Beam Theory and the Residual Effects in the Elastic Strip

  • Diarmuid Ó Mathúna

Abstract

In order to treat the problem of the straight elastic beam within the framework of a two-dimensional formulation, we consider the boundary value problem for the plane figure defined by the side-view projection of the three-dimensional body. Corresponding to the midplane of the beam the figure has an axis of symmetry, called the centerline or axis, which immediately defines a pair of reference directions in the plane; namely, the axial and transverse directions respectively parallel and normal to the centerline.

Keywords

Resid Tral Dinate Clarification Suffix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon, S. and Nirenberg, L., Communications in Pure and Applied Mathematics, vol. 16, 1963.Google Scholar
  2. 2.
    Benthem, J. P., Quarterly Journal of Mechanics and Applied Mathematics, vol. 16, 1963.Google Scholar
  3. 3a.
    Bernkoff, M., (a) Archive for the History of the Exact Sciences, vol. 3, 1966.Google Scholar
  4. 3b.
    Bernkoff, M. Archive for the History Exact Sciences, vol. 4, 1968.Google Scholar
  5. 4.
    Bernoulli, J., Collected Works, t. 2, Geneva, 1744.Google Scholar
  6. 5.
    Cauchy, A. L., Exercises de Mathématiques, Paris, 1827–28.Google Scholar
  7. 6a.
    Cooke, R., Infinite Matrices and Sequence Spaces, MacMillan, 1950;MATHGoogle Scholar
  8. 6b. Cooke, R., Infinite Matrices and Sequence Spaces, New York, Dover, 1960.MATHGoogle Scholar
  9. 7.
    Coulomb, C. A., Mémoires par divers savants, Paris, 1776.Google Scholar
  10. 8.
    Doob, P. L., Transactions of the American Mathematical Society, vol. 58, 1945.Google Scholar
  11. 9.
    Düren, P. L., Transactions of the American Mathematical Society, vol. 99, 1961.Google Scholar
  12. 10.
    Euler, L., Methodus Invenienali Lineas Curvas Maximi Minimive Proprietate Gaudentes, Lausanne, 1744.Google Scholar
  13. 11.
    Fadle, J., Ingenieur Archivium, vol. 11, 1941.Google Scholar
  14. 12.
    Galileo Galilei, Discorsi e Dimostrazioni Matematische, Leiden, 1638.Google Scholar
  15. 13.
    Greenberg, G. A., PMM (Applied Mathematics and Mechanics), vol. 17, 1953.Google Scholar
  16. 14a.
    Gregory, R. D., (a) Journal of Elasticity, vol. 9, 1979.Google Scholar
  17. 14b.
    Gregory, R. D. Journal of Elasticity, vol. 10, 1980.Google Scholar
  18. 15.
    Gregory, R. D. and Wan, F. Y. M., Decaying States of Plane Strain in a Semiinfinite strip and boundary conditions for Plate Theory. Inst. Appl. Mech. and Statistics, Univ. B.C., Technical Report 81–17, Sept. 1981.Google Scholar
  19. 16.
    Gusein-Zade, M. I., PMM (Applied Mathematics and Mechanics), vol. 29, 1965.Google Scholar
  20. 17.
    Hellinger, E. and Toeplitz, O., Integralgleichungen und Gleichungen mit Unendlichvielen Unbekannten, Leipzig and Berlin, 1928.Google Scholar
  21. 18.
    Helly, E., Monatshefte für Mathematik und Physik, vol. 31, 1921.Google Scholar
  22. 19.
    Hubert, D., Grundzuge einer allgemeinen Theorie der Linearen Integralgleichungen, Leipzig and Berlin, 1912.Google Scholar
  23. 20.
    Hill, G. W., (a) On the part of the Motion of the lunar perigee which is a function of the motions of the sun and the moon. Cambridge, Mass., 1877.Google Scholar
  24. 20b.
    Hill, G. W. Acta Mathematica, vol. 8, 1886.Google Scholar
  25. 21a.
    Hille, E., (a) Annali di Matematia Pura et Applicata (4), 55, 1961.Google Scholar
  26. 21b.
    Hille, E. Lectures on Ordinary Differential Equations, Addison-Wesley, 1969.MATHGoogle Scholar
  27. 22.
    Hille, E. and Phillips, R. S., Functional Analysis and Semi-Groups, Providence, R.I., 1957 (American Mathematical Society Colloquium Publications vol. 31).Google Scholar
  28. 23.
    Hooke, R., De Potentia Restitutiva, London, 1678.Google Scholar
  29. 24a.
    Horvay, G., (a) Journal of Applied Mechanics, vol. 20, 1953.Google Scholar
  30. 24b.
    Horvay, G. Journal of Applied Mechanics, vol. 24, 1957.Google Scholar
  31. 25a.
    Horvay, G. and Born, J. S. (a) Journal of Mathematics and Physics, vol. 33, 1955.Google Scholar
  32. 25b.
    Horvay, G. and Born, J. S., Journal of Applied Mechanics, vol. 24, 1957.Google Scholar
  33. 26.
    Johnson, M. W. and Little, R. W., Quarterly of Applied Mathematics, vol. 22, 1965.Google Scholar
  34. 27a.
    von Koch, H., (a) Acta Mathematica, vol. 15, 1891.Google Scholar
  35. 27b.
    Acta Mathematica, vol. 16, 1892–3.Google Scholar
  36. 28.
    Mariotte, E., Traité de Mouvement des Eaux, Paris, 1686.Google Scholar
  37. 29.
    Massera, J. L. and Schaffer, J.J., Linear Differential Equations and Function Spaces, New York, 1966.MATHGoogle Scholar
  38. 30.
    Newburgh, J. D., Duke Mathematical Journal, vol. 18, 1951.Google Scholar
  39. 31.
    Papkovitch, P. R., Dokl. Akad. Nauk. U.S.S.R., vol. 27, 1940.Google Scholar
  40. 32.
    Poincaré, H., Bulletin de Société de Mathématiques France, vol. 14, 1885–6.Google Scholar
  41. 33.
    Riesz, F. and Sz.-Nagy, B., Functional Analysis, New York, 1955.Google Scholar
  42. 34.
    de Saint Venant, B., (a) Mémoires des Savants Etrangers, t. 14, 1855.Google Scholar
  43. 34b.
    de Saint Venant, B. Journal de Mathématiques (Liouville), ser. 2, t. 1, 1856.Google Scholar
  44. 35.
    Smith, R. C. T., Australian Journal of Scientific Research, vol. 5, 1951.Google Scholar
  45. 36.
    Stone, M. H., Linear Transformations in Hubert Space and Their Application to Analysis, New York, 1932 (American Mathematical Society Colloquium Publications, vol. 15).Google Scholar
  46. 37.
    Wintner, A., Spektraltheorie der Unendlichen Matrizen, Leipzig, 1929.MATHGoogle Scholar
  47. 38.
    Young, T., A Course of Lectures on Natural Philosophy and the Mechanical Arts, London, 1807.Google Scholar

Copyright information

© Birkhäuser Boston 1989

Authors and Affiliations

  • Diarmuid Ó Mathúna
    • 1
  1. 1.Dublin Institute for Advanced StudiesDublinIreland

Personalised recommendations