Skip to main content

The 2-Sylow Subgroup

  • Chapter
Binary Quadratic Forms

Abstract

One of the most carefully studied questions about quadratic class groups is the precise determination of the 2-Sylow subgroup. This is intimately connected, in the case of positive discriminant, with the question of which discriminants Δ possess solutions of the negative Pell equation

$$ {X^2} - \Delta {Y^2} = - 4 $$
(9.1)

and both questions are related for all discriminants to the existence of higher-order reciprocity laws analogous to the law of quadratic reciprocity. The connections come from the following observations. Given a fundamental discriminant with t prime factors, we are guaranteed a factor of 2t−1 in the class number. This is the exact power of 2 in the class number if and only if the 2-Sylow subgroup is an elementary 2-group, or if the genera each have an odd number of classes, or if there is exactly one ambiguous class per genus, these being equivalent conditions. The ambiguous classes correspond to factors of the discriminant, and a class which represents a prime p dividing Δ also represents Δ/p, so the 2-Sylow subgroup can only be elementary if no prime factor of Δ is a quadratic residue of all the other prime factors of Δ (For the sake of argument, we ignore for the moment the extra characters ϰ and ψ.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Special References for Chapter 9

  • Pierre Barrucand and Harvey Cohn, “Note on primes of type x 2×32y 2, class number, and residuacity,” Crelle, v. 238, 1969, 67–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Helmut Bauer, „Zur Berechnung der 2-Klassenzahl der quadratischen Zahlkörper mit genau zwei verschieden en Diskriminantenprimteilern,“ Crelle, v. 248, 1971, 43–46.

    Google Scholar 

  • Helmut Bauer, „Die 2-Klassenzahlen spezieller quadratischer Zahlkörper,“ Crelle, v. 252, 1972, 79–81.

    Article  MATH  Google Scholar 

  • Jacob A. Brandler, “Residuacity properties of real quadratic units,” Journal of Number Theory, v. 5, 1973, 271–286.

    Article  MathSciNet  MATH  Google Scholar 

  • Ezra Brown, “Representation of discriminantal divisors by binary quadratic forms,” Journal of Number Theory, v. 3, 1971, 213–225.

    Article  MathSciNet  MATH  Google Scholar 

  • Ezra Brown, “A theorem on biquadratic reciprocity,” Proceedings of the American Mathematical Society, v. 30, 1971, 220–222.

    Google Scholar 

  • Ezra Brown, “Binary quadratic forms of determinant —pq,” Journal of Number Theory, v. 4, 1972, 408–410.

    Article  MathSciNet  MATH  Google Scholar 

  • Ezra Brown, “Quadratic forms and biquadratic reciprocity,” Crelle, v. 253, 1972, 214–220.

    Article  MATH  Google Scholar 

  • Ezra Brown, “Biquadratic reciprocity laws,” Proceedings of the American Mathematical Society, v. 37, 1973, 374–376.

    MATH  Google Scholar 

  • Ezra Brown, “Class numbers of complex quadratic fields,” Journal of Number Theory, v. 6, 1974, 185–191.

    Article  MathSciNet  MATH  Google Scholar 

  • Ezra Brown, “The class number and fundamental unit of \( Q(\sqrt {2p} ). \), for p ≡ 1 (mod 16) a prime,” Journal of Number Theory, v. 16, 1983, 95–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Ezra Brown and Charles J. Parry, “Class numbers of imaginary quadratic fields having exactly three discriminantal divisors,” Crelle, v. 260, 1973, 31–34.

    Google Scholar 

  • J. Bucher, „Neues über die Pell’sche Gleichung,“ Naturforschende Gesellschaft Mitteilungen Luzern, v. 14, 1943, 1–18.

    MathSciNet  Google Scholar 

  • Klaus Burde, „Ein rationales biquadratisches Reziprozitätsgesetz,“ Crelle, v. 235, 1969, 175–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Duncan A. Buell and Kenneth S. Williams, “An octic reciprocity law of Scholz type,” Proceedings of the American Mathematical Society, v. 77, 1979, 315–318.

    MathSciNet  MATH  Google Scholar 

  • Duncan A. Buell, Philip A. Leonard, and Kenneth S. Williams, “Note on the quadratic character of a quadratic unit,” Pacific Journal of Mathematics, v. 92, 1981, 35–38.

    MathSciNet  MATH  Google Scholar 

  • P. Epstein, „Zur Auflösbarkeit der Gleichung x 2Dy 2 =-1,“ Crelle, v. 171, 1934, 243–252.

    Article  Google Scholar 

  • Franz Halter-Koch, “An Artin character and representations of primes by binary quadratic forms III,” manuscripta mathematica, v. 51, 1985, 163–169.

    Article  MathSciNet  MATH  Google Scholar 

  • Franz Halter-Koch, Pierre Kaplan, and Kenneth S. Williams, “An Artin character and representations of primes by binary quadratic forms II,” manuscripta mathematica, v. 37, 1982, 357–381.

    Article  MathSciNet  MATH  Google Scholar 

  • Helmut Hasse, „Über die Teilbarkeit durch 23 der Klassenzahl der quadratichen Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern,“ Mathematische Nachrichten, v. 46, 1970, 61–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Helmut Hasse, Über die Klassenzahl des Körpers \( P(\sqrt { - 2p} ) \) mit einer Primzahl p ≠ 2,“ Journal of Number Theory, v. 1, 1969, 231–234.

    Article  MathSciNet  MATH  Google Scholar 

  • Pierre Kaplan, „Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique,“ Journal of the Mathematical Society of Japan, v. 25, 1973, 596–608.

    Article  MathSciNet  MATH  Google Scholar 

  • Pierre Kaplan, „Sur le 2-groupe des classes d‘ideaux des corps quadratiques,“ Crelle, v. 283/284, 1976, 313–363.

    Article  Google Scholar 

  • Pierre Kaplan and Kenneth S. Williams, “An Artin character and representations of primes by binary quadratic forms,” manuscripta mathematica, v. 33, 1981, 339–356.

    Article  MathSciNet  MATH  Google Scholar 

  • Emma Lehmer, “Criteria for cubic and quartic residuacity,” Mathematika, v. 5, 1958, 20–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Emma Lehmer, “On the quadratic character of some quadratic surds,” Crelle, v. 220, 1971, 42–48.

    Article  MathSciNet  Google Scholar 

  • Emma Lehmer, “On some special quartic reciprocity laws,” Acta Arithmetica, v. 21, 1972, 367–377.

    MathSciNet  MATH  Google Scholar 

  • Emma Lehmer, “On the quartic character of quadratic units,” Crelle, v. 268/269, 1974, 294–301.

    Article  MathSciNet  Google Scholar 

  • Emma Lehmer, “Rational reciprocity laws,” American Mathematical Monthly, v. 85, 1978, 467–472.

    Article  MathSciNet  MATH  Google Scholar 

  • Philip A. Leonard and Kenneth S. Williams, “The quartic characters of certain quadratic units,” Journal of Number Theory, v. 12, 1980, 106–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Philip A. Leonard and Kenneth S. Williams, “A representation problem involving binary quadratic forms,” Archiv der Mathematik, v. 36, 1981, 53–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Philip A. Leonard and Kenneth S. Williams, “The quadratic and quartic characters of certain quadratic units I,” Pacific Journal of Mathematics, v. 71, 1977, 101–106.

    MathSciNet  MATH  Google Scholar 

  • Philip A. Leonard and Kenneth S. Williams, “The quadratic and quartic characters of certain quadratic units II,” Rocky Mountain Journal of Mathematics, v. 9, 1979, 683–692.

    Article  MathSciNet  MATH  Google Scholar 

  • Patrick Morton, “On Rédei’s theory of the Pell equation,” Crelle, v. 307/308, 1979, 373–398.

    Article  MathSciNet  Google Scholar 

  • L. Rédei, „Arithmetischer Beweis des Satzes über die Anzahl der durch 4 teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper,“ Crelle, v. 171, 1934, 55–60.

    Article  Google Scholar 

  • L. Rédei, „Eine obere Schranke der Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper,“ Crelle, v. 171, 1934, 61–64.

    Article  MATH  Google Scholar 

  • L. Rédei, „Über die Grundeinheit und die durch 8 teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper,“ Crelle, v. 171, 1934, 131–148.

    Article  Google Scholar 

  • L. Rédei and H. Reichardt, „Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers,“ Crelle, v. 170, 1933, 69–74.

    Google Scholar 

  • H. Reichardt, „Über die 2-Klassengruppe gewisser quadratischer Zahlkörper,“ Mathematische Nachrichten, v. 46, 1970, 71–80.

    Article  MathSciNet  MATH  Google Scholar 

  • H. C. Williams, “The quadratic character of a certain quadratic surd,” Utilitas Mathematica, v. 5, 1974, 49–55.

    MathSciNet  MATH  Google Scholar 

  • Kenneth S. Williams, “A rational octic reciprocity law,“ Pacific Journal of Mathematics, v. 63, 1976, 563–570.

    MathSciNet  MATH  Google Scholar 

  • Kenneth S. Williams, “Note on Burde’s rational biquadratic reciprocity law,“ Canadian Mathematics Bulletin, v. 20, 1977, 145–146.

    Article  MATH  Google Scholar 

  • Kenneth S. Williams, „Congruences modulo 8 for the class numbers of \( Q(\sqrt { \pm p} ),\;p\, \equiv {\rm{3}} \) (mod 4) a prime,“ Journal of Number Theory, v. 15, 1982, 182–198.

    Article  MathSciNet  MATH  Google Scholar 

  • Kenneth S. Williams, “On Scholz’s reciprocity law,“ Proceedings of the American Mathematical Society, v. 46, 1977, 45–46.

    Google Scholar 

  • Kenneth S. Williams and James D. Currie, “Class numbers and biquadratic reciprocity,” Canadian Journal of Mathematics, v. 34, 1982, 969–988.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Buell, D.A. (1989). The 2-Sylow Subgroup. In: Binary Quadratic Forms. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4542-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4542-1_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8870-1

  • Online ISBN: 978-1-4612-4542-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics