Advertisement

Role of Basal Ganglia in Initiation of Voluntary Movements

  • Okihide Hikosaka
Part of the Research Notes in Neural Computing book series (NEURALCOMPUTING, volume 1)

Abstract

A motor system called the basal ganglia facilitates movement initiation by removing its powerful inhibition on other motor areas. It may also facilitate activity in the cerebral cortex with disinhibition and ensure sequential processing of motor signals.

Keywords

Basal Ganglion Substantia Nigra Superior Colliculus Cortical Activity Tonic Inhibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruce, C.J. and Goldberg, M.E. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53: 603–635, 1985.Google Scholar
  2. 2.
    DeLong, M.R. and Georgopoulos, A.P. Motor functions of the basal ganglia. In: Handbook of Physiology, The Nervous System, edited by V.B. Brooks. Bethesda, MD: Am. Physiol. Soc., 1981, sect. 1, part 2, vol. II, chapt. 21, pp. 1017–1061.Google Scholar
  3. 3.
    Graybiel, A.M. Organization of the nigrotectal connection: an experimental tracer study in the cat. Brain Res. 143: 339–348, 1978.CrossRefGoogle Scholar
  4. 4.
    Hikosaka, O. and Sakamoto, M. Cell activity in monkey caudate nucleus preceding saccadic eye movements. Exp. Brain Res. 63: 659–662, 1986.CrossRefGoogle Scholar
  5. 5.
    Hikosaka, O. and Sakamoto, M. Neural activities in the monkey basal ganglia related to attention, memory and anticipation. Brain Dev. 8: 454–462, 1986.Google Scholar
  6. 6.
    Hikosaka, O. and Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol. 49:1230–1253, 1983.Google Scholar
  7. 7.
    Hikosaka, O. and Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. II. Visual responses related to fixation of gaze. J. Neurophysiol. 49: 1254–1267, 1983.Google Scholar
  8. 8.
    Hikosaka, O. and Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. J. Neurophysiol. 49:1268–1284, 1983.Google Scholar
  9. 9.
    Hikosaka, O. and Wurtz, R.H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J. Neurophysiol. 49:1285–1301,1983.Google Scholar
  10. 10.
    Hikosaka, O. and Wurtz, R.H. Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in the monkey superior colliculus. J. Neurophysiol. 53: 266–291, 1985.Google Scholar
  11. 11.
    Hikosaka, O. and Wurtz, R.H. Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in the monkey substantia nigra pars reticulata. J. Neurophysiol. 53: 292–308, 1985.Google Scholar
  12. 12.
    Huerta, M.F., Krubitzer, L.A. and Kaas, J.H. Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. subcortical connections. J. Comp. Neurol. 253: 415–439, 1986.CrossRefGoogle Scholar
  13. 13.
    Ilinsky, I.A., Jouandet, M.L. and Goldman-Rakic, P.S. Organization of the nigrothalamocortical systems in the rhesus monkey. J. Comp. Neurol. 236: 315–330, 1985.CrossRefGoogle Scholar
  14. 14.
    Jayaraman, A., Batton, R.R. and Carpenter, M.B. Nigrotectal projections in the monkey: an autoradiographic study. Brain Res. 135: 147–152, 1977.CrossRefGoogle Scholar
  15. 15.
    Karabelas, A.B. and Moschovakis, A.K. Nigral inhibitory termination on efferent neurons of the superior colliculus: an intracellular horseradish peroxidase study in the cat. J. Comp. Neurol. 239: 309–329, 1985.CrossRefGoogle Scholar
  16. 16.
    Parent, A., MaCkey, A. and De Bellefeuille, L. The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double labeling study. Neurosci. 10: 1137–1150, 1983.CrossRefGoogle Scholar
  17. 17.
    Percheron, G., Yelnik, J. and Frauds, C. A Golgi analysis of the primate globus pallidus. in. Spatial organization of the striato-pallidal complex. J. Comp. Neurol. 227: 214–227, 1984.CrossRefGoogle Scholar
  18. 18.
    Schell, G.R. and Strick, P.L. The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J. Neurosci. 4: 539–560, 1984.Google Scholar
  19. 19.
    Schlag, J. and Schalg-Rey, M. Evidence for a supplementary eye field. J. Neurophysiol. 57: 179–200, 1987.Google Scholar
  20. 20.
    Selemon, L.D. and Goldman-Rakic, P.S. Longitudinal topography andinterdigitation of corticostriatal projections in the rhesus monkey. J. Neurosci. 5: 776–794, 1985.Google Scholar
  21. 21.
    Sparks, D.L. Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol. Rev. 66: 118–171, 1986.Google Scholar
  22. 22.
    Ueki, A. The mode of nigro-thalamic transmission investigated with intracellular recording in the cat. Exp. Brain Res. 49: 116–124, 1983.CrossRefGoogle Scholar
  23. 23.
    Uno, M. and Yoshida, M. Monosynaptic inhibition of thalamic neurons produced by stimulation of the pallidal nucleus in cats. Brain Res. 99: 377–380, 1975.CrossRefGoogle Scholar
  24. 24.
    Wurtz, R.H. Response of striate cortex neurons during rapid eye movements in the monkey. J. Neurophysiol. 32: 975–986, 1969.Google Scholar
  25. 25.
    Wurtz, R.H. and Albano, J.E. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci. 3: 189–226, 1980.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Okihide Hikosaka
    • 1
  1. 1.Department of PhysiologyToho University School of MedicineTokyoJapan

Personalised recommendations