Skip to main content

Insect Neurodevelopment: Gene Cascades in Drosophila

  • Chapter
  • 100 Accesses

Part of the book series: Experimental and Clinical Neuroscience ((ECN))

Abstract

How is an ectodermal cell specified to become a neural precursor? How do its progeny acquire their correct cellular identities? These questions are of central importance in neural development. Many genes have been identified which act at particular stages in a cascade of events during neurogenesis. A network of genes are involved in determining the number of neural precursors. Other genes have been found to act at the level of specifying cellular identities. One of these, cut, is required to specify the correct identity of a particular class of sensory organs. Another gene, numb, is needed for the progeny of sensory precursors to develop as neurons.

The nature of the products encoded by these genes suggests molecular mechanisms by which these genes exert their function. Some are DNA binding and may regulate transcription of other genes, while others are membrane proteins suggesting a function in cell-cell communication. Understanding the interactions of such genes will elucidate the mechanisms of neural development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bate, C.M. (1978). Development of sensory systems in arthropods. In Handbook of sensory physiology, vol. IX, pp. 1–53, M. Jacobson, ed. ( Berlin, Heidelberg, New York: Springer-Verlag ).

    Google Scholar 

  • Beachy, P.A., Helfand, S.L., and Hogness, D.S. (1985). Segmental distribution of the bithorax complex proteins during Drosophila development. Nature 313, 545–551.

    Article  PubMed  CAS  Google Scholar 

  • Bier, E., Ackerman, L., Babel, S., Jan, L.Y., and Jan, Y.N. (1988). Identification and characterization of a neuron-sL cific nuclear antigen in Drosophila melanogaster. Science 240, 913–916.

    Article  PubMed  CAS  Google Scholar 

  • Blair, S.S., and Palka, J. (1985). Axon guidance in the wing of Drosophila. TINS 8, 284–288.

    Google Scholar 

  • Blochlinger, K., Bodmer, R., Jack, J., Jan, L.Y., and Jan, Y.N. (1988). Primary structure and expression of a product from cut, a locus involved in specifying sensory organ identity. Nature 333, 629–635.

    Article  PubMed  CAS  Google Scholar 

  • Bodmer, R., and Jan, Y.N. (1987). Morphological differentiation of the embryonic peripheral neurons in Drosophila. Roux’s Arch. Dev. Biol. 196, 69–77.

    Article  Google Scholar 

  • Bodmer, R., Barbel, S., Sheperd, S., Jack, J., Jan, L.Y., and Jan, Y.N. (1987). Transformation of sensory organs by mutations of the cutlocus of D. melanogaster. Cell 51, 293–307.

    Article  PubMed  CAS  Google Scholar 

  • Bodmer, R., Carretto, R., and Jan, Y.N. (1989). Neurogenesis of the peripheral nervous system in Drosophila embryos: DNA replication patterns and cell lineages. Neuron 3, 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Brand, M., and Campos-Ortega, J.A. (1988). Two groups of interrelated genes regulate early neurogenesis in Drosophila melanogaster. Roux’s Arch. Dev. Biol. 197, 457–470.

    Article  Google Scholar 

  • Campos-Ortega, J., and Hartenstein, V. (1985). The embryonic development of Drosophila melanogaster ( New York: Springer-Verlag.

    Google Scholar 

  • Campos-Ortega, J.A. (1988). Cellular interactions during early neurogenesis of Drosophila melanogaster. TINS 11, 400–405.

    PubMed  CAS  Google Scholar 

  • Caudy, M., Grell, E.L., Dambly-Chaudire, C., Ghysen, A., Jan, L.Y., and Jan, Y.N. (1988a). The maternal sex determination gene daughterless has zygotic activity necessary for the formation of peripheral neurons in Drosophila. Genes Dev. 2, 843–852.

    Article  PubMed  CAS  Google Scholar 

  • Caudy, M., Vaessin, H., Brand, M., Tuma, R., Jan, L.Y., and Jan, Y.N. (1988b). daughterless, a gene essential for both neurogenesis and sex determination in Drosophila, has sequence similarities to mycand achaete-scute complex. Cell 55, 1061–1067.

    Article  PubMed  CAS  Google Scholar 

  • Dambly-Chaudiere, C., and Ghysen, A. (1986). The sense organs in the Drosophila larva and their relation to the embryonic pattern of sensory neurons. Roux’s Arch. Dev. Biol. 195, 222–228.

    Article  Google Scholar 

  • Dambly-Chaudiere, C., and Ghysen, A. (1987). Independent subpatterns of sense organs require independent genes of the achaete-scute complex in Drosophila larvae. Genes Dev. 1, 297–306.

    Article  Google Scholar 

  • Dambly-Chaudiere, C., Ghysen, A., Jan, L.Y., and Jan, Y.N. (1988). The determination of sense organs in Drosophila: interaction of scutewith daughterless. Roux’s Arch. Dev. Biol. 197, 419–423.

    Article  Google Scholar 

  • DiNardo, S., Kuner, J.M., Theis, J., and O’Farrell, P.H. (1985). Development of the embryonic pattern in D. melanogaster as revealed by accumulation of the nuclear engrailedprotein. Cell 43, 59–69.

    Article  PubMed  CAS  Google Scholar 

  • Doe, C.Q., and Goodman, C.S. (1985a). Early events in insect neurogenesis. I. Developmental and segmental differences in the pattern of neuronal precursor cells. Dev. Biol. 111, 193–205.

    Article  PubMed  CAS  Google Scholar 

  • Doe, C.Q., and Goodman, C.S. (1985b). Early events in insect neurogenesis. II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Dev. Biol. 111, 206–219.

    Article  PubMed  CAS  Google Scholar 

  • Doe, C.Q., and Scott, M.P. (1988). Segmentation and homeotic gene function in the developing nervous system of Drosophila. TINS 11, 101–106.

    PubMed  CAS  Google Scholar 

  • Doe, C.Q., Hiromi, Y., Gehring, W.J., and Goodman, C.S. (1988). Control of the Drosophila segmentation gene fushi tarazu. Science 239, 170–175.

    Article  PubMed  CAS  Google Scholar 

  • Doe, C.Q., Smouse, D., and Goodman, C.S. (1989). Control of neuronal fate by the Drosophila segmentation gene even-skipped. Nature 333, 376–378.

    Article  Google Scholar 

  • Garcia-Bellido, A. (1975). Genetic control of wing disc development in Drosophila. in: Cell patterning, CIBA Foundation Symp. 29, Elsevier, Amsterdam, pp. 161–182.

    Google Scholar 

  • Garcia-Bellido, A. (1979). Genetic analysis of the achaete-scute system of Drosophila melanogaster. Genetics 91, 491–520.

    PubMed  CAS  Google Scholar 

  • Gehring, W.J. (1987). Homeoboxes in the study of development. Science 236, 1245–1252.

    Article  PubMed  CAS  Google Scholar 

  • Ghysen, A., Jan, L.Y., and Jan, Y.N. (1985). Segmental determination in Drosophila central nervous system. Cell 40, 943–948.

    Article  PubMed  CAS  Google Scholar 

  • Ghysen, A., and Lewis, E.B. (1986). Roux’s Arch. Dev. Biol. 195, 203–209.

    Article  Google Scholar 

  • Ghysen, A., Dambly-Chaudiere, C., Aceves, E., Jan, L.Y., and Jan, Y.N. (1986). Sensory neurons and peripheral pathways in Drosophila embryos. Roux’s Arch. Dev. Biol. 195, 281–289.

    Article  Google Scholar 

  • Ghysen, A., and O’Kane, C. (1989) Neural enhancer-like elements as specific cell markers in Drosophila. Development 105, 35–52.

    PubMed  CAS  Google Scholar 

  • Ghysen, A., and Dambly-Chaudiere, C. (1989a) Early events in the development of Drosophila nervous system. J. Physiol. (Paris), in press.

    Google Scholar 

  • Ghysen, A., and Dambly-Chaudiere, C. (1989b). The genesis of Drosophila peripheral nervous system: A sequential process. TIGS, in press.

    Google Scholar 

  • Goodman, C.S., Raper, J.A., Ho, R.K., and Chang, S. (1982). Pathfinding of neuronal growth cones in grasshopper embryos. In “Development Order: Its origins and regulation” ( S. Subtelny and P.B. Green, eds.), pp. 275–316. Alain R. Liss, New York.

    Google Scholar 

  • Goodman, C.S., Bastiani, M.J., Doe, C.Q., du Lac, S., Helfand, S.L., Kuwada, J.Y., and Thomas, J.B. (1984). Cell recognition during neuronal development. Science ( Washington, D.C. ) 225, 1271–1279.

    Article  PubMed  CAS  Google Scholar 

  • Gratzner, H.G. (1982). Monoclonal antibody to 5-Bromo-and 5-Iodo-deoxyuridine: a new reagent for detection of DNA replication. Science 218, 474–475.

    Article  PubMed  CAS  Google Scholar 

  • Hartenstein, V., and Campos-Ortega, J.A. (1986) The peripheral nervous system of mutants of early neurogenesis in Drosophila melanogaster. Roux’s Arch. Dev. Biol, 195, 210–221.

    Article  Google Scholar 

  • Hartenstein, V. (1988). Development of Drosophila larval sensory organs: spatiotemporal pattern of sensory neurones, peripheral axonal pathways and sensilla differentiation. Development 102, 869–886.

    Google Scholar 

  • Hertweck, H. (1931). Anatomie und Variabilitaet des Nervensystems und der Sinnesorgane von Drosophila melanogaster (Meigen). Z. Wiss. Zool. 139, 559–663.

    Google Scholar 

  • Hiromi, Y., Kuroiwa, A., and Gehring, W.J. (1985). Control elements of the Drosophila segmentation fushi tarazu. Cell 43, 603–613.

    Article  PubMed  CAS  Google Scholar 

  • Ingham, P. (1988). The molecular genetics of embryonic pattern formation in Drosophila. Nature 335, 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Jack, J.W. (1985). Molecular organization of the cut locus of Drosophila melanogaster. Cell 42, 869–876.

    Article  PubMed  CAS  Google Scholar 

  • Jan, Y.N., Bodmer, R., Ghysen, A., DamblyChaudiere, C., and Jan, L.Y. (1986). Mutations affecting the peripheral nervous system in Drosophila. J. Cell. Biochem. Proceeding of the UCLA symposium for Molecular Entomology, pp. 45–56.

    Google Scholar 

  • Jan, L.Y., and Jan, Y.N. (1982). Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and grasshopper embryos. PNAS 72, 2700–2704.

    Article  Google Scholar 

  • Lawrence, P.A. (1966). Development and determination of hairs and bristles in the milkweed bug, Oncopeltus fasciatus ( Lygaeidae, Hemiptera). J. Cell Sci. 1, 475–498.

    PubMed  CAS  Google Scholar 

  • Murphey, R.K. (1985). Competition and chemoaffinity in insect sensory systems. TINS 8, 120–125.

    Google Scholar 

  • Nuesslein-Volhard, C., and Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801.

    Article  Google Scholar 

  • Ready, D.F. (1989). A multifaceted approach to neural development. TINS 12, 102–110.

    PubMed  CAS  Google Scholar 

  • Romani, S., Campuzano, S., Macagno, E.R., and Modolell, J. (1989). Expression of achaete and scute genes in Drosophila imaginal discs and their function in sensory organ development. Genes Dev. 3, 997–1007.

    Article  PubMed  CAS  Google Scholar 

  • Scott, M.P., and Carroll, S.B. (1987). The segmentation and homeotic network in early Drosophila development. Cell 51, 689–698.

    Article  PubMed  CAS  Google Scholar 

  • Scott, M.P., Tamkun, J.W., and Hartzell, G.W. (1989). The structure and function of the homeodomain. BBA Reviews on Cancer, in press.

    Google Scholar 

  • Teugels, E., and Ghysen, A., (1983). Independence of the number of legs and leg ganglia in Drosophila bithorax mutants. Nature 304, 440–442.

    Article  Google Scholar 

  • Thomas, J.B., Bastiani, M.J., Bate, M., and Goodman, C.S. (1984). From grasshopper to Drosophila: A common plan for neural development. Nature 310, 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Truman, J., and Bate, C.M. (1988). Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev. Biol. 125, 145–157.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, T., Sheperd, S., Ackerman, L., Jan, L.Y., and Jan, Y.N. (1989). numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58, 349–360.

    Article  PubMed  CAS  Google Scholar 

  • White, R.A.H., and Wilcox, M. (1984). Protein products of the bithorax complex in Drosophila. Cell 39, 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Zacharuk, R.Y. (1985). Antennae and sensilla. In Comprehensive insect physiology, biochemistry and pharmacology, vol. 6, pp. 1–69, G.A. Kerkut and L.I. Gilbert, eds. ( New York: Perga-mon Press ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc.

About this chapter

Cite this chapter

Bodmer, R. (1990). Insect Neurodevelopment: Gene Cascades in Drosophila. In: Borkovec, A.B., Masler, E.P. (eds) Insect Neurochemistry and Neurophysiology · 1989 ·. Experimental and Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-4612-4512-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4512-4_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8854-1

  • Online ISBN: 978-1-4612-4512-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics