5-HT Receptors Coupled to Adenylate Cyclase

  • Michael De Vivo
  • Saul Maayani
Part of the The Receptors book series (REC)

Abstract

More than 25 years ago, Mansour et al. (1960) measured an increase in adenylate cyclase activity in a particulate preparation from the flatworm, Fasciola hepatica, in response to 5-HT. Until that time, adenylate cyclase activity had been measured mostly in canine tissues, in response to either epinephrine or glucagon (Sutherland and Rail, 1960). The results with 5-HT and the flatworm suggested that cyclic AMP is a more general second messenger than was previously suspected. Despite this auspicious beginning, the study of 5-HT receptors coupled to adenylate cyclase has lagged behind the study of other receptors coupled to adenylate cyclase. The purposes of this review are to identify those tissues in which 5-HT receptors may be either positively or negatively coupled to adenylate cyclase and to assess the pharmacological data concerning these receptors. Wherever possible, the physiological roles of 5-HT receptor-mediated changes in cyclic AMP accumulation will be discussed.

Keywords

Histamine Epinephrine Theophylline Glucagon Corticosterone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abboud, H. E., Shah, S., and Dousa, T. P. (1979) Effects of dexamethasone on cyclic nucleotide accumulation in glomeruli. J. Lab. Clin. Med. 94, 708–716.PubMedGoogle Scholar
  2. Abrahams, S. L., Northup, J. K., and Mansour, T. E. (1976) Adenosine cyclic 3151-monophosphate in the liver fluke, fasciola hepatica. 1. Activation of adenylate cyclase by 5-hydroxytryptamine. Mol. Pharmacol. 12, 49–58.PubMedGoogle Scholar
  3. Adler, S. (1977) Serotonin and the kidney, ch. 3 in Serotonin in Health and Disease, (W.B. Essman, ed.) Spectrum Publications, New York, pp. 99–137.Google Scholar
  4. Affolter, H., Erne, P., Burgisser, E., and Pletscher, A. (1984) Ca2+ as messenger of 5-HT2-receptor stimulation in human blood platelets. Naunyn-Schmiedeb. Arch. Pharmacol. 325, 337–342.CrossRefGoogle Scholar
  5. Agarwal, K. C. and Steiner, M. (1976) Effect of serotonin on cyclic nucleotides of human platelets. Biochem. Biophys. Res. Commun. 69, 962–969.PubMedCrossRefGoogle Scholar
  6. Ahn, H. and Makman, M. H. (1977) Neurotransmitter-sensitive adenylate cyclase in the hypothalami of guinea pig, rat and monkey. Brain Res. 138, 125–138.PubMedCrossRefGoogle Scholar
  7. Ahn, H. and Makman, M. H. (1978a) Stimulation of adenylate cyclase activity in monkey anterior limbic cortex by serotonin. Brain Res. 153, 636–640.PubMedCrossRefGoogle Scholar
  8. Ahn, H. and Makman, M. H. (1978b) Serotonin-sensitive adenylate cyclase activity in monkey anterior limbic cortex: antagonism by molindone and other antipsychotic drugs. Life Sci. 23, 507–512.PubMedCrossRefGoogle Scholar
  9. Albano, J. D. M., Brown, B. L, Ekins, R. P., Tait, S. A. S., and Tait, J. F. (1974) The effects of potassium, 5-hydroxytryptamine, adrenocorticotrophin and angiotensin II in the concentration of adenosine 3151-cyclic monophosphate in suspensions of dispersed rat adrenal zona glomerulosa and zona fasciculata cells. Biochem. J. 142, 391–400.PubMedGoogle Scholar
  10. Andrade, R., Malenka, R. C., and Nicoll, R. A. (1986) A G protein couples serotonin and GABAb receptors to the same channels in hippocampus. Science 234, 1261–1265.PubMedCrossRefGoogle Scholar
  11. Baines, A. J. and Bennett, V. (1986) Synapsin I is a microtubule-bundling protein. Nature 319, 145–147.PubMedCrossRefGoogle Scholar
  12. Barbaccia, M. L., Brunello, N., Chuang, D. M., and Costa, E. (1983) Serotonin-elicited amplication of adenylate cyclase activity in hippocampal membranes from adult rat. J. Neurochem. 40, 1671–1679.PubMedCrossRefGoogle Scholar
  13. Benfey, B. G., Cohen, J., Kunos, G., and Vermes-Kunos, I. (1974) Dissociation of 5-hydroxytryptamine effects on myocardial contractility and cyclic AMP accumulation. Br. J. Pharmacol. 50, 581–585.PubMedGoogle Scholar
  14. Berridge, M. J. (1981) Electrophysiological evidence for the existence of separate receptor mechanisms mediating the action of 5-hydroxytryptamine, Mol. Cell. Endocrin. 23, 91–104.CrossRefGoogle Scholar
  15. Berridge, M. J. (1982) Regulation of cell secretion: the integrated action of cyclic AMP and calcium. Handb. Exp. Pharmacol. 58, 389–463.Google Scholar
  16. Berridge, M. J. (1984) Inositol triphosphate and diacylaglycerol as second messengers. Biochem. J. 220, 345–360.PubMedGoogle Scholar
  17. Berridge, M. J. and Heslop, J. P (1981) Separte 5-hydroxytryptamine receptors on the salivary gland of the blowfly are linked to the generation of either cyclic adenosine 3151-monophosphate or calcium signals. Br. J. Pharmacol. 73, 729–738.PubMedGoogle Scholar
  18. Berridge, M. J. and Lipke, H. (1979) Changes in calcium transport across Calliphora salivary glands induced by 5-hydroxytryptamine and cyclic nucleotides. J. Exp. Biol. 78, 137–148.Google Scholar
  19. Berry-Kravis, E. and Dawson, G. (1983) Characterization of an adenylate cyclase-linked serotonin (5-HT1) receptor in a neuroblastoma x brain expiant hybrid cell line (NCB-20). J. Neurochem. 40, 977–985.PubMedCrossRefGoogle Scholar
  20. Berry-Kravis, E. and Dawson, G. (1985a) Evidence for [D-Ala2,D-Leu5]-enkephalin-induced supersensitivity to 5-hydroxytryptamine in a neuroblastoma x brain hybrid cell line (NCB-20). J. Neurochem. 45, 1731–1738.PubMedCrossRefGoogle Scholar
  21. Berry-Kravis, E. and Dawson, G. (1985b) Possible role of gangliosides in regulating an adenylate cyclase-linked 5-hydroxytryptamine (5-HT1) receptor. J. Neurochem. 45, 1739–1747.PubMedCrossRefGoogle Scholar
  22. Biondi, C., Belardetti, F., Brunelli, M., and Trevisani, A. (1982) Modulation of cyclic AMP levels by neurotransmitters in excitable tissues of the leech Hirudo Medicinalis Comp. Biochem. Physiol. 72C, 33–37.CrossRefGoogle Scholar
  23. Birnbaumer, L., Codina, J., Mattera, R., Yatani, A., Scherer, N., Toro, M., and Brown, A. M. (1987) Signal transduction by G proteins, in Molecular Biology and the Kidney (R. Robinson and D. K. Granner, eds.) (in press).Google Scholar
  24. Blazynski, C., Ferrendelli, J. A., and Cohen, A. I. (1985) Indoleamine-sensitive adenylate cyclase in rabbit retina: characterization and distribution. J. Neurochem. 45, 440–447.PubMedCrossRefGoogle Scholar
  25. Bockaert, J., Dumuis, A., Bouhelal, R., Sebben, M., and Cory, R. N. (1987) Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at the 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn-Schmiedeb. Arch. Pharmacol. 335, 588–592.Google Scholar
  26. Bourgoin, S., Artaud, F., Bockaert, J., Hery, F., Glowinski, J., and Hamon, M. (1978) Paradoxical decrease of brain 5-HT turnover by metergoline, a central 5-HT receptor blocker. Naunyn-Schmiedeb. Arch. Pharmacol. 302, 313–321.CrossRefGoogle Scholar
  27. Bourgoin, S., Artaud, F., Enjalbert, A., Hery, F., Glowinski, J. and Hamon, M. (1977a) Acute changes in central serotonin metabolism induced by the blockade or stimulation of serotoninergic receptors during ontogenesis in the rat. J. Pharmacol. Exper. Therap. 202, 519–531.Google Scholar
  28. Bourgoin, S., Enjalbert, A., Adrien, J., Hery, F., and Hamon, M. (1977b) Midbrain raphé lesion in the newborn rat: II. Biochemical alterations in serotoninergic innervation. Brain Res. 127, 111–126.PubMedCrossRefGoogle Scholar
  29. Bradley, P. B., Engel, G., Feniuk, W., Fozard, J. R., Humphrey, P. P. A., Middlemiss, D. N., Mylecharane, E. J., Richardson, B. P., and Saxena, P. R. (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25, 563–576.PubMedCrossRefGoogle Scholar
  30. Browning, M. D., Huganir, R., and Greengard, P. (1985) Protein phosphorylation and neuronal function. J. Neurochem. 45, 11–23.PubMedCrossRefGoogle Scholar
  31. Buonassisi, V. and Venter, J. C. (1976) Hormone and neurotransmitter receptors in an established vascular endothelial cell line. Proc. Natl. Acad. Sci. USA 73, 1612–1616.PubMedCrossRefGoogle Scholar
  32. Campbell, A. K. and Siddle, K. (1977) The effects of 5-hydroxytryptamine and other indole derivatives on the formation of adenosine 3151-cyclic monophosphate in pigeon erythrocytes. Biochem. Biophys. Acta 497, 62–74.PubMedGoogle Scholar
  33. Cassel, D. and Pfeuffer, T. (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc. Natl. Acad. Sci. USA 75, 2669–2673.PubMedCrossRefGoogle Scholar
  34. Castellucci, V. F., Kandel, E. R., Schwartz, J. H., Wilson, F. D., Nairn, A. C., and Greengard, P. (1980) Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia. Proc. Natl. Acad. Sci. USA 77, 7492–7496.PubMedCrossRefGoogle Scholar
  35. Cheng, Y. and Prusoff, W. H. (1973) Relationship between the inhibition constant (Kj) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108.PubMedCrossRefGoogle Scholar
  36. Chneiweiss, H., Prochiantz, A., Glowinski, J., and Premont, J. (1984) Biogenic amine-sensitive adenylate cyclases in primary culture of neuronal or glial cells from mesencephalon. Brain Res. 302, 363–370.PubMedCrossRefGoogle Scholar
  37. Clarke, W. P., DeVivo, M., Beck, S. G., Maayani, S., and Goldfarb, J. (1987) Serotonin decreases population spike amplitude in hippocampal cells through a pertussis toxin substrate. Brain Res. 410, 357–361.PubMedCrossRefGoogle Scholar
  38. Daszuta, A., Pons, F., and Cadilhac, J. (1979) Effect of serotonin on cyclic AMP level in rat hypothalamus slices during development. Eur. J. Pharmacol. 56, 397–401.PubMedCrossRefGoogle Scholar
  39. Davoren, P. R. and Sutherland, E. W. (1963) The effect of l-epinephrine and other agents on the synthesis and release of adenosine 3151-phosphate by whole pigeon erythrocytes. J. Biol. Chem. 238, 3009–3015.PubMedGoogle Scholar
  40. de Chaffoy de Courcelles, D., Leysen, J. E., De Clerck, F., Van Belle, H., and Janssen, P. A. J. (1985) Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J. Biol. Chem. 260, 7603–7608.PubMedGoogle Scholar
  41. Deterre, P., Paupardin-Tritsch, D., and Bockaert, J. (1986) Serotonin- and dopamine-sensitive adenylate cyclase in molluscan nervous system. Biochemical and electrophysiological analysis of the pharmacological properties and the GTP-dependence. Molec. Brain. Res. 1, 101–109.CrossRefGoogle Scholar
  42. Deterre, P., Paupardin-Tritsch, D., Bockaert, J., and Gerschenfeld, H. M. (1981) Role of cyclic AMP in a serotonin-evoked slow inward current in snail neurones. Nature 290, 783–785.PubMedCrossRefGoogle Scholar
  43. Deterre, P., Paupardin-Tritsch, D., Bockaert, J., and Gerschenfeld, H. M. (1982) cAMP-mediated decrease in K+ conductance evoked by serotonin and dopamine in the same neuron: a biochemical and physiological single-cell study. Proc. Natl. Acad. Sci. USA 79, 7934–7938.PubMedCrossRefGoogle Scholar
  44. De Vivo, M. and Maayani, S. (1985) Inhibition of forskolin-stimulated adenylate cyclase activity by 5-HT receptor agonists. Eur. J. Pharmacol. 119, 213–234.Google Scholar
  45. De Vivo, M. and Maayani, S. (1986) Characterization of the 5-hydroxytryp-tamine1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J. Pharmacol Exper. Therap. 238, 248–253.Google Scholar
  46. Dolphin, A. C., Goelz, S. E., and Greengard, P. (1980) Neuronal protein phosphorylation: recent studies concerning protein I, a synapse-specific phosphoprotein. Pharmacol Biochem. & Behav. 13, 169–174.CrossRefGoogle Scholar
  47. Dolphin, A. C. and Greengard, P. (1981a) Neurotransmitter- and neuro-modulator-dependent alterations in phosphorylation of protein I in slices of rat facial nucleus. J. Neurosci. 1, 192–203.PubMedGoogle Scholar
  48. Dolphin, A.C. and Greengard, P. (1981b) Serotonin stimulates phosphorylation of protein I in the facial motor nucleus of rat brain. Nature 289, 76–79.PubMedCrossRefGoogle Scholar
  49. Drummond, A. H., Benson, J. A., and Levitan, I. B. (1980a) Serotonin-induced hyperpolarization of an identified Aplysia neuron is medicated by cyclic AMP. Proc. Natl. Acad. Sci. USA 77, 5013–5017.PubMedCrossRefGoogle Scholar
  50. Drummond, A. H., Benson, J. A., and Levitan, I. B. (1980b) d-[3H]Lysergic acid diethylamide binding to serotonin receptors in the molluscan nervous system. J. Biol. Chem. 255, 6679–6686.PubMedGoogle Scholar
  51. Dunwiddie, T. V. and Hoffer, B. J. (1982) The role of cyclic nucleotides in the nervous system. Handb. Exper. Pharmacol. 58, 389–463.Google Scholar
  52. Enjalbert, A., Bourgoin, S., Hamon, M., Adrien, J., and Bockaert, J. (1978a) Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system (I). Mol. Pharmacol. 14, 2–10.PubMedGoogle Scholar
  53. Enjalbert, A., Hamon, M., Bourgoin, S., and Bockaert, J. (1978b) Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system (II). Mol. Pharmacol. 14, 11–23.PubMedGoogle Scholar
  54. Enyeart, J. (1981) Cyclic AMP, 5-HT, and the modulation of transmitter release at the crayfish neuromuscular junction. J. Neurobiol. 12 505–513.PubMedCrossRefGoogle Scholar
  55. Euvrard, C. and Boissier, J. R. (1980) Biochemical assessment of the central 5-HT agonist activity of RU 24969 (a piperindyl indole). Eur. J. Pharmacol. 63, 65–72.PubMedCrossRefGoogle Scholar
  56. Ezrailson, E. G., Entman, M. L. and Garber, A. J. (1983) Adrenergic and serotonergic regulation of skeletal muscle metabolism in the rat, J. Biol Chem. 258, 12494–12498.PubMedGoogle Scholar
  57. Fain, J. N., Jacobs, M. D., and Clement-Cormier, Y. C. (1973) Interrelationship of cyclic AMP, lipolysis, and respiration in brown fat cells. Am. J. Physiol. 224, 346–351.PubMedGoogle Scholar
  58. Fillion, G., Beaudoin, D., Rousselle, J. C., Deniau, J. M., Fillion, M. P., Dray, F., and Jacob, J. (1979) Decrease of [3H]5-HT high affinity binding and 5-HT adenylate cyclase activation after kainic lesion in rat brain striatum. J. Neurochem. 33, 567–570.PubMedCrossRefGoogle Scholar
  59. Fillion, G., Beaudoin, D., Rousselle, J. C., and Jacob, J. (1980) [3H]5-HT binding sites and 5-HT-sensitive adenylate cyclase in glial cell membrane fraction. Brain Res. 198, 361–374.PubMedCrossRefGoogle Scholar
  60. Forn, J. and Krishna, G. (1971) Effect of norepinephrine, histamine and other drugs on cyclic 31,51-AMP formation in brain slices of various animal species. Pharmacology 5, 193–204.PubMedCrossRefGoogle Scholar
  61. Franquinet, R., Le Moigne, A., and Hanoune, J. (1978) The adenylate cyclase system of planaria polycelis tenuis: activation by serotonin and guanine nucleotides. Biochem. Biophys. Acta 539, 88–97.PubMedGoogle Scholar
  62. Fujita, K., Aguilera, G., and Catt, K. J. (1979) The role of cAMP in aldosterone production by isolated zona glomerulosa cells. J. Biol Chem. 254, 8567–8574.PubMedGoogle Scholar
  63. Garber, A. J. (1977) Inhibition by serotonin of amino acid release and protein degradation in skeletal muscle. Mol. Pharmacol. 13, 640–651.PubMedGoogle Scholar
  64. Gentleman, S., Abrahams, S. L., and Mansour, T. E. (1976) Adenosine cyclic 31,51-monophosphate in the liver fluke, Fasciola hepatica. II. Activation of protein kinase by 5-hydroxytryptamine. Mol. Pharmacol. 12, 59–68.PubMedGoogle Scholar
  65. Gentleman, S. and Mansour, T. E. (1977) Control of Ca2+ efflux and cyclic AMP by 5-hydroxytryptamine and dopamine in abalone gill. Life Sci. 20, 687–694.PubMedCrossRefGoogle Scholar
  66. Glaser, R. and Traber, J. (1983) Buspirone: action on serotonin receptors in calf hippocampus. Eur. J. Pharmacol. 88, 137–138.PubMedCrossRefGoogle Scholar
  67. Goldenring, J. R., Lasher, R. S., Vallano, M. L., Ueda, T., Naito, S., Sternberger, N. H., Sternberger, L. A., and DeLorenzo, R. J. (1986) Association of synapsin I with neuronal cytoskeleton. J. Biol Chem. 261, 8495–8504.PubMedGoogle Scholar
  68. Green, J. P. and Maayani, S. (1987) Nomenclature, classification and notation of receptors: 5-hydroxytryptamine receptors and binding sites as examples. In Perspectives on Receptor Classification (J. W. Black, D. H. Jenkinson, and V. P. Gerskowitch, eds.) Alan R. Liss, Inc. pp. 237–267.Google Scholar
  69. Gripenberg, J., Karkonen, M., and Jansson, S. E. (1974) Stimulation of adenosine 31,51-monophosphate formation in mast cells by 5-hydroxy-tryptamine and guanethidine. Acta. Physiol. Scand. 90, 648–650.PubMedCrossRefGoogle Scholar
  70. Grubb, M. N. and Burks, T. F. (1974) Modification of intestinal stimulatory effects of 5-hydroxytryptamine by adrenergic amines, prostaglandin E1 and theophylline. J. Pharmacol. Exper. Therap. 189, 476–483.Google Scholar
  71. Grubb, M. N. and Burks, T. F. (1975) Selective antagonists of the intestinal stimulatory effects of morphine by isoproterenol, prostaglandin E1 and theophylline. J. Pharmacol. Exper. Therap. 193, 884–891.Google Scholar
  72. Hamon, M., Bourgoin, S., Gozlan, H., Hall, M. D., Goetz, C., Artaud, F., and Horn, A. S. (1984) Biochemical evidence for the 5-HT agonist properties of PAT (8-hydroxy-2-(di-n-propylamino)tetralin) in the rat brain. Eur. J. Pharmacol. 100, 263–276.PubMedCrossRefGoogle Scholar
  73. Hamon, M., Nelson, D. L., Herbet, A., Bockaert, J., and Glowinski, J. (1980) Characteristics of serotonin receptors in the rat brain. Monogr. Neural Sci. 7, 161–175.PubMedGoogle Scholar
  74. Hamon, M., Nelson, D. L., Mallat, M., and Bourgoin, S. (1981) Are 5-HT receptors involved in the sprouting of serotoninergic terminals following neonatal 5,7-dihydroxytryptamine treatment in the rat? Neurochem. Int. 3, 69–79.PubMedCrossRefGoogle Scholar
  75. Harden, T. K. (1983) Agonist-induced desensitization of the β-adrenergic receptor-linked adenylate cyclase. Pharmacol. Rev. 35, 5–32.PubMedGoogle Scholar
  76. Heslop, J. P. and Berridge, M. J. (1980) Changes in cyclic AMP and cyclic GMP concentrations during the action of 5-hydroxytryptamine on an insect salivary gland. Biochem. J. 192, 247–255.PubMedGoogle Scholar
  77. Higgins, T. J. C., Allsopp, D., and Bailey, P. J. (1981a) Mechanisms of stimulation of rat cardiac muscle by 5-hydroxytryptamine. Biochem. Pharmacol. 30, 2703–2707.PubMedCrossRefGoogle Scholar
  78. Higgins, T. J. C., Bailey, P. J., and Allsopp, D. (1981b) Mechanisms of stimulation of cardiac myocyte beating rate by 5-hydroxytryptamine. Life Sci. 28, 999–1005.PubMedCrossRefGoogle Scholar
  79. Higgins, W. J. (1977) 5-Hydroxytryptamine-induced tachyphylaxis of the molluscan heart and concomitant desensitization of adenylate cyclase. J. Cyclic Nucleotide Res. 3, 293–302.PubMedGoogle Scholar
  80. Hotta, I. and Yamawaki, S. (1986) Lithium decreases 5-HT1 receptors but increases 5-HT-sensitive adenylate cyclase activity in rat hippocampus. Biol. Psychiatry 21, 1382–1390.PubMedCrossRefGoogle Scholar
  81. Huang, M., Shimizu, H., and Daly, J. (1971) Regulation of adenosine cyclic 31,51-phosphate formation in cerebral cortical slices. Mol. Pharmacol. 7, 155–162.PubMedGoogle Scholar
  82. Johnson, R. M., Connelly, P. A., Sisk, R. B., Pobiner, B. F., Hewlett, E. L, and Garrison, J. C. (1986) Pertussis toxin or phorbol 12-myrisate 13-acetate can distinguish between epidermal growth factor- and angiotensin-stimulated signals in hepatocytes. Proc. Natl. Acad. Sci. USA 83, 2032–2036.PubMedCrossRefGoogle Scholar
  83. Kakiuchi, S. and Rall, T. W. (1968a) The influence of chemical agents on the accumulation of adenosine 31,51-phosphate in slices of rabbit cerebellum. Mol. Pharmacol. 4, 367–378.PubMedGoogle Scholar
  84. Kakiuchi, S. and Rall, T. W. (1968b) Studies on adenosine 31,51-phosphate in rabbit cerebral cortex. Mol. Pharmacol. 4, 379–388.PubMedGoogle Scholar
  85. Kandel, E. R. and Schwartz, J. H. (1982) Molecular biology of learning: modulation of transmitter release. Science 218, 433–443.PubMedCrossRefGoogle Scholar
  86. Kasschau, M. R. and Mansour, T. E. (1982) Serotonin-activated adenylate cyclase during early development of Schistosoma mansoni. Nature 296, 66–68.PubMedCrossRefGoogle Scholar
  87. Katada, T. and Ui, M. (1982) Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA 79, 3129–3133.PubMedCrossRefGoogle Scholar
  88. Klein, M. and Kandel, E. R. (1978) Presynaptic modulation of voltage-dependent Ca2+ current: mechanism for behavioral sensitization in Aplysia californica. Proc. Natl. Acad. Sci. USA 75, 3512–3516.CrossRefGoogle Scholar
  89. Klein, M. and Kandel, E. R. (1980) Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia. Proc. Natl. Acad. Sci. USA 77, 6912–6916.PubMedCrossRefGoogle Scholar
  90. Lemos, J. R., Novak-Hofer, I., and Levitan, I. B. (1985) Phosphoproteins associated with the regulation of a specific potassium channel in the identified Aplysia neuron R15. J. Biol. Chem. 260, 3207–3214.PubMedGoogle Scholar
  91. Luchins, A. R. and Makman, M. H. (1980) Presence of histamine and serotonin receptors associated with adenylate cyclase in cultured calf-aorta smooth muscle cells. Biochem. Pharmacol. 29, 3155–3161.PubMedCrossRefGoogle Scholar
  92. MacDermot, J. (1979) Guanosine 51-triphosphate requirement for activation of adenylate cyclase by serotonin in a somatic cell hybrid. Life Sci. 5, 241–246.CrossRefGoogle Scholar
  93. MacDermot, J., Higashida, H., Wilson, S. P., Matsuzawa, H., Minna, J., and Nirenberg, M. (1979) Adenylate cyclase and acetylcholine release regulated by separate serotonin receptors of somatic cell hybrids. Proc. Natl. Acad. Sci. USA 76, 1135–1139.PubMedCrossRefGoogle Scholar
  94. Madison, D. V. and Nicoll, R. A. (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299, 636–638.PubMedCrossRefGoogle Scholar
  95. Mansour, T. E. (1979) Chemotherapy of parasitic worms: new biochemical strategies. Science 205, 462–469.PubMedCrossRefGoogle Scholar
  96. Mansour, T. E. and Mansour, J. M. (1978) Effect of some phosphodiesterase inhibitors on adenylate cyclase from the liver fluke, Fasciola hepatica. Biochem. Pharmacol. 28, 1943–1946.Google Scholar
  97. Mansour, T. E., Sutherland, E. W., Rall, T. W., and Bueding, E. (1960) The effect of 5-hydroxytryptamine (serotonin) on the formation of adenosine-31,51-phosphate by tissue particles from the liver fluke, Fasciola hepatica. J. Biol. Chem. 235, 466–470.Google Scholar
  98. Marchand-Dumont, G. and Baguet, F. (1975) The control mechanism of relaxation in molluscan catch-muscle (ABRM). Pfluger’s Arch. 354, 87–100.CrossRefGoogle Scholar
  99. Markstein, R., Hoyer, D., and Engel, G. (1986) 5-HT1A-receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn-Schmiedeb. Arch. Pharmacol. 333, 335–341.CrossRefGoogle Scholar
  100. Matsukura, S., Kakita, T., Fukase, M., and Fujita, T. (1981) Adenylate cyclase of a human medullary thyroid carcinoma. Experentia 37, 523–524.CrossRefGoogle Scholar
  101. McLawhon, R. W., Schoon, G. S., and Dawson, G. (1981) Possible role of cyclic AMP in the receptor-mediated regulation of glycosyltransferase activities in neurotumor cell lines. J. Neurochem. 37, 132–139.PubMedCrossRefGoogle Scholar
  102. McNall, S. J. and Mansour, T. E. (1984a) Novel serotonin receptors in Fasciola characterization by studies on adenylate cyclase activation and [3H]L5D binding. Biochem. Pharmacol. 33, 2787–2797.Google Scholar
  103. McNall, S. J. and Mansour, T. E. (1984b) Desensitization of serotonin stimulated adenylate cyclase in the liver fluke Fasciola hepatica. Biochem. Pharmacol. 33, 2799–2805.Google Scholar
  104. McNall, S. J. and Mansour, T. E. (1985) Forskolin activation of serotonin-stimulated adenylate cyclase in the liver fluke Fasciola hepatica. Biochem. Pharmacol. 34, 1683–1688.Google Scholar
  105. Middlemiss, D. K. and Fozard, J. R. (1983) 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur. J. Pharmacol. 90, 151–153.PubMedCrossRefGoogle Scholar
  106. Mishra, R., Lith, N. J., Steranka, L., and Sulser, F. (1981) The noradrenaline receptor coupled to adenylate cyclase system in brain: lack of modification by changes in the availability of serotonin. Naunyn-Schmiedeb. Arch. Pharmacol. 316, 218–224.CrossRefGoogle Scholar
  107. Mishra, R. and Sulser, F. (1978) Role of serotonin reuptake inhibition in the development of subsensitivity of the norepinephrine (NE) receptor coupled adenylate cyclase system. Commun. Psychopharmacol. 2, 365–370.PubMedGoogle Scholar
  108. Mueller, A. L., Hoffer, B. J., and Dunwiddie, T. V. (1981) Noradrenergic responses in rat hippocampus: evidence for mediation by α and β receptors in the in vitro slice. Brain Res. 214, 113–126.PubMedCrossRefGoogle Scholar
  109. Nash, H. L., Wallis, D. I., and Ash, G. (1984) 5-HT antagonists and blockade of neuronal (5-HT) receptors on ganglion cells. Gen. Pharmacol. 15, 339–344.PubMedCrossRefGoogle Scholar
  110. Nathanson, J. A. and Greengard, P. (1973) Octopamine-sensitive adenylate cyclase: evidence for a biological role of octopamine in nervous tissue. Science 180, 308–310.PubMedCrossRefGoogle Scholar
  111. Nathanson, J. A. and Greengard, P. (1974) Serotonin-sensitive adenylate cyclase in neural tissue and its similarity to the serotonin receptor: a possible site of action of lysergic acid diethylamide. Proc. Natl. Acad. Sci. USA 71, 797–801.PubMedCrossRefGoogle Scholar
  112. Nelson, D. L., Herbert, A., Enjalbert, A., Bockaert, J., and Hamon, M. (1980a) Serotonin-sensitive adenylate cyclase and [3H]serotonin binding sites in the CNS of the rat-I. Biochem. Pharmacol. 29, 2445–2453.PubMedCrossRefGoogle Scholar
  113. Nelson, D. L., Herbert, A., Adrien, J., Bockaert, J., and Hamon, M. (1980b) Serotonin-sensitive adenylate cyclase and [3H]serotonin binding sites in the CNS of the rat-II. Biochem. Pharmacol. 29, 2455–2463.PubMedCrossRefGoogle Scholar
  114. Nelson, D. L., Herbet, A., Pichat, L., Glowinski, J., and Hamon, M. (1979) In vitro and in vivo disposition of 3H-methiothepin in brain tissues. Naunyn-Schmiedeb. Arch. Pharmacol. 310, 25–33.CrossRefGoogle Scholar
  115. Nestler, E. J. and Greengard, P. (1983) Protein phospho ylation in the brain. Nature 305, 583–588.PubMedCrossRefGoogle Scholar
  116. Neufeld, A. H., Jumblatt, M. M., Esser, K. A., Cintron, C., and Beuerman, R. W. (1984) β-adrenegic and serotonergic stimulation of rabbit corneal tissues and cultured cells. Invest. Ophthalmol. Vis. Sci. 25, 1235–1239.PubMedGoogle Scholar
  117. Neufeld, A. H., Ledgard, S. E., Jumblatt, M. M., and Klyce, S. D. (1982) Serotonin-stimulated cyclic AMP synthesis in the rabbit corneal epithelium. Invest. Ophthalmol. Vis. Sci. 23, 193–198.PubMedGoogle Scholar
  118. Northup, J. K. and Mansour, T. E. (1978a) Adenylate cyclase from fasciola hepatica. 1. Ligand specificity and of adenylate cyclase-couple serotonin receptors. Mol. Pharmacol. 14, 804–819.PubMedGoogle Scholar
  119. Northup, J. K. and Mansour, T. E. (1978b) Adenylate cyclase from fasciola hepatica. 2. Role of guanine nucleotides in coupling adenylate cyclase and serotonin receptors. Mol. Pharmacol. 14, 820–833.PubMedGoogle Scholar
  120. O’Brien, R. A., Boublik, M., and Spector, S. (1975) Immunopharmacological studies using 5-hydroxytryptamine antibody. J. Pharmacol. Exper. Therap. 194, 145–153.Google Scholar
  121. Pagel, J., Christian, S. T., Quayle, E. S., and Monti, J. A. (1976) A serotonin sensitive adenylate cyclase in mature rat brain synaptic membranes. Life Sci. 19, 819–824.PubMedCrossRefGoogle Scholar
  122. Palmer, G. C., Robinson, G. A., Manian, A. A., and Sulser, F. (1972) Modification by psychotropic drugs of the cyclic AMP response to norepinephrine in the rat brain in vitro. Psychopharmacologia (Beri.) 23, 201–211.CrossRefGoogle Scholar
  123. Palmer, G. C., Sulser, F., and Robison, G. A. (1973) Effects of neurohumoral and adrenergic agents on cyclic AMP levels in various areas of the rat brain in vitro. Neuropharmacology 12, 327–337.PubMedCrossRefGoogle Scholar
  124. Pedigo, N. W., Yamamura, H. I., and Nelson, D. L. (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J. Neurochem. 36, 220–226.PubMedCrossRefGoogle Scholar
  125. Premont, J., Daguet-de Montety, M. C., Herbet, A., Glowinski, J., Bockaert, J., and Prochiantz, A. (1983) Biogenic amines and adenosine-sensitive adenylate cyclases in primary cultures of striatal neurons. Develop. Brain Res. 9, 53–61.CrossRefGoogle Scholar
  126. Rasenick, M. M., Valley, S., Manuelidis, E. E., and Manuelidis, L. (1986) Creutzfeldt-Jakob infection increases adenylate cyclase activity in specific regions of guinea pig brain. FEBS 198, 164–168.CrossRefGoogle Scholar
  127. Rasmussen, H. and Barrett, P. Q. (1984) Calcium messenger system: an integrated view. Physiol. Rev. 64, 938–984.PubMedGoogle Scholar
  128. Robertson, H. A. and Osborne, N. N. (1979) Putative neurotransmitters in the rat annelid central nervous system: presence of 5-hydroxytryptamine and octopamine-stimulated adenylate cyclases. Comp. Biochem. Physiol. [C] 64, 7–14.CrossRefGoogle Scholar
  129. Roch, P. and Kalix, P. (1975) Effects of biogenic amines on the concentration of adenosine 31,51-monophosphate in bovine superior cervical ganglion. Neuropharmacology 14, 21–29.PubMedCrossRefGoogle Scholar
  130. Rudman, D. (1978) Effect of melanotropic peptides on adenosine 31,51-monophosphate accumulation by regions of rabbit brain. Endocrinology 103, 1556–1561.PubMedCrossRefGoogle Scholar
  131. Salzman, E. W. and Levine, L. (1971) Cyclic 31,51-adenosine monophosphate in human blood platelets. J. Clin. Invest. 50, 131–141.PubMedCrossRefGoogle Scholar
  132. Sato, A., Onaya, T., Kotani, M., Harada, A., and Yamada, T. (1974) Effects of biogenic amines on the formation of adenosine 31,51-monophosphate in porcine cerebral cortez, hypothalamus and anterior pituitary slices. Endocrinology 94, 1311–1317.PubMedCrossRefGoogle Scholar
  133. Sawada, M., Ichinose, M., Ito, I., Maeno, T., McAdoo, D. J. (1984) Effects of 5-hydroxytryptamine on membrane potential, contractility, accumulation of cyclic AMP, and Ca++ movements in anterior aorta and ventricle of Aplysia. J. Neurophys. 51, 361–374.Google Scholar
  134. Schiebler, W., Jahn, R., Doucet, J. P., Rothlein, J., and Greengard, P. (1986) Characterization of synapsin I binding to small synaptic vesicles. J. Biol. Chem. 261, 8383–8390.PubMedGoogle Scholar
  135. Schnellmann, R. G., Waters, S. J., and Nelson, D. L. (1984) [3H]5-Hydroxy-tryptamine binding sites: species and tissue variation. J. Neurochem. 42, 65–70.PubMedCrossRefGoogle Scholar
  136. Schultz, J. and Daly, J. W. (1973) Cyclic adenosine 31,51-monophosphate in guinea pig cerebral cortical slices. J. Biol. Chem. 248, 860–866.PubMedGoogle Scholar
  137. Seamon, K. B. and Wetzel, B. (1984) Interaction of forskolin with dually regulated adenylate cyclase. Adv. Cyclic Nuc. Prot. Phosph. Res. 17, 91–99.Google Scholar
  138. Shah, S. V., Northrup, T. E., Hui, Y. S. F., and Dousa, T. P. (1979) Action of serotonin (5-hydroxytryptamine) on cyclic nucleotides in glomeruli of rat renal cortex. Kidney Int. 15, 463–472.PubMedCrossRefGoogle Scholar
  139. Shenker, A., Maayani, S., Weinstein, H., and Green, J. P. (1983) Enhanced serotonin-stimulated adenylate cyclase activity in membranes from adult guinea pig hippocampus. Life Sci. 32, 2335–2342.PubMedCrossRefGoogle Scholar
  140. Shenker, A., Maayani, S., Weinstein, H., and Green, J. P. (1985) Two 5-HT receptors linked to adenylate cyclase in guinea pig hippocampus are discriminated by 5-carboxamidotryptamine and spiperone. Eur. J. Pharmacol. 109, 427–429.PubMedCrossRefGoogle Scholar
  141. Shenker, A., Maayani, S., Weinstein, H., and Green, J. P. (1987) Pharmacological characterization of two 5-hydroxytryptamine receptors coupled to adenylate cyclase in guinea pig hippocampal membranes. Mol. Pharmacol. 31, 357–367.PubMedGoogle Scholar
  142. Sheppard, H. and Burghardt, C. R. (1970) The stimulation of adenylyl cyclase of rat erythrocyte ghosts. Mol. Pharmacol. 6, 425–429.PubMedGoogle Scholar
  143. Sheppard, H. and Burghardt, C. R. (1971) The effect of alpha, beta, and dopamine receptor-blocking agents on the stimulation of rat erythrocyte adenyl cyclase by dihydroxyphenethylamines and their β-hydroxylated derivatives. Mol. Pharmacol. 7, 1–7.PubMedGoogle Scholar
  144. Shimizu, H., Creveling, C. R., and Daly, J. (1970) Stimulated formation of adenosine 31,51-cyclic phosphate in cerebral cortex: synergism between electrical activity and biogenic amines. Proc. Natl Acad. Sci. USA 65, 1033–1040.PubMedCrossRefGoogle Scholar
  145. Sills, M., Wolfe, B. B., and Frazer, A. (1984) Multiple states of the 5-hydroxy-tryptaminel receptor as indicated by the effects of GTP on [3H]5-hydroxytryptamine binding in rat frontal cortex. Mol. Pharmacol. 26, 10–18.PubMedGoogle Scholar
  146. Skolnick, P., Huang, M., Daly, J., and Hoffer, B. (1973) Accumulation of adenosine 31,51-monophosphate in incubated slices from discrete regions of squirrel monkey cerebral cortex: effect of norepinephrine, serotonin and adenosine. J. Neurochem. 21, 237–240.PubMedCrossRefGoogle Scholar
  147. Stockmeier, C. A., Martino, A. M., and Kellar, K. J. (1985) A strong influence of serotonin axons on β-adrenergic receptors in rat brain. Science 230, 323–325.PubMedCrossRefGoogle Scholar
  148. Sutherland, E. W. and Rail, T. W. (1960) The relation of adenosine-31,51-phosphate and Phosphorylase to the actions of catecholamines and other hormones. Pharmacol. Rev. 12, 265–299.Google Scholar
  149. Trevethick, M. A., Feniuk, W., and Humphrey, P. P. A. (1984) 5-hydroxy-tryptamine-induced relaxation of neonatal porcine vena cava in vitro. Life Sci. 35, 477–486.CrossRefGoogle Scholar
  150. Trevethick, M. A., Feniuk, W., and Humphrey, P. P. A. (1986) 5-carboxamidotryptamine: a potent agonist mediating relaxation and elevation of cyclic AMP in the isolated neonatal porcine vena cava. Life Sci. 38, 1521–1528.PubMedCrossRefGoogle Scholar
  151. Tricklebank, M. D., Forler, C., and Fozard, J. R. (1985) The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur. J. Pharmacol. 106, 271–282.CrossRefGoogle Scholar
  152. Tsang, D. and Lal, S. (1977) Effect of monoamine receptor agonists and antagonists on cyclic AMP accumulation in human cerebral cortex slices. Can. J. Physiol. Pharmacol. 55, 1263–1269.PubMedCrossRefGoogle Scholar
  153. Tsang, D. and Lai, S. (1978) Accumulation of cyclic adenosine 31,51-mono-phosphate in human cerebellar cortex slices: effect of monoamine receptor agonists and antagonists. Brain Res. 140, 307–313.PubMedCrossRefGoogle Scholar
  154. Umemura, S., Smyth, D. D., and Pettinger, W. A. (1986) α-adrenoceptor stimulation and cellular cAMP levels in microdissected fat glomeruli. Am. J. Physiol.250, F103–F108.PubMedGoogle Scholar
  155. Vacas, M. I., Berria, M. I., Cardinali, D. P., and Lascano, E. F. (1984) Melatonin inhibits β-adrenoceptor-stimulated cyclic AMP accumulation in rat astroglial cell cultures. Neuroendocrinology 38, 176–181.PubMedCrossRefGoogle Scholar
  156. Von Hungen, K. and Roberts, S. (1973) Adenylate cyclase receptors for adrenergic neurotransmitters in rat cerebral cortex. Eur. J. Biochem. 36, 391–401.CrossRefGoogle Scholar
  157. Von Hungen, K., Roberts, S., and Hill, D. F. (1974) Development and regional variations in neurotransmitter-sensitive adenylate cyclase systems in cell-free preparations from rat brain. J. Neurochem. 22, 811–819.CrossRefGoogle Scholar
  158. Von Hungen, K., Roberts, S., and Hill, D. F. (1975) Serotonin-sensitive adenylate cyclase activity in immature rat brain. Brain Res. 84, 257–267.CrossRefGoogle Scholar
  159. Weiss, B. and Costa, E. (1968) Selective stimulation of adenyl cyclase of rat pineal gland by pharmacologically active catecholamines. J. Pharmacol. Exper. Therap. 161, 310–319.Google Scholar
  160. Weiss, S. and Drummond, G. I. (1981) Dopamine- and serotonin-sensitive adenylate cyclase in the gill of Aplysia californica. Mol. Pharmacol. 20, 592–597.PubMedGoogle Scholar
  161. Weiss, K. R., Mandelbaum, D. E., Schonberg, M., and Kupfermann, I. (1979) Modulation of buccal muscle contractility by serotonergic metacerebral cells in Aplysia: evidence for a role of cyclic adenosine monophosphate. J. Neurophysiol. 42, 791–803.PubMedGoogle Scholar
  162. Weiss, K. R., Schonberg, M., Mandelbaum, D. E., and Kupfermann, I. (1978) Activity of an individual serotonergic neurone in Aplysia enhances synthesis of cyclic adenosine monophosphate. Nature 272, 727–728.PubMedCrossRefGoogle Scholar
  163. Weiss, S., Sebben, M., Kemp, D. E., and Bockaert, J. (1986) Serotonin 5-HT1 receptors mediate inhibition of cyclic AMP production in neurons. Eur. J. Pharmacol. 120, 227–230.PubMedCrossRefGoogle Scholar
  164. Williams, B. C., McDougall, J. G., Tait, F., and Tait, S. A. S. (1981) Calcium efflux and steroid output from superfused rat adrenal cells: effects of potassium, adrenocorticotropic hormone, 5-hydroxytryptamine, adenosine 31:51-yclic monophosphate and angiotensins II and III. Clin. Sci. 61, 541–551.PubMedGoogle Scholar
  165. Williams, B. C., Shaikh, S., and Edwards, D. R. W. (1984) The specificity of ketanserin in the inhibition of serotonin-induced steroidogenesis in the rat adrenal zona glomerulosa. J. Hypertension 2 (suppl 3), 559–561.Google Scholar
  166. Yatani, A., Codina, J., Brown, A. M., and Birnbaumer, L. (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein Gk. Science 235, 207–211.PubMedCrossRefGoogle Scholar
  167. Yoshimura, K., Hiroshige, T., and Itoh, S. (1969) Lipolytic action of serotonin in brown adipose tissue in vitro. Japanese J. Pharmacol. 19, 176–186.Google Scholar
  168. Zieve, P. and Greenough, W. B. (1969) Adenyl cyclase in human platelets: activity and responsiveness. Biochem. Biophys. Res. Comm. 5, 462–466.CrossRefGoogle Scholar
  169. Zimmerman, D., Abboud, H. E., George, L. E., Edis, A. J., and Dousa, T. P. (1980) Serotonin stimulates adenosine 31,51-monophosphate accumulation in parathyroid adenoma. J. Clin. Endocrinol. Metab. 51, 1274–1278.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1988

Authors and Affiliations

  • Michael De Vivo
  • Saul Maayani

There are no affiliations available

Personalised recommendations