Skip to main content

5-HT Receptors Coupled to Phosphoinositide Hydrolysis

  • Chapter
Book cover The Serotonin Receptors

Part of the book series: The Receptors ((REC))

Abstract

More than a decade ago, Michell (1975) noted that receptors that mediate the release of calcium also activate inositol lipid turnover, and suggested that these two events might be related. Since then, enormous strides have been made in the elucidation of the biochemical mechanism and the physiological role of agonist-induced inositol lipid turnover. Many extensive reviews of this subject have appeared recently (e.g., Abdel-Latif, 1986; Berridge, 1986; Exton, 1986; Nahorski et al., 1986), and the current review will only briefly summarize the highlights of this signaling mechanism. The key reaction is the hydrolysis of plasma membrane phosphoinositides by a phosphodiesterase, phospholipase C, to yield second messengers (Fig. 1). Three phosphoinositides, phosphatidylinositol (PI), phosphatidylinositol-4-monophosphate (PIP), and phosphatidylinostiol-4,5-bisphosphate (PIP2), are degraded by phospholipase C to form diacylglycerol (DAG) and inositol phosphates. It is generally thought that the primary substrate for receptor-activated phospholipase C is PIP2, with hydrolysis yielding two second messengers, DAG and inositol-1,4,5-trisphosphate (IP3). Evidence exists that, in some systems, PI and PIP are also hydrolyzed by receptor-activated phospholipase C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif, A. A. (1986) Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol. Rev. 38, 227–272.

    PubMed  CAS  Google Scholar 

  • Affolter, H., Erne, P., Burgisser, E., and Pletscher, A. (1984) Calcium as a messenger of 5-HT2 receptor stimulation in human blood platelets. Naunyn-Schmiedeberg’s Arch. Pharmacol. 325, 337–342.

    Article  CAS  Google Scholar 

  • Anath, U. S., Lei, U., and Hauser, G. (1987) Stimulation of phosphoinositide hydrolysis by serotonin in C6 glioma cells, J. Neurochem. 48, 253–261.

    Article  Google Scholar 

  • Berridge, M. J. (1981) Electrophysiological evidence for the existence of separate receptor mechanisms mediating the action of 5-hydroxytryptamine. Mol. Cell. Endocrinol. 23, 91–104.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J. (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 212, 849–858.

    PubMed  CAS  Google Scholar 

  • Berridge, M. (1986) Intracellular signalling through inositol trisphosphate and diacylglycerol. Biochem. Chem. Hoppe Seyler 367, 447–456.

    Article  CAS  Google Scholar 

  • Berridge, M. J., Buchan, P. B., and Heslop, J. P. (1984) Relationship of polyphosphoinositide metabolism to the hormonal activation of the insect salivary gland by 5-hydroxytryptamine. Mol. Cell. Endocrinol. 36, 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., Downes, C. P., and Hanley, M. R. (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587–595.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J. and Heslop, J. P. (1981) Separate 5-hydroxytryptamine receptors on the salivary gland of the blowfly are linked to the generation of either cyclic adenosine 3’5’-monophosphate or calcium signals. Brit. J. Pharmacol. 73, 729–738.

    CAS  Google Scholar 

  • Berridge, M. J., Lindley, B. D., and Prince, W. T. (1979) Membrane permeability changes during stimulation of isolated salivary glands of Calliphora by 5-hydroxytryptamine. Biochem. J. 178, 59–69.

    PubMed  CAS  Google Scholar 

  • Brown, E., Kendall, D. A., and Nahorski, S. R. (1984) Inositol phospholipid hydrolysis in rat cerebral cortical slices, I. Receptor characterization. J. Neurochem. 42, 1379–1387.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M. L. and Wittenauer, L. A. (1987) Serotonin receptor activation of phosphoinositide turnover in uterine, fundal, vascular, and tracheal smooth muscle. J. Cardiovascular Pharmacol. 10, 176–181.

    Article  CAS  Google Scholar 

  • Conn, P. J., Janowsky, A., and Sanders-Bush, E. (1987) Denervation supersensitivity of 5-HT1C receptors in rat choroid plexus. Brain Res. 400, 396–398.

    Article  PubMed  CAS  Google Scholar 

  • Conn, P. J. and Sanders-Bush, E. (1984) Selective 5-HT2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex. Neuropharmacology 23, 993–996.

    Article  PubMed  CAS  Google Scholar 

  • Conn, P. J. and Sanders-Bush, E. (1985) Serotonin-stimulated phosphoinositide turnover: Mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions. J. Pharmacol. Exp. Ther. 234, 195–203.

    PubMed  CAS  Google Scholar 

  • Conn, P. J. and Sanders-Bush, E. (1986a) Biochemical characterization of serotonin stimulated phosphoinositide turnover. Life Sci. 38, 663–669.

    Article  PubMed  CAS  Google Scholar 

  • Conn, P.J. and Sanders-Bush, E. (1986b) Agonist-induced phosphoinositide hydrolysis in choroid plexus. J. Neurochem. 47, 1754–1760.

    Article  PubMed  CAS  Google Scholar 

  • Conn, P. J. and Sanders-Bush, E. (1986c) Regulation of serotonin-stimulated phosphoinositide hydrolysis: Relation to the serotonin 5-HT2 binding site. J. Neurosci. 6, 3669–3675.

    PubMed  CAS  Google Scholar 

  • Conn, P. J. and Sanders-Bush, E. (1987) Relative efficacies of piperazines at the phosphoinositide hydrolysis-linked 5-HT2 and 5HT1C receptors. J. Pharmacol. Exp. Ther. 242, 552–557.

    PubMed  CAS  Google Scholar 

  • Conn, P. J., Sanders-Bush, E., Hoffman, B. J., and Hartig, P. R. (1986) A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc. Natl. Acad. Sci. 83, 4086–4088

    Article  PubMed  CAS  Google Scholar 

  • Cory, R. N., Berta, P., Haiech, J., and Bockaert, J. (1986) 5-HT2 receptor-stimulated inositol phosphate formation in rat aorta myocytes. Eur. J. Pharmacol. 131, 153–157.

    Article  PubMed  CAS  Google Scholar 

  • Coughlin, S. R., Moskowitz, M. A., Antoniades, H. N., and Levine, L. (1981) Serotonin receptor-mediated stimulation of bovine smooth muscle cell prostacyclin synthesis and its modulation by platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 78, 7134–7138.

    Article  PubMed  CAS  Google Scholar 

  • Coughlin, S. R., Moskowitz, M. A., and Levine, L. (1984) Identification of a serotonin type 2 receptor linked to prostacyclin synthesis in vascular smooth muscle cells. Biochem. Pharmacol. 33, 692–695.

    Article  PubMed  CAS  Google Scholar 

  • de Chaffoy de Courcelles, D., Leysen, J. E., De Clerck, F., Van Belle, H., and Janssen, P. A. J. (1985) Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J. Biol. Chem. 260, 7603–7608.

    PubMed  Google Scholar 

  • de Chaffoy de Courcelles, D., Roevens, P., and Van Belle, H. (1984) Stimulation by serotonin of 40 kDa and 20 kDa protein phosphorylation in human platelets. FEBS Lett. 171, 289–292.

    Article  PubMed  Google Scholar 

  • Doyle, V. M., Creba, J. A., Ruegg, U. R., and Hoyer, D. (1986) Serotonin increases the production of inositol phosphates and mobilizes calcium via the 5-HT2 receptor in A7r5 smooth muscle cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 333, 98–103.

    Article  CAS  Google Scholar 

  • Exton, J. H. (1986) Mechanisms involved in calcium-mobilizing agonist responses. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 20, 211–262.

    PubMed  CAS  Google Scholar 

  • Fain, J. N. and Berridge, M. J. (1979) Relationship between hormonal activation of phosphotidylinostol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland. Biochem. J. 178, 45–58.

    PubMed  CAS  Google Scholar 

  • Farese, R. V. (1984) Phospholipids as intermediates in hormone action. Mol. Cell. Endocrinol. 35, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, S. K., Klinger, P. D., and Agranoff, B. W. (1983) Muscarinic agonist binding and phospholipid turnover in brain. J. Biol Chem. 258, 7358–7363.

    PubMed  CAS  Google Scholar 

  • Godfrey, P. P., McClue, S. J., Minchin, M. C. W., and Young, M. (1985) RU 24969, a 5-HT1 agonist, stimulates inositol phospholipid breakdown in rat brain slices. Br. J. Pharmacol. 84, 112P.

    Google Scholar 

  • Hanley, M. R., Lee, C. M., Jones, L. M., and Michell, R. H. (1980) Similar effects of substance P and related peptides on salivation and phosphatidylinositol turnover in rat salivary glands. Mol. Pharmacol. 18, 78–83.

    PubMed  CAS  Google Scholar 

  • Hashimoto, T., Hirata, M., and Ito, Y. (1985) A role for inositol 1,4,5-trisphosphate in the initiation of agonist-induced contractions of dog tracheal smooth muscle. Brit. J. Pharmacol. 86, 191–199.

    CAS  Google Scholar 

  • Hokin, M. R. (1970) Effects of dopamine, gamma-aminobutyric acid and 5-hydroxytryptamine on incorporation of 32P into phosphatides in slices from the guinea pig brain. J. Neurochem. 17, 357–364.

    Article  PubMed  CAS  Google Scholar 

  • Jafferji, S. S. and Michell, R. H. (1976) Stimulation of phosphatidylinositol turnover by histamine, 5-hydroxytryptamine and adrenaline in the longitudinal smooth muscle of guinea pig ileum. Biochem. Pharmacol. 25, 1429–1430.

    Article  PubMed  CAS  Google Scholar 

  • Janowsky, A., Labarca, R., and Paul, S. M. (1984) Characterization of neurotransmitter receptor-mediated phosphatidylinositol hydrolysis in the rat hippocampus. Life Sci. 35, 1953–1961.

    Article  PubMed  CAS  Google Scholar 

  • Kendall, D. A. and Nahorski, S. R. (1985) 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: Pharmacological characterization and effects of antidepressants. J. Pharmacol. Exp. Ther. 233, 473–479.

    PubMed  CAS  Google Scholar 

  • Litosch, I. and Fain, J. N. (1985) 5-Methyltryptamine stimulates phospholipase C-mediated breakdown of exogenous phosphoinositides by blowfly salivary gland membranes. J. Biol. Chem. 260, 16052–16055.

    PubMed  CAS  Google Scholar 

  • Litosch, I., Saitoh, Y., and Fain, J.N. (1982) 5-HT-stimulated arachidonic acid release from labeled phosphatidylinositol in blowfly salivary glands. Am. J. Physiol. 243, 222–226.

    Google Scholar 

  • Litosch, I., Wallis, C., and Fain, J. N. (1985) 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. J. Biol. Chem. 260, 5464–5471.

    PubMed  CAS  Google Scholar 

  • Lubbert, H., Snutch, T. P., Dascal, N., Lester, H. A., and Davidson, N. (1987) Rat brain 5-HT1C receptors are encoded by a 5–6 kbase mRNA size class and are functionally expressed in injected Xenopus Oocytes. J. Neurosci. 7, 1159–1165.

    PubMed  CAS  Google Scholar 

  • Maeda, K. (1983) Monaminergic effect on cerebrospinal fluid production. Nihon Univ. J. Med. 25, 155–174.

    CAS  Google Scholar 

  • Michell, R. H. (1975) Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Res. Comm. 415, 81–147.

    CAS  Google Scholar 

  • Nahorski, S. R., Kendall, D. A., and Batty, I. (1986) Receptors and phospho-inositide metabolism in the central nervous system. Biochem. Pharmacol. 35, 2447–2453.

    Article  PubMed  CAS  Google Scholar 

  • Nakaki, T., Roth, B. L., Chuang, D. M., and Costa, E. (1985) Phasic and tonic components in 5-HT2 receptor-mediated rat aorta contraction. Participation of Ca++ channels and phospholipase C. J. Pharmacol. Exp. Ther. 234, 442–446.

    PubMed  CAS  Google Scholar 

  • Palacios, J. M., Markstein, R., and Pazos, A. (1986) Serotonin-lc sites in the choroid plexus are not linked in a stimulatory or inhibitory way to adenylate cyclase. Brain Res. 380, 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Pazos, A., Hoyer, D., and Palacios, J. M. (1984) The binding of serotonergic ligands to the porcine choroid plexus, characterization of a new type of serotonin recognition site. Eur. J. Pharmacol. 106, 539–546.

    Article  PubMed  CAS  Google Scholar 

  • Peroutka, S. J. and Snyder, S. H. (1979) Multiple serotonin receptors, differential binding of [3H] 5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol. Pharmacol. 16, 687–699.

    PubMed  CAS  Google Scholar 

  • Roth, B. L., Nakaki, T., Chuang, D. M., and Costa, E. (1984) Aortic recognition sites for serotonin are coupled to phospholipase C and modulate phosphatidylinositol turnover. Neuropharmacology 23, 1223–1225.

    Article  PubMed  CAS  Google Scholar 

  • Roth, B. L., Nakaki, T., Chaung, D. M., and Costa, E. (1986) 5-Hydroxytryptamine-2 receptors coupled to phospholipase C in rat aorta: Modulation of phosphoinositide turnover by phorbol ester. J. Pharm. Exp. Ther. 238, 480–485.

    CAS  Google Scholar 

  • Sadler, K., Litosch, I., and Fain, J. N. (1984) Phosphoinositide synthesis and Ca2+ gating in blowfly salivary glands exposed to 5-hydroxytryptamine. Biochem. J. 222, 327–334.

    PubMed  CAS  Google Scholar 

  • Schachter, M., Godfrey, P. P., Minchin, M. C. W., McClue, S. J., and Young, M. M. (1985) Serotonergic agonists stimulate inositol lipid metabolism in rabbit platelets. Life Sci. 37, 1641–1647.

    Article  PubMed  CAS  Google Scholar 

  • Somlyo, A. V., Bond, M., and Somlyo, A. P. (1985) Inositol trisphosphate induced calcium release and contraction in vascular smooth muscle. Proc. Natl. Acad. Sci. USA 82, 5231–5235.

    Article  PubMed  CAS  Google Scholar 

  • Sweatt, J. D., Johnson, S. L., Cragoe, E. J., and Limbird, L. E. (1986) Inhibitors of Na+/H+ exchange block stimulus-provoked arachidonic acid release in human platelets. Selective effects on platelet activation by epinephrine, ADP, and lower concentrations of thrombin. J. Biol. Chem. 260, 12910–12919.

    Google Scholar 

  • Taylor, C. W. and Merritt, J. E. (1986) Receptor coupling to polyphosphoinositide turnover: A parallel with the adenylate cyclase system. TIPS 7, 238–242.

    CAS  Google Scholar 

  • Yagaloff, K. A. and Hartig, P. R. (1985) 125I-Lysergic acid diethylamide binds to a novel serotonergic site on rat chroid plexus epithelial cells. J. Neurosci. 5, 3178–3183.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this chapter

Cite this chapter

Sanders-Bush, E. (1988). 5-HT Receptors Coupled to Phosphoinositide Hydrolysis. In: Sanders-Bush, E. (eds) The Serotonin Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4560-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4560-5_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8912-8

  • Online ISBN: 978-1-4612-4560-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics