. W., Padgett, W., Creveling, C. R., Cantacuzene, D., and Kirk, K. L. (1981) Cyclic AMP-generating systems: Regional differences in activation by adrenergic receptors in rat brain. J. Neurosci. 1, 49–59.

    PubMed  Google Scholar 

  • Daly, J. W., Padgett, W., Nimitkitpaisan, Y., Creveling, C. R., Cantacuzene, D., and Kirk, K. L. (1980) Fluoronorepinephrines: Specific agonists for the activation of alpha and beta adrenergic-sensitive cyclic AMP-generating systems in brain slices. J. Pharmacol. Exp. Ther. 212, 382–389.

    PubMed  CAS  Google Scholar 

  • Daly, J. W., McNeal, E. T., and Creveling, C. R. (1979) Accumulation of cyclic AMP in Brain Tissue: Role of H1-and H2-Histamine Receptors, in Histamine Receptors (Yellin, T. O., ed.) Spectrum, Jamaica, New York.

    Google Scholar 

  • Dausse, J.-P., Le Quan-Bui, K. H., and Meyer, P. (1982) α1- and α2-adrenoceptors in rat cerebral cortex: Effects of neonatal treatment with 6-hydroxydopamine. Eur. J. Pharmacol. 78, 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Davis, J. N., Arnett, C. D., Hoyler, E., Stalvey, L. P., Daly, J. W., and Skolnick, P. (1978) Brain a-adrenergic receptors: Comparison of [3H] WB 4101 binding with norepinephrine-stimulated cyclic AMP accumulation in rat cerebral cortex. Brain Res. 159, 125–135.

    Article  PubMed  CAS  Google Scholar 

  • Day, T. A. and Renaud, L. P. (1984) Electrophysiological evidence that noradrenergic afferents selectively facilitate the activity of supraoptic vasopressin neurons. Brain Res. 303, 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Deguchi, T. and Axelrod, J. (1972) Control of circadian change of serotonin N-acetyltransferase activity in the rat pineal organ by beta-adrenergic receptors. Proc. Natl. Acad. Sci. USA 69, 2547–2550.

    Article  PubMed  CAS  Google Scholar 

  • de Jonge, A., Timmermans, P. B. M. W. M., and Van Zwieten, P. A. (1983) Quantitative aspects of alpha adrenergic effects induced by Clonidine-like imidazolidines. III. Comparison of central and peripheral alpha-1 and alpha-2 adrenoceptors. J. Pharmacol. Exp. Ther. 226, 565–571.

    PubMed  Google Scholar 

  • Dolphin, A., Hamont, M., and Bockaert, J. (1979) The resolution of dopamine and ß1- and ß2-adrenergic-sensitive adenylate cyclase activities in homogenates in cat cerebellum, hippocampus and cerebral cortex. Brain Res. 179, 305–319.

    Article  PubMed  CAS  Google Scholar 

  • Doxey, J. C., Howlett, D. R., and Roach, A. G. (1981) Assessment of the α1-adrenoceptor selectivity of WB 4101: A comparison with prazosin and phentolamine. Br. J. Pharmacol. 74, 262–263P.

    Google Scholar 

  • Doxey, J. C., Lane, A. C., Roach, A. G., Smith, C. F. C., and Walter, D. S. (1985) Selective α2-Adrenoceptor Agonists and Antagonists, in Pharmacology of Adrenoceptors (Szabadi, E., Bradshaw, C. M., and Nahorski, S. R., eds.) Macmillan, Basingstoke.

    Google Scholar 

  • Drouva, S. V., Laplante, E., and Kordon, C. (1982) α1-Adrenergic receptor involvement in the LH surge in ovariectomized estrogen-primed rats. Eur. J. Pharmacol. 81, 341–344.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V., Proctor, V. R., and Mueller, A. L. (1985) Pharmacology of Hippocampal Adrenoceptors, in In Vitro Brain Slice Preparations, in Pharmacology of Adrenoceptors (Szabadi, E., Bradshaw, C. M., and Nahorski, S. R., eds.) Macmillan, Basingstoke.

    Google Scholar 

  • Ebersolt, C., Perez, M., and Bockaert, J. (1981) α2Adrenergic receptors in mouse brain astrocytes from primary cultures. J. Neurosci. Res. 6, 643–652.

    Article  PubMed  CAS  Google Scholar 

  • Egan, T. M., Henderson, G., North, R. A., and Williams, J. T. (1983) Noradrenaline-mediated synaptic inhibition in rat locus coeruleus neurones. J. Physiol. (Lond.) 345, 477–488.

    PubMed  CAS  Google Scholar 

  • Eichberg, J., Shein, H., Schwartz, M., and Hauser, G. (1973) Stimulation of 32Pi incorporation into phosphatidylinositol and phosphatidylglycerol by catecholamines and ß-adrenergic receptor blocking agents in rat pineal organ cultures. J. Biol. Chem. 248, 3615–3622.

    PubMed  CAS  Google Scholar 

  • Engel, G. and Hoyer, D. (1981) [125I] BE 2254, a new high affinity radioligand for α1-adrenoceptors. Eur. J. Pharmacol. 73, 221–224.

    Article  PubMed  CAS  Google Scholar 

  • Exton, J. H. (1981) Mechanisms Involved in α-Adrenergic Effects of Catecholamines, in Neurotransmitter Receptors vol. I (Kunos, G., ed.) Wiley, New York.

    Google Scholar 

  • Fain, J. N., Litosch, I., and Wallace, M. (1985) α1-Adrenoceptor Activation of Phosphinositide Breakdown and Elevation of Intracellular Ca + +, in Pharmacology of Adrenoceptors (Szabadi, E., Bradshaw, C. M., and Nahorski, S. R., eds.) Macmillan, Basingstoke.

    Google Scholar 

  • Ferrendelli, J. A. (1975) Role of Cyclic GMP in the Function of the Central Nervous System, in Cyclic Nucleotides in Disease (Weiss, B., ed.) University Park Press, Baltimore.

    Google Scholar 

  • Ferrendelli, J. A., Kinscherf, D. A., and Chang, M.-M. (1975) Comparison of the effects of biogenic amines on cyclic GMP and cyclic AMP levels in mouse cerebellum in vitro. Brain. Res. 84, 63–73.

    Article  PubMed  CAS  Google Scholar 

  • Ferron, A., Descarries, L., and Reader, T. A. (1982) Altered neuronal responsiveness to biogenic amines in rat cerebral cortex after serotonin denervation or depletion. Brain Res. 231, 93–108.

    Article  PubMed  CAS  Google Scholar 

  • Fleetwood-Walker, S. M., Hope, P. J., Iggo, A., Mitchell, R., and Molony, V. (1983) Characterization of receptors mediating the selective effect of noradrenaline on cutaneous sensory responses of identtified dorsal horn neurones in the cat. J. Physiol. (Lond.) 343, 67–68P.

    Google Scholar 

  • Forn, J., Krueger, B. K., and Greengard, P. (1974) Adenosine 3′,5′-monophosphate content in rat caudate nucleus: Demonstration of dopaminergic and adrenergic receptors. Science 186, 1118–1119.

    Article  PubMed  CAS  Google Scholar 

  • Frederickson, R. A. C., Jordan, L. M., and Phillis, J. W. (1971) The action of noradrenaline on cortical neurones: Effect of pH. Brain Res. 35, 556–560.

    Article  PubMed  CAS  Google Scholar 

  • Freedman, J. E. and Aghajanian, G. K. (1984) Idazoxan (RX 781094) selectively antagonizes α2-adrenoceptors on central neurons. Eur. J. Pharmacol. 105, 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Friedel, R. O., Johnson, J. R., and Schanberg, S. M. (1973) Effects of sympathomimetic drugs on incorporation in vivo of intracisternally injected 32Pi into phospholipids of rat brain. J. Pharmacol. Exp. Ther. 184, 583–589.

    PubMed  CAS  Google Scholar 

  • Fung, S. J. and Barnes, C. D. (1981) Evidence of facilitatory coerulospinal action in lumbar motoneurones of cats. Brain Res. 216, 299–311.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R. F. (1972) The Classification of Adrenoceptors (Adrenergic Receptors). An Evaluation from the Standpoint of Receptor Theory, in Handbook of Experimental Pharmacology vol. 33 Catecholamines (Blaschko, H. and Muscholl, E., eds.) Springer Verlag, Berlin.

    Google Scholar 

  • Ganong, W. F. (1983) Relation of central α-adrenoceptor and other receptors to the control of renin secretion. Chest 83 (suppl.), 299–302.

    PubMed  CAS  Google Scholar 

  • Geller, H. M. and Hoffer, B. J. (1977) Effect of calcium removal and monoamine-elicited depressions of cultured tuberal neurones. J. Neurobiol. 8, 43–55.

    Article  PubMed  CAS  Google Scholar 

  • Gheyouche, R., Le Fur, G., Colotte, O., Burgevin, M. C., and Uzan, A. (1980) J. Pharm. Pharmacol. 32, 366–368.

    Article  PubMed  CAS  Google Scholar 

  • Giron, L. T. Jr., McCann, S. A., and Crist-Orlando, S. G. (1985) Pharmacological characterization and regional distribution of α-noradrenergic binding sites of rat spinal cord. Eur. J. Pharmmacol. 115, 285–290.

    Article  CAS  Google Scholar 

  • Glossmann, H. and Hornung, R. (1980a) α-Adrenoceptors in rat brain: Sodium changes the affinity of agonists for prazosin sites. Eur. J. Pharmacol. 61, 407–408.

    Article  PubMed  CAS  Google Scholar 

  • Glossmann, H. and Hornung, R. (1980b) Sodium ions increase the affinity of Clonidine for α1-adrenoceptors in rat brain. Naunyn Schmiedebergs Arch. Pharmacol. 312, 105–106.

    Article  CAS  Google Scholar 

  • Glossmann, H., Lubbecke, F., and Bellemann, P. (1981) [125I] HEAT, A Selective, High Specific Activity Ligand for α1-Adrenoceptors Naunyn Schmiedebergs Arch. Pharmacol. 318, 1–9.

    CAS  Google Scholar 

  • Gonzales, R. A., Feldstein, J. B., Crews, F. T., and Raizada, M. K. (1985) Receptor-mediated inositide hydrolysis is a neuronal response: Comparison of primary neuronal and glial cultures. Brain Res. 345, 350–355.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, L. H. and Weiss, B. (1984) Neural and Hormonal Modulation of Adrenergic Receptors in Aging, in Modern Aging Research Series, Volume 6: Altered Endocrine Status During Aging (Cristofalo, V. J., Baker, III, G. T., Adelman, R. C., and Roberts, J., eds.) Liss, New York.

    Google Scholar 

  • Greengrass, P. and Bremner, R. (1979) Binding characteristics of prazosin to rat brain alpha-adrenergic receptors. Eur. J. Pharmacol. 55, 323–326.

    Article  PubMed  CAS  Google Scholar 

  • Gross, G., Brodde, O.-E., and Schumann, H.-J. (1981) Regulation of α1-adrenoceptors in the cerebral cortex of the rat by thyroid hormones. Naunyn Schmiedebergs Arch. Pharmacol. 316, 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Haga, T. and Haga, K. (1980) Characterization of alpha-adrenergic receptor subtypes in rat brain: Estimation of ability of adrenergic ligands to displace 3H-dihydroergocryptine from receptor subtype. Life Sci. 26, 211–218.

    Article  PubMed  CAS  Google Scholar 

  • Haidamous, M., Kouyoumdjian, J. C., Briley, P. A., and Gonnard, P. (1980) In vivo effects of noradrenaline and noradrenergic receptor agonists and antagonists on rat cerebellar cyclic GMP levels. Eur. J. Pharmacol. 63, 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, C. A. and Reid, J. L. (1985) The effects of phenoxybenzamine on specific binding and function of central α-adrenoceptors in the rabbit. Brain. Res. 344, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Harris, J. E. (1976) Beta-adrenergic receptor-mediated adenosine cyclic 3′,5′-monophosphate accumulation in the rat corpus striatum. Mol. Pharmacol. 12, 546–558.

    PubMed  CAS  Google Scholar 

  • Hartley, E. J. and Seeman, P. (1983) Development of receptors for dopamine and noradrenaline in rat brain. Eur. J. Pharmacol. 91, 391–397.

    Article  PubMed  CAS  Google Scholar 

  • Häuser, G. and Smith, T. L. (1981) Characteristics of the norepinephrine stimulated phosphatidylinositol turnover in rat pineal cell dispersions. Neurochem. Res. 6, 1067–1079.

    Article  PubMed  Google Scholar 

  • Häuser, G., Kirk, K. K., and Parks, J. M. (1983) Differential effects of fluoro-norepinephrines on phosphatidylinositol turnover in rat pinealocytes. J. Neurochem. 41, 1196–1199.

    Article  PubMed  Google Scholar 

  • Häuser, G., Shein, H. M., and Eichberg, J. (1974) Relationship of α-adrenergic receptors in rat pineal gland to drug-induced stimulation of phospholipid metabolism. Nature 252, 482–483.

    Article  PubMed  Google Scholar 

  • Heal, D. J. (1984) Phenylephrine-induced activity in mice as a model of central α1-adrenoceptor function: Effects of acute and repeated administration of antidepressant drugs and electroconvulsive shock. Neuropharmacology 23, 1241–1251.

    Article  PubMed  CAS  Google Scholar 

  • Hicks, T. P. and McLennan, H. (1978) Actions of octopamine upon dorsal horn neurones of the spinal cord. Brain. Res. 157, 402–406.

    Article  PubMed  CAS  Google Scholar 

  • Hieble, J. P., Sarau, H. M., Foley, J. J., Demarinis, R. M., and Pendleton, R. G. (1982) Comparison of central and peripheral alphax-adrenoceptors. Naunyn Schmiedebergs Arch. Pharmacol. 318, 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, H., Slater, N. T., and Kimelberg, H. K. (1983) α-Adrenergic receptor-mediated depolarization of rat neocortical astrocytes in primary culture. Brain Res. 270, 358–362.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, B. B. and Lefkowitz, R. J. (1980) [3H] WB 4101—caution about its role as an alpha-adrenergic subtype selective radioligand. Biochem. Pharmacol. 29, 1537–1541.

    Article  PubMed  CAS  Google Scholar 

  • Hokin, L. E. (1985) Receptors and phosphoinositide-generated second messengers. Ann. Rev. Biochem. 54, 205–235.

    Article  PubMed  CAS  Google Scholar 

  • Hokin, M. R. (1969) Effect of norepinephrine of 32P-incorporation into individual phosphatides in slices from different areas of guinea pig brain. J. Neurochem. 16, 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Honda, K., Takenada, T., Miyata-Osawa, A., Terai, M., and Shiono, K. (1985) Studies on YM-12617: A selective and potent antagonist of postsynaptic alpha-1 adrenoceptors. Naunyn Schmiedebergs Arch. Pharmacol. 328, 264–272.

    Article  PubMed  CAS  Google Scholar 

  • Horn, A. S. and Phillipson, O. T. (1976) A noradrenaline sensitive adenylate cyclase in the rat limbic forebrain: Preparation, properties and the effects of agonists, adrenolytics and neuroleptic drugs. Eur. J. Pharmacol. 37, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Hornung, R., Presek, P., and Glossmann, H. (1979) Alpha adrenoceptors in rat brain: Direct identification with prazosin. Naunyn Schmiedebergs Arch. Pharmacol. 308, 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Hosli, E. and Hosli, L. (1982) Evidence for the existence of α- and ß-adrenoceptors on neurones and glial cells of cultured rat central nervous system—an autoradiographic study. Neuroscience 7, 2873–2881.

    Article  PubMed  CAS  Google Scholar 

  • Hosli, L., Hosli, E., Zehntner, C., Lehman, R., and Lutz, T. W. (1982) Evidence for the existence of α- and ß-adrenoceptors on cultured glia cells—an electrophysiological study. Neuroscience 11, 2867–2872.

    Article  Google Scholar 

  • Hruska, R. E. and Silbergeld, E. K. (1981) Inhibition of neurotransmitter receptor binding by ergot derivatives. J. Neurosci. Res. 6, 1–11.

    Article  CAS  Google Scholar 

  • Hu, H. Y., Davis, J. M., and Pandey, G. N. (1981) Characterization of alpha-adrenergic receptors in guinea pig cerebral cortex: Effect of chronic antidepressant treatments. Psychopharmacology 74, 201–203.

    Article  PubMed  CAS  Google Scholar 

  • Huang, M., Ho, A. K. S., and Daly, J. W. (1973) Accumulation of adenosine cyclic 3′,5′-monophosphate in rat cerebral cortical slices: Stimulatory effect of alpha and beta adrenergic agents after treatment with 6-hydroxy-dopamine, 2,3,5-trihydroxyphenethylamine and dihydroxytrypta-mines. Mol. Pharmacol. 9, 711–717.

    PubMed  CAS  Google Scholar 

  • Huang, M., Shimizu, H., and Daly, J. W. (1971) Regulation of adenosine cyclic 3′,5′-phosphate formation in cerebral cortical slices. Interaction among norepinephrine, histamine, serotonin. Mol. Pharmacol. 7, 155–162.

    PubMed  CAS  Google Scholar 

  • Huchet, A.-M., Huguet, F., Ostermann, G., Bakri-Logeais, F., Schmitt, H., and Narcisse, G. (1983) Central α1-adrenoceptors and cardiovascular control in normotensive and spontaneously hypertensive rats. Eur. J. Pharmacol. 95, 207–213.

    Article  PubMed  CAS  Google Scholar 

  • Janowsky, A., Labarca, R., and Paul, S. M. (1984a) Characterization of neurotransmitter-mediated phosphatidylinositol hydrolysis in the rat hippocampus. Life Sci. 35, 1953–1961.

    Article  PubMed  CAS  Google Scholar 

  • Janowsky, A., Labarca, R., and Paul, S. M. (1984b) Noradrenergic denervation increases α1-adrenoceptor-mediated inositol-phosphate accumulation in the hippocampus. Eur. J. Pharmacol. 102, 193–194.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. S., Roberts, M. H. T., Sobieszek, A., and Straughan, D. W. (1969a) Noradrenaline sensitive cells in cat cerebral cortex. Int. J. Neuropharmacol. 8, 549–566.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. S., Roberts, M. H. T., and Straughan, D. W. (1969b) The responses of cortical neurones to monoamines under differing anaesthetic conditions. J. Physiol, Lond. 203, 261–280.

    PubMed  CAS  Google Scholar 

  • Johnson, R. D. and Minneman, K. P. (1985) α1-Adrenergic receptors and stimulation of [3H] inositol metabolism in rat brain: Regional distribution and parallel inactivation. Brain Res. 341, 7–15.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. J. and Ademe, R. M. (1985) Characterization of α-Adrenoceptors in Spinal Cord, in Pharmacology of Adrenoceptors (Szabadi, E., Bradshaw, C. M., and Nahorski, S. R., eds.) Macmillan, Basingstoke.

    Google Scholar 

  • Jones, D. J. and McKenna, L. F. (1980a) Norepinephrine-stimulated cyclic AMP formation in rat spinal cord. J. Neurochem. 34, 467–469.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. J. and McKenna, L. F. (1980b) Alpha adrenoceptor mediated formation of cyclic AMP in rat spinal cord. J. Cyclic Nucleotide Res. 6, 133–141.

    PubMed  CAS  Google Scholar 

  • Jones, D. J., Kendall, D. E., and Enna, S. J. (1982) Adrenergic receptors in rat spinal cord. Neuropharmacology 21, 191–195.

    Article  PubMed  Google Scholar 

  • Jones, L. S., Gauger, L. L., and Davis, J. N. (1983) Brain α1-adrenergic receptors: Suitability of [125I] HEAT as a radioligand for in vitro autoradiography. Eur. J. Pharmacol. 93, 291–292.

    Article  PubMed  CAS  Google Scholar 

  • Jones, L. S., Gauger, L. L., and Davis, J. N. (1985a) Anatomy of brain alpharadrenergic receptors: In vitro autoradiography with [I] HEAT. J. Comp. Neurol. 231, 190–208.

    Article  PubMed  CAS  Google Scholar 

  • Jones, L. S., Gauger, L. L., Davis, J. N., Slotkin, T. A., and Bartolome, J. V. (1985b) Postnatal development of brain alpharadrenergic receptors: In vitro autoradiography with [125I] HEAT in normal rats and rats treated with alpha-difluoromethylornithine, a specific, irreversible inhibitor of ornithine decarboxylase. Neuroscience 15, 1195–1202.

    Article  PubMed  CAS  Google Scholar 

  • Jones, L. S., Miller, G., Gauger, L. L., and Davis, J. N. (1985c) Regional distribution of rat brain alpha1-adrenergic receptors: Correlation between [125I] -HEAT membrane binding and in vitro autoradiography. Life. Sci. 36, 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Kafka, M. S., Wirz-Justice, A., and Naber, D. (1981) Circadian and seasonal rhythms in α- and ß-adrenergic receptors in the rat brain. Brain. Res. 207, 409–419.

    Article  PubMed  CAS  Google Scholar 

  • Kehne, J. H., Gallager, D. W., and Davis, M. (1985) Spinalization unmasks Clonidine’s α1-adrenergic mediated excitation of the flexor reflex in rats. J. Neurosci. 5, 1583–1590.

    PubMed  CAS  Google Scholar 

  • Kendall, D. A., Brown, E., and Nahorski, S. R. (1985) α1-Adrenoceptor-mediated inositol phospholipid hydrolysis in rat cerebral cortex: Relationship between receptor occupancy and response and effects of denervation. Eur. J. Pharmacol. 114, 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Kinscherf, D. A., Chang, M.-M., Rubin, E. H., Schneider, D. R., and Ferrendelli, J. A. (1976) Comparison of the effects of depolarizing agents and neurotransmitters on regional CNS cyclic GMP levels in various animals. J. Neurochem. 26, 527–530.

    Article  PubMed  CAS  Google Scholar 

  • Klein, D. C., Sugden, D., and Weiler, J. L. (1983) Postsynaptic alpha adrenergic receptors potentiate the beta adrenergic stimulation of pineal serotonin N-acetyltransferase. Proc. Natl. Acad. Sci. USA 80, 599–603.

    Article  PubMed  CAS  Google Scholar 

  • Kodama, T., Matsukado, Y., and Shimizu, H. (1973) The cyclic AMP system of human brain. Brain Res. 50, 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Kotake, C., Hoffmann, P. C., Goldberg, L. I., and Cannon, J. B. (1981) Comparison of the effects of dopamine and beta-adrenergic agonists on adenylate cyclase of renal glomeruli and striatum. Mol. Pharmacol. 20, 429–434.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K. (1984) Monoamine Receptors in Cortex: An Introduction, in Monoamine Innervation of Cerebral Cortex (Descarries, L., Reader, T. R., and Jasper, H. H. ed.) Liss, New York.

    Google Scholar 

  • Lane, A. C. and Walter, D. W. (1984) Sodium ions increase the affinity of idazoxan for central α1-binding sites labelled by [3H]prazosin. Br. J. Pharmacol. 83, 422P.

    Google Scholar 

  • Langer, S. Z. (1980) Presynaptic regulation of the release of catecholamines. Pharmacol. Rev. 32, 337–363.

    PubMed  CAS  Google Scholar 

  • Langer, S. Z., Massingham, R., and Shepperson, N. B. (1980) In vivo α-adrenoceptor selectivity of WB 4101: A widely used α1-adrenoceptor ligand. Br. J. Pharmacol. 70, 60P.

    Google Scholar 

  • Lavin, T. N., Hoffman, B. B., and Lefkowitz, R. J. (1981) Determination of subtype selectivity of alpha-adrenergic antagonists: Comparison of selective and nonselective radioligands. Mol. Pharmacol. 20, 28–34.

    PubMed  CAS  Google Scholar 

  • Leblanc, G. G. and Ciaranello, R. D. (1984) α-Noradrenergic potentiation of neurotransmitter-stimulated cAMP production in rat striatal slices. Brain. Res. 293, 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Liang, C. T. and Sacktor, B. (1978) The stimulation by catecholamines of guanylate cyclase activity in a cell-free system. J. Cyclic Nucleotide Res. 4, 97–111.

    PubMed  CAS  Google Scholar 

  • Livett, B. (1973) Histochemical visualization of adrenergic neurones. Br. Med. Bull. 29, 93–109.

    PubMed  CAS  Google Scholar 

  • Magistretti, P. J. and Schorderet, M. (1984) VIP and noradrenaline act synergistically to increase cyclic AMP in cerebral cortex. Nature 308, 280–282.

    Article  PubMed  CAS  Google Scholar 

  • Magistretti, P. J. and Schorderet, M. (1985) Norepinephrine and histamine potentiate the increase in cyclic adenosine 3′,5′-monophosphate elicited by vasoactive intestinal polypeptide in mouse cerebral cortical slices: Mediation by α1-adrenergic and H1-histaminergic receptors. J. Neurosci. 5, 362–368.

    PubMed  CAS  Google Scholar 

  • Maj, J., Przegalinski, E., and Mogilnicka, E. (1984) Hypotheses concerning the mechanism of action of antidepressant drugs. Rev. Physiol. Biochem. Pharmacol. 100, 1–74.

    PubMed  CAS  Google Scholar 

  • Marshall, K. C. (1983) Catecholamines and Their Actions in the Spinal Cord, in Handbook of the Spinal Cord vol. 1 Pharmacology (Davidoff, R. A., ed.) Marcel Dekker, New York.

    Google Scholar 

  • Marwaha, J. and Aghajanian, G. K. (1982a) Relative potencies of alpha -1 and alpha-2 antagonists in the locus coeruleus, dorsal raphe and dorsal lateral geniculate nuclei an electrophysiologcal study. J. Pharmacol. Exp. Ther. 222, 287–293.

    PubMed  CAS  Google Scholar 

  • Marwaha, J. and Aghajanian, G. K. (1982b) Typical and atypical neuroleptics are potent antagonists at α1-adrenoceptors of the dorsal lateral geniculate nucleus. Naunyn Schmiedebergs Arch. Pharmacol. 321, 32–37.

    Article  PubMed  CAS  Google Scholar 

  • McCall, R. B. and Humphrey, S. J. (1981) Evidence for a central depressor action of postsynaptic α1-adrenergic receptor antagonists. J. Auton. Nerv. Syst. 3, 9–23.

    Article  PubMed  CAS  Google Scholar 

  • McPherson, G. A. and Beart, P. M. (1983) The selectivity of some ergot derivatives for α1- and α2-adrenoceptors of rat cerebral cortex. Eur. J. Pharmacol. 91, 363–369.

    Article  PubMed  CAS  Google Scholar 

  • Menkes, D. B. and Aghajanian, G. K. (1981) α1-Adrenoceptor-mediated responses in the lateral geniculate nucleus are enhanced by chronic antidepressant treatment. Eur. J. Pharmacol. 74, 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Menkes, D. B., Aghajanian, G. K., and Gallager, D. W. (1983a) Chronic antidepressant treatment enhances agonist affinity of brain α1-adrenoceptors. Eur. J. Pharmacol. 87, 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Menkes, D. B., Gallager, D. W., Reinhard, J. F., and Aghajanian, G. K. (1983b) α1-adrenoceptor denervation supersensitivity in brain: Physiological and receptor binding studies. Brain Res. 272, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Menkes, D. B., Baraban, J. M., and Aghajanian, G. K. (1981) Prazosin selectively antagonizes neuronal responses mediated by α1-adrenoceptors in brain. Naunyn Schmiedebergs Arch. Pharmacol. 317, 273–275.

    Article  PubMed  CAS  Google Scholar 

  • Miach, J. P., Dausse, J.-P., Cardot, A., and Meyer, P. (1980) 3H-Prazosin binds speccifically to ′α1′-adrenoceptors in rat brain. Naunyn Schmiedebergs Arch. Pharmacol. 312, 23–26.

    Article  PubMed  CAS  Google Scholar 

  • Miach, P. J., Dausse, J.-P., and Meyer, P. (1978) Direct biochemical demonstration of two types of α-adrenoceptor in rat brain. Nature 274, 492–494.

    Article  PubMed  CAS  Google Scholar 

  • Minneman, K. P. (1983a) Phenoxybenzamine is more potent in inactivating α1- than α2-adrenergic receptor binding sites. Eur. J. Pharmacol. 94, 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Minneman, K. P. (1983b) Binding properties of alpha-1 adrenergic receptors in rat cerebral cortex: Similarity to smooth muscle. J. Pharmacol. Exp. Ther. 227, 605–612.

    PubMed  CAS  Google Scholar 

  • Minneman, K. P. and Johnson, R. D. (1984) Characterization of alpha-1 adrenergic receptors linked to [3H] inositol metabolism in rat cerebral cortex. J. Pharmacol. Exp. Ther. 230, 317–323.

    PubMed  CAS  Google Scholar 

  • Mobley, P. and Greengard, P. (1985) Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex. Proc. Natl. Acad. Sci. USA 82, 945–947.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y. (1982) Catecholamine neuron systems in brain. Ann. Neurol. 12, 321–327.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y. and Card, P. J. (1984) Noradrenaline-Containing Neuron Systems, in Handbook of Chemical Neuroanatomy vol. 2 Classical Transmitters in the CNS part I (Bjorklund, A., and Hokfelt, T., eds.) Elsevier, Amsterdam.

    Google Scholar 

  • Moore, S. D. and Guyenet, P. G. (1983) Alpha-receptor mediating inhibition of A2 noradrenergic neurons. Brain Res. 276, 188–191.

    Article  PubMed  CAS  Google Scholar 

  • Morris, M. J., Elghozi, J.-L., Dausse, J.-P., and Meyer, P. (1981) α1- and α2-adrenoceptors in rat cerebral cortex: Effect of frontal lobotomy. Naunyn Schmiedebergs Arch. Pharmacol. 316, 42–44.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, A. L. and Creese, I. (1986) Characterization of α1-adrenergic receptor subtypes in rat brain: A revaluation of [3H]WB4101 and [3H]prazosin binding. Mol. Pharmacol 29, 321–330.

    PubMed  CAS  Google Scholar 

  • Nagatomo, T., Tsuchihashi, H., Sasaki, S., Nakagawa, Y., Nakahara, H., and Imai, S. (1985) Displacement by α-adrenergic agonists and antagonists of 3H-prazosin bound to α-adrenoceptors of the dog aorta and the rat brain. Jap. J. Pharmacol. 37, 181–187.

    Article  CAS  Google Scholar 

  • Nakamura, T., Yoshimura, M., Shinnick-Gallagher, B., Gallagher, J. P., and Akasu, T. (1984) α2 and α1-adrenoceptors mediate opposing actions on parasympathetic neurons. Brain Res. 323, 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Nahorski, S. R., Carswell, H., and Bojanic, D. (1985) Biochemical and Pharmacological Approaches to ß-Adrenoceptor Subclassification, in Pharmacology of Adrenoceptors (Szabadi, E., Bradshaw, C. M., and Nahorski, S. R., eds.) Macmillan, Basingstoke.

    Google Scholar 

  • Nahorski, S. R., Rogers, K. J., Smith, B. M., and Anson, J. (1975) Characterisation of the adrenoceptor mediating changes in cyclic adenosine 3′-5′ monophosphate in chick cerebral hemispheres. Naunyn Schmiedebergs Arch. Pharmacol. 291, 101–110.

    Article  PubMed  CAS  Google Scholar 

  • Nijjar, M. S., Smith, T. L., and Hauser, G. (1980) Evidence against dopaminergic and further support for a-adrenergic receptor involvement in the pineal phosphatidylinositol effect. J. Neurochem. 34, 813–821.

    Article  PubMed  CAS  Google Scholar 

  • Norman, A. B., Battaglia, G., Morrow, A. L., and Creese, I. (1984) [3H] WB 4101 labels S1 serotonin receptors in rat cerebral cortex. Eur. J. Pharmacol. 106, 461–462.

    Article  PubMed  CAS  Google Scholar 

  • North, R. A. and Yoshimura, M. (1984) The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro. J. Physiol. (Lond.) 349, 43–55.

    PubMed  CAS  Google Scholar 

  • Ohga, Y. and Daly, J. W. (1977a) The accumulation of cyclic AMP and cyclic GMP in guinea pig brain slices. Effect of calcium ions, norepinephrine and adenosine. Biochem. Biophys. Acta 498, 46–60.

    PubMed  CAS  Google Scholar 

  • Ohga, Y. and Daly, J. W. (1977b) Calcium ion-elicited accumulations of cyclic GMP in guinea pig cerebellar slices. Biochem. Biophys. Acta 498, 61–75.

    PubMed  CAS  Google Scholar 

  • O’Neill, T. P. and Haigler, H. J. (1982) Characteristics of adrenoceptors in a nociceptive pathway in the reticular formation of the rat. J. Pharmacol. Exp. Ther. 222, 555–561.

    PubMed  Google Scholar 

  • Palacios, J. M. and Wamsley, J. K. (1984) Catecholamine Receptors, in Handbook of Chemical Neuroanatomy vol. 3 Classical Transmitters and Transmitter Receptors in the CNS part II (Bjorklund, A., Hokfelt, T., and Kuhar, M. J., eds.) Elsevier, Amsterdam.

    Google Scholar 

  • Palmer, G. C., Sulser, F., and Robison, G. A. (1973) Effects of neurohumoral and adrenergic agents on cyclic AMP levels in various areas of the rat brain in vitro. Neuropharmacology 12, 327–337.

    Article  PubMed  CAS  Google Scholar 

  • Partington, C. R. and Daly, J. W. (1979) Effect of gangliosides on adenylate cyclase activity in rat cerebral cortical membranes. Mol. Pharmacol. 15, 484–491.

    PubMed  CAS  Google Scholar 

  • Perkins, J. P. and Moore, M. M. (1973) Characterization of the adrenergic receptors mediating a rise in cyclic 3′-5′-adenosine monophosphate in rat cerebral cortex. J. Pharmacol. Exp. Ther. 185, 371–378.

    PubMed  CAS  Google Scholar 

  • Perkins, J. P., Moore, M. M., Klisker, A., and Su, Y-F. (1975) Regulation of cyclic AMP content in normal and malignant brain cells. Adv. Cyclic Nucleotide Res. 5, 641–660.

    PubMed  CAS  Google Scholar 

  • Peroutka, S. J. and Snyder, S. H. (1981) Interactions of Antidepressants with Neurotransmitter Receptor Sites, in Antidepressants: Neurochemical, Behavioral, and Clinical Perspectives (Enna, S. J., Malick, J. B., and Richelson, E., eds.), Raven, New York.

    Google Scholar 

  • Phillis, J. W. and Kostopoulos, G. K. (1977) Activation of a noradrenergic pathway from the brain stem to rat cerebral cortex. Gen. Pharmacol. 8, 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W., Tebecis, A. K., and York, D. H. (1967) The inhibitory action of monoamines on lateral geniculate neurones. J. Physiol. (Lond.) 190, 563–581.

    PubMed  CAS  Google Scholar 

  • Pichler, L. and Kobinger, W. (1981) Modulation of motor activity by α1- and α2-adrenoceptor stimulation in mice. Naunyn Schmiedebergs Arch. Pharmacol. 317, 180–182.

    Article  PubMed  CAS  Google Scholar 

  • Pichler, L. and Kobinger, W. (1985) Possible function of α1-adrenoceptors in the CNS in anaesthetized and conscious animals. Eur. J. Pharmacol. 107, 305–311.

    Article  PubMed  CAS  Google Scholar 

  • Pilc, A. and Enna, S. J. (1985) Synergistic interactions between α- and ß-adrenergic receptors in rat brain slices: Possible site for antidepressant drug action. Life Sci. 37, 1183–1194.

    Article  PubMed  CAS  Google Scholar 

  • Pun, R. Y. K., Marshall, K. C., Hendelman, W. J., Guthrie, P. B., and Nelson, P. G. (1985) Noradrenergic responses of spinal neurons in locus coeruleus-spinal cord co-cultures. J. Neurosci. 5, 181–191.

    PubMed  CAS  Google Scholar 

  • Quick, M., Iversen, L. L., and Bloom, S. R. (1978) Effect of vasoactive intestinal peptide (VIP) and other peptides on cAMP accumulation in rat brain. Biochem. Pharmacol. 27, 2209–2213.

    Article  Google Scholar 

  • Randle, J. C. R., Bourque, C. W., and Renaud, L. P. (1984) α-Adrenergic activation of rat hypothalamic supraoptic neurons maintained in vitro. Brain Res. 307, 374–378.

    Article  PubMed  CAS  Google Scholar 

  • Rangaraj, N. and Kalant, H. (1979) Interaction of ethanol and catecholamines on rat brain (Na + -K+)-ATPase. Can. J. Physiol. Pharmacol. 57, 1098–1106.

    Article  PubMed  CAS  Google Scholar 

  • Rangaraj, N. and Kalant, H. (1980a) α-Adrenoceptor mediated alteration of ethanol effects on (Na + -K+)-ATPase of rat neuronal membranes. Can. J. Physiol. Pharmacol. 58, 1342–1346.

    Article  PubMed  CAS  Google Scholar 

  • Rangaraj, N. and Kalant, H. (1980b) Acute and chronic catecholamine-ethanol interactions on rat brain (Na + -K+)-ATPase. Pharmacol. Biochem. Behav. 13, (suppl. 1), 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Rangaraj, N., Kalant, H., and Beaugé, F. (1985) α1-Adrenergic receptor involvement in norepinephrine-ethanol inhibition of rat brain Na + -K+ ATPase and in ethanol tolerance. Can. J. Physiol. Pharmacol. 63, 1075–1079.

    Article  CAS  Google Scholar 

  • Reader, T. A. (1983) The Role of Catecholamines in Neuronal Excitability, in Neurology and Neurobiology vol. 2 Basic Mechanisms of Neuronal Hyperexcitability (Jasper, H. H. and van Gelder, N. M., eds.) Liss, New York.

    Google Scholar 

  • Reader, T. A. and Briere, R. (1983a) Selective noradrenergic denervation and 3H-prazosin binding sites in rat neocortex. Brain Res. Bull. 10, 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Reader, T. A. and Briere, R. (1983b) Long-term unilateral noradrenergic denervation: Monoamine content and H-prazosin binding sites in rat neocortex. Brain. Res. Bull 11, 687–692.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, S. V. R. and Yaksh, T. L. (1980) Spinal noradrenergic terminal system mediates antinociception. Brain Res. 189, 391–401.

    Article  PubMed  CAS  Google Scholar 

  • Rehavi, M., Ramot, O., Yavetz, B., and Sokolovsky, M. (1980a) Amitriptyline: Long-term treatment elevates α-adrenergic and muscarinic receptor binding in mouse brain. Brain Res. 194, 443–453.

    Article  PubMed  CAS  Google Scholar 

  • Rehavi, M., Yavetz, B., Ramot, O., and Sokolovsky, M. (1980b) Regional heterogeneity of two high affinity binding sites for 3H-WB-4101 in mouse brain. Life Sci. 26, 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Reisine, T. (1981) Adaptive changes in catecholamine receptors in the central nervous system. Neuroscience 6, 1471–1502.

    Article  PubMed  CAS  Google Scholar 

  • Richelson, E. (1984) Neuroleptic affinities for human brain receptors and their use in predicting adverse effects. J. Clin. Psychiat. 45, 331–336.

    CAS  Google Scholar 

  • Richelson, E. and Nelson, A. (1984) Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro. J. Pharmacol. Exp. Ther. 230, 94–102.

    PubMed  CAS  Google Scholar 

  • Robison, G. A., Butcher, R. W., and Sutherland, E. W. (1971) Cyclic AMP. Academic, New York.

    Google Scholar 

  • Rogawski, M. A., and Aghajanian, G. K. (1980a) Activation of lateral geniculate neurons by norepinephrine: Mediation by an α-adrenergic receptor. Brain Res. 182, 345–359.

    Article  PubMed  CAS  Google Scholar 

  • Rogawski, M. A. and Aghajanian, G. K. (1980b) Norepinephrine and serotonin: Opposite effects on the activity of lateral geniculate neurons evoked by optic pathway stimulation. Exp. Neurol. 69, 678–694.

    Article  PubMed  CAS  Google Scholar 

  • Rogawski, M. A. and Aghajanian, G. K. (1980c) Modulation of lateral geniculate neurone excitability by noradrenaline microionthophoresis on locus coeruleus stimulation. Nature 287, 731–734.

    Article  PubMed  CAS  Google Scholar 

  • Rogawski, M. A. and Aghajanian, G. K. (1982) Activation of lateral geniculate neurons by locus coeruleus or dorsal noradrenergic bundle stimulation: Selective blockade by the alpha-1 adrenoceptor antagonist prazosin. Brain Res. 250, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Ruffolo, R. R. (1985) Selective α1-Adrenoceptor Agonists and Antagonists, in Pharmacology of Adrenoceptors (Szabadi, E., Bradshaw, C. M., and Nahorski, S. R., eds.) Macmillan, Basingstoke.

    Google Scholar 

  • Ruffolo, R. R., Jr., Messick, K., and Horng, J. S. (1985) Interactions of dimethoxy-substituted tolazoline derivatives with α1- and α2-adrenoreceptors in vitro. J. Auton. Pharmacol. 5, 71–79.

    Article  CAS  Google Scholar 

  • Ruffolo, R. R., Rosing, E. L., and Waddell, J. E. (1979) Receptor interactions of imidazolines. I. Affinity and efficacy for alpha adrenergic receptors in rat aorta. J. Pharmacol. Exp. Ther. 209, 429–436.

    PubMed  CAS  Google Scholar 

  • Ruffolo, R. R., Waddell, J. J., and Yaden, E. L. (1980) Receptor interactions of imidazolines. IV. Structural requirements for alpha-adrenergic receptor occupation and receptor activation by Clonidine and a series of structural analogs in rat aorta. J. Pharmacol. Exp. Ther. 213, 267–272.

    PubMed  CAS  Google Scholar 

  • Rybarczyk, M.-C. and Walland, A. (1985) Permissive role of spinal α1-adrenoceptors in sudomotor efferents. Eur. J. Pharmacol. 112, 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Sagen, J. and Proudfit, H. K. (1985) Evidence for pain modulation by pre-and postsynaptic noradrenergic receptors in the medulla oblongata. Brain Res. 331, 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, K. K., Marks, B. H., George, J. M., and Koestner, A. (1974) The isolated organ-cultured supra-optic nucleus as a neuropharmacological test system. J. Pharmacol. Exp. Ther. 190, 482–491.

    PubMed  CAS  Google Scholar 

  • Satinsky, D. (1967) Pharmacological responsiveness of lateral geniculate nucleus neurons. Int. J. Neuropharmacol. 6, 387–397.

    Article  PubMed  CAS  Google Scholar 

  • Sattin, A., Rail, T. W., and Zanella, J. (1975) Regulation of cyclic adenosine 3′,5′-monophosphate levels in guinea pig cerebral cortex by interaction of alpha adrenergic and adenosine receptor activity. J. Pharmacol. Exp. Ther. 192, 22–32.

    PubMed  CAS  Google Scholar 

  • Sawada, S. and Yamamoto, C. (1981) Post-synaptic inhibitory actions of catecholamines and opioid peptides in the bed nucleus of the stria terminalis. Exp. Brain Res. 41, 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Sawada, S., Takada, S., and Yamamoto, C. (1980) Electrical activity recorded from thin sections of the bed nucleus of the stria terminalis and the effects of neurotensin. Brain Res. 188, 578–581.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M. J., Ryan, J. J., and Molloy, B. B. (1976) Effects of kainic acid, a cyclic analogue of glutamic acid, on cyclic nucleotide accumulation in slices of rat cerebellum. Brain Res. 112, 113–126.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D. and Rutledge, C. O. (1985) Comparison of postnatal changes in alpharadrenoceptor binding and adrenergic stimulation of phosphoinositide hydrolysis in rat cerebral cortex. Biochem. Pharmacol. 34, 2705–2711.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D., Knepper, S. M., and Rutledge, C. O. (1984) Norepinephrine stimulation of phosphoinositide hydrolysis in rat cerebral cortex is associated with the alpharadrenoceptor. J. Neurochem. 43, 1758–1761.

    Article  CAS  Google Scholar 

  • Schultz, J., and Daly, J. W. (1973a) Accumulation of cyclic adenosine 3′,5′-monophosphate in cerebral cortical slices from rat and mouse: Stimulatory effects of alpha-and beta-adrenergic agents and adenosine. J. Neurochem. 21, 1319–1326.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, J. and Daly, J. W. (1973b) Adenosine 3′,5′-monophosphate in guinea pig cerebral cortical slices: Effect of alpha- and beta-adrenergic agents, histamine, serotonin and adenosine. J. Neurochem. 21, 573–579.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, J. and Kleefeld, G. (1979) Cyclic adenosine 3′,5′-monophosphate in rat cerebral cortical slices: Effects of methoxamine and Clonidine. Pharmacology 18, 162–167.

    Article  PubMed  CAS  Google Scholar 

  • Schumann, H.-J. and Endoh, M. (1976) α-Adrenoceptors in the ventricular myocardium: Clonidine, naphazoline and methoxamine as partial α-agonists exerting a competitive dualism in action to phenylephrine. Eur. J. Pharmacol. 36, 413–421.

    Article  PubMed  CAS  Google Scholar 

  • Schwabe, U. and Daly, J. W. (1977) The role of calcium ions in accumulations of cyclic adenosine monophosphate elicited by alpha and beta adrenergic agonists in rat brain slices. J. Pharmacol Exp. Ther. 202, 134–143.

    CAS  Google Scholar 

  • Segal, M. and Bloom, F. E. (1974) The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies. Brain Res. 72, 79–97.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M., Greenberger, V., and Hofstein, R. (1981) Cyclic AMP-generating systems in rat hippocampal slices. Brain Res. 213, 351–364.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, V. K., Harik, S. I., Busto, R., and Banerjee, S. P. (1981) Effects of noradrenaline depletion on adrenergic and muscarinic cholinergic receptors in the cerebral cortex, hippocampus and cerebellum. Exp. Neurol. 72, 179–194.

    Article  PubMed  CAS  Google Scholar 

  • Sinha, J. N., Sharma, D. K., Gurtu, S., Pant, K. K., and Bhargava, K. P. (1984) Nucleus locus coeruleus: evidence for α1-adrenoceptor mediat ed hypotension in the cat. Naunyn Schmiedebergs Arch. Pharmacol. 326, 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Skolnick, P., and Daly, J. W. (1975a) Stimulation of adenosine 3′,5′-monophosphate formation in rat cerebral cortical slices by methoxamine: Interaction with an alpha-adrenergic receptor. J. Pharmacol Exp. Ther. 193, 549–558.

    CAS  Google Scholar 

  • Skolnick, P. and Daly, J. W. (1975b) Stimulation of adenosine 3′,5′-monophosphate formation by alpha and beta adrenergic agonists in rat cerebral cortical slices: Effects of Clonidine. Mol Pharmacol. 11, 545–551.

    PubMed  CAS  Google Scholar 

  • Skolnick, P. and Daly, J. W. (1976) Antagonism of α- and ß-adrenergic-mediated accumulations of cyclic AMP in rat cerebral cortical slices by the ß-antagonist (-)alprenolol, life Sci. 19, 497–504.

    Article  PubMed  CAS  Google Scholar 

  • Skolnick, P., Stalvey, L. P., Daly, J. W., Hoyler, E., and Davis, J. N. (1978) Binding of alpha- and beta-adrenergic ligands to cerebral cortical membranes: Effect of 6-hydroxydopamine treatment and relationship to the responsiveness of cyclic AMP-generating systems in two rat strains. Eur. J. Pharmacol. 47, 201–210.

    Article  PubMed  CAS  Google Scholar 

  • Smith, T. L., Eichberg, J., and Hauser, G. (1979) Postsynaptic localization of the alpha-receptor-mediated stimulation of phosphatidylinositol turnover in pineal gland, life Sci. 24, 2179–2184.

    Article  PubMed  CAS  Google Scholar 

  • Sneddon, J. M. and Keen, P. (1970) The effect of noradrenaline on the incorporation of 32P into brain phospholipids. Biochem. Pharmacol. 19, 1297–1306.

    Article  PubMed  CAS  Google Scholar 

  • Soukup, J. and Schanberg, S. (1982) Involvement of alpha noradrenergic receptors in mediation of brain polyphosphoinositide metabolism in vivo. J. Pharmacol. Exp. Ther. 222, 209–214.

    PubMed  CAS  Google Scholar 

  • Stone, T. W. (1985) Microiontophoresis and Pressure Ejection. Wiley, Chichester.

    Google Scholar 

  • Stone, T. W. and Taylor, D. A. (1977) The nature of adrenoceptors in the guinea-pig cerebral cortex: A microiontophoretic study. Can. J. Physiol. Pharmacol. 55, 1400–1404.

    Article  PubMed  CAS  Google Scholar 

  • Strahlendorf, J. C., Strahlendorf, H. K., Kingsley, R. E., Gintautas, J., and Barnes, C. D. (1980) Facilitation of the lumbar monosynaptic reflexes by locus coeruleus stimulation. Neuropharmacology 19, 225–230.

    Article  PubMed  CAS  Google Scholar 

  • Sugden, D. and Klein, D. C. (1985a) Development of the rat pineal α1-adrenoceptor. Brain Res. 325, 345–348.

    Article  PubMed  CAS  Google Scholar 

  • Sugden, D. and Klein, D. C. (1985b) Regulation of rat pineal α1-adrenoceptors. J. Neurochem. 44, 63–67.

    Article  PubMed  CAS  Google Scholar 

  • Summers, R. J., Jarrott, B., and Louis, W. J. (1980) Selectivity of a series of clonidine-like drugs for α1 and α2-adrenoceptors in rat brain. Neurosci. Lett. 20, 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Sutin, J. and Minneman, K. P. (1985) α1- and ß-adrenergic receptors are coregulated during both noradrenergic denervation and hyperinnervation. Neuroscience 14, 973–980.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, T., Bunney, B. S., and Aghajanian, G. K. (1975) Inhibition of both noradrenergic and serotonergic neurons in brain by the α-agonist Clonidine. Brain Res. 92, 291–306.

    Article  PubMed  CAS  Google Scholar 

  • Swann, A. C., Grant, S. J., Hattox, S. E., and Maas, J. W. (1981) Adrenoceptor regulation in rat brain: Chronic effects of α1- or α2-receptor blockers. Eur. J. Pharmacol. 73, 301–305.

    Article  CAS  Google Scholar 

  • Szabadi, E. (1978) Functionally opposite receptors on neurones. Life Sci. 23, 1890–1898.

    Article  Google Scholar 

  • Szabadi, E. (1979) Adrenoceptors on central neurones: Microelectrophore-tic studies. Neuropharmacology 18, 831–843.

    Article  PubMed  CAS  Google Scholar 

  • Tebecis, A. K. and DiMaria, A. (1972) Re-evaluation of the mode of action of 5-hydroxytryptamine on lateral geniculate neurons: Comparison with catecholamines and LSD. Exp. Brain Res. 14, 480–493.

    Article  PubMed  CAS  Google Scholar 

  • Terai, M., Takenaka, T., and Maeno, H. (1983) Measurements of Pharmacological and [3H] Ligand Binding in Adrenergic Receptors, in Methods in Biogenic Amine Research (Parvez, S., Nagatsu, T., Nagatsu, I, and Parvez, H., eds.) Elsevier, Amsterdam.

    Google Scholar 

  • Terry, R. L., Bronstein, D. M., and Lytle, L. D. (1984) Alpha-adrenoceptors may act synergistically in the beta-adrenoceptor control of pineal gland N-acetyltransferase activity. Proc. West. Pharmacol. Soc. 27, 47–50.

    PubMed  CAS  Google Scholar 

  • Torda, C. (1978) Effects of noradrenaline and serotonin on activity of single lateral and medial geniculate neurons. Gen. Pharmacol. 9, 455–462.

    Article  PubMed  CAS  Google Scholar 

  • U’Prichard, D. C. (1981) Direct Binding Studies of Adrenoceptors, in Neurotransmitter Receptors vol. 1 (Kunos, G., ed.) Wiley, New York.

    Google Scholar 

  • U’Prichard, D. C., Bechtel, W. D., Rouot, B., and Snyder, S. H. (1979) Multiple apparent alpha-noradrenergic receptor binding sites in rat brain: Effect of 6-hydroxydopamine. Mol. Pharmacol. 16, 47–60.

    PubMed  Google Scholar 

  • U’Prichard, D. C., Reisine, T. D., Mason, S. T., Fibiger, H. C., and Yamamura, H. I. (1980) Modulation of rat brain α- and ß-adrenergic receptor populations by lesion of the dorsal noradrenergic bundle. Brain Res. 187, 143–154.

    Article  PubMed  Google Scholar 

  • Vacas, M. I. and Cardinali, D. P. (1980) Effect of estradiol on α- and ß-adrenoceptor density in medial basal hypothalamus, cerebral cortex and pineal gland of ovariectomized rats. Neurosci. Lett. 17, 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Van Zwieten, P. A. and Timmermans, P. B. M. W. M. (1984) Central and Peripheral Adrenoceptors. Pharmacological Aspects and Clinical Potential, in Advances in Drug Research vol. 13 (Testa, B., ed.) Academic, London.

    Google Scholar 

  • Velley, L., Cardo, B., and Bockaert, J. (1981) Modulation of rat brain α-adrenoceptor populations four weeks after stimulation of the nucleus locus coeruleus. Psychopharmacology 74, 226–231.

    Article  PubMed  CAS  Google Scholar 

  • Vetulani, J., Antkiewicz-Michaluk, L., and Rokosz-Pelc, A. (1984a) Chronic administration of antidepressant drugs increases the density of cortical [3H] prazosin binding sites in the rat. Brain Res. 310, 360–362.

    Article  PubMed  CAS  Google Scholar 

  • Vetulani, J., Antkiewicz-Michaluk, L., Rokosz-Pelc, A., and Pile, A. (1984b) Alpha up-beta down adrenergic regulation: A possible mechanism of action of antidepressant treatments. Pol. J. Pharmacol. Pharm. 36, 231–248.

    PubMed  CAS  Google Scholar 

  • Wakerley, J. B., Noble, R., and Clarke, G. (1983) In-vitro studies of the control of phasic discharge in neurosecretory cells of the supraoptic nucleus. Progr. Brain Res. 60, 53–59.

    Article  CAS  Google Scholar 

  • Wamsley, J. K. (1984) Autoradiographic Localization of Cortical Biogenic Amine Receptors, in Monoamine Innervation of Cerebral Cortex (Descarries, L., Reader, T. R., and Jasper, H. H., eds.) Liss, New York.

    Google Scholar 

  • Waterhouse, B. D., Moises, H. C., and Woodward, D. J. (1981) Alpha-receptor-mediated facilitation of somatosensory cortical neuronal responses to excitatory synaptic inputs and iontophoretically applied acetylcholine. Neuropharmacology 20, 907–920.

    Article  PubMed  CAS  Google Scholar 

  • Weight, F. F. and Salmoiraghi, G. C. (1966) Adrenergic responses of Renshaw cells. J. Pharmacol. Exp. Ther. 154, 391–397.

    PubMed  CAS  Google Scholar 

  • Weiner, N. and Taylor, P. (1985) Neurochemical Transmission: The Autonomic and Somatic Motor Nervous Systems, in The Pharmaccological Basis of Therapeutics 7th Ed. (Goodman Gilman, A., Goodman, L. S., Rail, T. W., and Murad, F., eds.) Macmillan, New York.

    Google Scholar 

  • Weinreich, P. and Seeman, P. (1981) Binding of adrenergic ligands ([3H] Clonidine and [3H] WB-4101) to multiple sites in human brain. Biochem. Pharmacol. 30, 3115–3120.

    Article  PubMed  CAS  Google Scholar 

  • Weissman, B. A., Daly, J. W., and Skolnick, P. (1975) Diethylstilbestrol-elicited accumulation of cyclic AMP in incubated rat hypothalamus. Endocrinology 97, 1559–1566.

    Article  PubMed  CAS  Google Scholar 

  • Wikberg, J. E. S. (1982) Adrenergic receptors: Classification, ligand binding and molecular properties. Acta Med. Scand. (suppl.) 655, 19–36.

    Google Scholar 

  • Wirz-Justice, A., Kafka, M. S., Naber, D., and Wehr, T. A. (1980) Circadian rhythms in rat brain alpha- and beta-adrenergic receptors are modified by chronic imipramine. Life Sci. 27, 341–347.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, D. J., Hoffer, B. J., and Altman, J. (1974) Physiological and pharmacological properties of Purkinje cells in rat cerebellum degranulated by X-irradiation. J. Neurobiol. 5, 283–304.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, S., Ishima, T., Ashizawa, N., Hayashi, M., Tomita, T., and Hayashi, E. (1985) Specific increase of hypothalamic α1-adrenoceptors in spontaneously hypertensive rats: Effects of hypotensive drug treatment. Brain. Res. 344, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Young III, W. S. and Kuhar, M. J. (1979) Noradrenergic α1 and α2 receptors: Autoradiographic visualization. Eur. J. Pharmacol. 59, 317–319.

    Article  PubMed  CAS  Google Scholar 

  • Young III, W. S. and Kuhar, M. J. (1980) Noradrenergic α1 and α2 receptors: Light microscopic autoradiographic localization. Proc. Natl. Acad. Sci. USA 77, 1696–1700.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Humana Press Inc.

About this chapter

Cite this chapter

Szabadi, E., Bradshaw, C.M. (1987). alpha-1 Adrenergic Receptors in the Central Nervous System. In: Ruffolo, R.R. (eds) The alpha-1 Adrenergic Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4582-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4582-7_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8936-4

  • Online ISBN: 978-1-4612-4582-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics