Skip to main content

Neuropeptides: Unity and Diversity, a Molecular Approach

  • Chapter
  • 100 Accesses

Part of the book series: Experimental and Clinical Neuroscience ((ECN))

Summary

Neuropeptides are neuronal messengers which occur throughout the animal kingdom in a great molecular diversity. In recent years the molecular structure and gene coding of a number of neuropeptides of invertebrates has been elucidated. It appears from this data that we can distinguish some families of neuropeptides which occur in various groups of invertebrates as well as in vertebrates. These peptides, therefore, have an extremely long evolutionary history, up to 600 million years. As examples of these peptides we discuss here insulin and insulin-related peptides, the FMRFamide family, the head activator peptide and the vasopressin/vasotocin family.

On the other hand, there are neuropeptides which appear to be restricted to specific animal groups. Possibly these peptides evolved for control of a group specific adaptation. From this category we present here the egg-laying hormones of snails, and the adipokinetic and eclosion hormones of insects.

Besides, the genomically coded peptides, nerve cells use enzymatically produced “classical” transmitters, such as acetylcholine, as messengers. The advantages of this messenger dualism is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bargmann W (1949) Über die neurosekretorische Verknüpfung von Hypothalamus und Neurohypophyse. Z. Zellforsch. 34, 610–634.

    PubMed  CAS  Google Scholar 

  • Baskin D.G., Figlewisz D.P., Woods S.C., Porte D. and Dorsa D.M. (1987) Insulin the the brain. Ann. Rev. Physiol. 49, 335–347.

    Article  CAS  Google Scholar 

  • Bodenmüller H. and Schaller H.C. (1981) Conserved amino acid sequence of a neuropeptide, the head activator, from coelenterate to humans. Nature 293, 579–580.

    Article  PubMed  Google Scholar 

  • Bodenmüller H., Schilling E., Zachmann B. and Schaller H.C. (1986) The neuropeptide head activator loses its biological activity by dimerisation. EMBO J. 5, 1825–1829.

    PubMed  Google Scholar 

  • Boer H.H. and Van Minnen J. (1988) Immunocytochemistry of hormonal peptides in molluscs: optical and electron microscopy and the use of monoclonal antibodies. In Neurohormones in invertebrates (Seminar series Soc. exp. Biol. 33) (Thorndyke M.C. and Goldsworthy G.J., eds.) pp. 19–42. Univ. Cambridge Press, Cambridge.

    Google Scholar 

  • Brussaard A.B., Kits K.S. and ter Maat A., van Minnen J. and Moed P.J. (1988) Dual inhibitory action of FMRFamide on neurosecretory cells controlling egg laying behaviour in the pond snail. Brain Res. 447, 35–51.

    Article  PubMed  CAS  Google Scholar 

  • Brussaard A.B., Kits K.S. and ter Maat A. (1989a) One receptor type mediates two independent effects of FMRFamide on neurosecretory cells of Lymnaea. Peptides 10–2, 289–297.

    Article  Google Scholar 

  • Brussaard A.B., Kits K.S., ter Maat A., Mulder A. and Schoffelmeer A.N. (1989b) Peripheral injection of DNS-RFamide, a FMRFamide agonist, suppresses morphine induced analgesia in rats. Peptides 10–4, In press.

    Google Scholar 

  • Buma P. and Roubos E.W. (1985) Ultrastructural demonstration of nonsynaptic release sites in the central nervous system of the snail Lymnaea stagnalis, the insect Periplaneta americana, and the rat. Neuroscience 17, 867–879.

    Article  Google Scholar 

  • Buijs R.M. and Swaab D.F. (1979) Immunoelectron microscopical demonstration of vasopressin and oxytocin synapses in the rat limbic system. Cell Tiss. Res. 204, 355–365.

    Article  CAS  Google Scholar 

  • Cajal S.R. (1894) La fine structure des centres nerveux. Proc. R. Soc. London (B) 55, 444–468.

    Article  Google Scholar 

  • Cajal S.R. (1911) Histologie du système nerveux de l’homme et des Vertébrés, Vol. 2. Maloine, Paris.

    Google Scholar 

  • Chen P.S., Stumm-Zollinger E., Aigaki T., Balmer J., Benz M. and Böhlen D. (1988) A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell. 54, 291–298.

    CAS  Google Scholar 

  • Collip J.B. (1923) The demonstration of an insulin-like substance in the tissue of the clam. J. Biol. Chem. 55, 39.

    Google Scholar 

  • Conlon J.M., Reinecke M., Thorndyke M.C. and Falkmer S. (1988) Insulin and other islet hormones (somatostatin, glucagon and PP) in the neuroendocrine system of some lower vertebrates and that of invertebrates — a minireview. Horm. metabol. 20, 406–410.

    Article  CAS  Google Scholar 

  • Cruz L.J., de Santos V, Zafaralla GC, Ramilo CA, Zeikus R, Gray WR and Olivera BM (1987) Invertebrate vasopressin/oxytocin homologs J. Biol. Chem. 262, 15821–15824.

    PubMed  CAS  Google Scholar 

  • Dictus W.J.A.G. and Ebberink R.H.M. (1988) Structure of one of the neuropeptides of the egg-laying hormone precursor of Lymnaea. Mol. & Cell. Endocrinol. 60, 23–29.

    Article  CAS  Google Scholar 

  • Ebberink R.H.M. and Joosse J. (1985) Molecular properties of various snail peptides from brain and gut. Peptides 6, suppl. 3, 451–457.

    Google Scholar 

  • Ebberink R.H.M., Price D.A., Van Loenhout H, Doble K.E., Rhiem J.P., Geraerts W.P.M. and Greenberg M.J. (1987) The brain of Lymnaea contains a family of FMRFamide-like peptides. Peptides 8, 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Ebberink R.H.M., Smit A.B. and Van Minnen J. (1989) The insulin family: evoluton of structure and function in vertebrates and invertebrates. Biol. Bull. 177, In press.

    Google Scholar 

  • Eipper B.A., Mains R.E. and Herbert E. (1986) Peptides in the nervous system. Trends Neurosci. 9, 463–468.

    Article  CAS  Google Scholar 

  • Fisher J.M., Sossin W., Newcomb R. and Scheller R.H. (1988) Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell 54, 813–822.

    Article  PubMed  CAS  Google Scholar 

  • Geraerts W.P.M. (1976) Control of growth by the neurosecretory hormone of the light green cells in the freshwater snail Lymnaea stagnalis. Gen. Comp. Endocrinol. 29, 61–71.

    Article  CAS  Google Scholar 

  • Geraerts W.P.M., Vreugdenhil E. and ter Maat A. (1988). The peptidergic neuroendocirne control of egg-laying behavior in Aplysia and Lymnaea. In Invertebrate Endocrinology, Vol. 2, Endocrinology of Selected Invertebrate Types ( Laufer H. and Downer R.G.H., eds.), pp. 141–231. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Geraerts W.P.M., Smit A.B. and Joosse J. (1989) Peptide messenger evolution: the invertebrate contribution. In Procs. 4th ENEA Conference Santiago de Compostella, Spain. In press.

    Google Scholar 

  • Golding D.W. and Pow D.V. (1988) The new neurobiology — ultrastructural aspects of peptide release as revealed by studies of invertebrate nervous systems. In Neurohormones in invertebrates (Thorndyke M.C. and Goldsworthy G.J., eds.), Soc. f. exp. Biol. Seminar Series 33, 8–18. University Cambridge Press, Cambridge.

    Google Scholar 

  • Greenberg M.J., Payzee K., Nachman R.J., Holman G.M. and Price D.A. (1988) Relationships between the FMRFamide-related peptides and other peptide families. Peptides 9, 125–135.

    Article  PubMed  Google Scholar 

  • Hakanson R. and Thorell J. (eds.) (1985) Biogenetics of neurohormonal peptides. Academic Press, pp. 303.

    Google Scholar 

  • Hekimi S and O’Shea M. (1989) Biosynthesis of adipokinetic hormones (AKHs): further characterization of precursors and identification of novel products of processing. J. Neurosci. In press.

    Google Scholar 

  • Hekimi S., Burkhart W., Moyer M., Fowler E. and O’Shea M. (1989) Dimer structure of a neuropeptide precursor established: consequences for processing. Neuron 2, 1363–1368.

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt T. et al. (1987) Chemical neuroanatomy of the hypothalamopituitary axis: focus on multimessenger systems. In Integrative neuroendocrinology: molecular, cellular and clinical aspects (McCann S.M.and Weiner R.I., eds.) pp. 1–34. Karger, Basel.

    Google Scholar 

  • Horodyski F.M., Riddiford L.M. and Truman J.W. (1989) Isolation and expression of the eclosion hormone gene from the tobacco homworm,Manduca sexta. Proc. Natl. Acad. Sci. In press.

    Google Scholar 

  • Ishizaki H. (1986) A PTTH pilgrimage from Luchdorfia to Bombyx. Zool. Sci. 3, 921–929.

    CAS  Google Scholar 

  • Iwami M, Kawakami A., Ishizaki H., Takahashi S.Y., Adachi T., Suzuki Y., Nagasawa H. and Suzuki A. (1989) Cloning of a gene encoding bombyxin, an insulin-like brain secretory peptide of the silkmoth Bombyx mori with prothoracicotropic activity. Develop. Growth and Differ. 31, 31–37.

    Article  CAS  Google Scholar 

  • Jan Y.N. and Jan L.Y. (1983) A LHRH-like peptidergic neurotransmitter capable of ‘action at a distance’ in autonomic ganglia. TINS. 6, 320–325.

    Google Scholar 

  • Jansen R.F. and Bos N.P.A. (1984) An identified neuron modulating the ovulation hormone producing Caudodorsal Cells in the pond snail. J. Neurobiol. 15, 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Jansen R.F. and ter Maat A. (1985) Ring neuron control of columellar motor neurons during egg-laying behavior in the pond snail Lymnaea stagnalis. J. Neurobiol. 16, 1–14.

    Article  CAS  Google Scholar 

  • Joosse J. (1986) Neuropeptides: peripheral and central messengers of the brain. In Comparative endocrinology, developments and directions Progr. Clin. biol. Res., vol. 205 ( Ralph C.L., ed.) pp. 12–32. Alan R. Liss, New York.

    Google Scholar 

  • Joosse J. (1987a). Functional and evolutionary perspectives of neuropeptides and their precursors. In Integrative neuroendocrinology: molecular, cellular and clinical aspects (McCann S.M.and Weiner R.I., eds.) pp. 176–190. Karger, Basel.

    Google Scholar 

  • Joosse J. (1987b) Evolutionary aspects of neuropeptides. In Neuropeptides and Brain Function (de Kloet E.R., Wiegant V.M. and de Wied D., eds.) Progr. Brain Res. 72, 35–45.

    Google Scholar 

  • Joosse J. (1988) The Hormones of Molluscs. In Invertebrate Endocrinology, Vol. 2, Endocrinology of Selected Invertebrate Types ( Laufer H. and Downer R.G.H., eds.), pp. 89–140. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Joosse J. and Geraerts W.P.M. (1983) Endocrinology. In The Mollusca, Vol. 4, Physiology, Part 1 ( Wilbur K.M., ed.) pp. 317–406. Academic Press, New York.

    Google Scholar 

  • Kataoka H., Troetschler R.G., Kramer S.J., Cesarin B.J. and Schooley D.A. (1987) Isolation and primary structure of the eclosion hormone of the tobacco hornworm, Manduca sexta. Biochem. Biophys. Res. Commun. 146, 746–750.

    Article  CAS  Google Scholar 

  • Kono T., Nagasawa H., Isogai A., Fugo H. and Suzuki A. (1987) Amino acid sequence of eclosion hormone of the silkworm Bombyx mori. Agric. Biol. Chem. 51, 2307–2308.

    CAS  Google Scholar 

  • Leake L.D. and Walker R.J. (1980) Invertebrate Neuropharmacology. Mackie, Glasgow.

    Google Scholar 

  • Lenhoff H.M. (1982) Hydra: Research Methods. Plenum Press, New York and London.

    Google Scholar 

  • Mahon A.C., Nambu J.R., Taussig R., Shyamala M., Roach A. and Scheller R.H. (1985) Structure and expression of the egg-laying hormone gene family in Aplysia. J. Neurosci. 5, 1872–1880.

    CAS  Google Scholar 

  • Marti T., Tahio K., Walsh K.S., Terzi G. and Truman J.W. (1987) Microanalysis of the amino acid sequence of the eclosion hormone from the tobacco hornworm Manduca sexta. FEBS Lett. 219, 415–418.

    Article  CAS  Google Scholar 

  • Martin S.M. and Spencer A.N. (1983) Neurotransmitters in coelenterates. Comp. Biochem. Physiol. C 74, 1–14.

    Article  Google Scholar 

  • Moore E.C. and Pitrat C.W. (1960) Feature on invertebrate paleontology, part 1, Mollusca 1. Geological Society of America, Boulder/ University of Kansas Press, Lawrence.

    Google Scholar 

  • Morton D.B. and Truman J.W. (1989) The molecular basis for steroid regulation of eclosion hormone action in the tobacco hornworm, Manduca sexta.Proc. Int. Symp. Comp. Pharmacol. of Neuropeptides. In press.

    Google Scholar 

  • Nachman R.J., Holman G.M., Cook B.J., Haddon W.F., Ling N. (1986) Leucosulfakinin-II, a blocked sulfated insect neuropeptide with homology to cholecystokinin and gastrin. Biochem. Biophys. Res. Comm. 140, 357–364.

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa H, Mikogami T., Koni T., Fugo H. and Suzuki A., Fujieara Y., Susuki At., Takahashi S.Y. and Ishizaki H. (1986) Amino acid sequence of the prothoracicotropic hormone of the silkworm Bombyx mori. Proc. Natl. Acad. Sci USA. 83, 5640–5843.

    Google Scholar 

  • Nagasawa H, Mikogami T., Koni T., Fugo H. and Suzuki A. (1987a) Molecular heterogeneity of eclosion hormone in adult heads of the silkworm, Bombyx mori. Agric. Biol. Chem. 51, 1741–1743.

    Article  CAS  Google Scholar 

  • Nagasawa H. et al. (1987b) Structure and synthesis of bombyxin from the silkworm, Bombyx mori. In Peptide Chemistry ( Shiba S. and Sakahibara S., eds.) pp. 123–126. Protein Res. Foundation, Osaka.

    Google Scholar 

  • Nambu J.R., Murphy-Erdosh C., Andrews P.C., Feistner G.J. and Scheller R.H. (1988) Isolation and characterization of a Drosophila neuropeptide gene. Neuron 1, 55–61.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R. (1985) Chemoarchitecture of the brain, pp. 1–246. Springer, Berlin.

    Google Scholar 

  • Orchard I. (1987) Review: adipokinetic hormones: an update. J. Insect Physiol. 33, 451–463.

    Article  CAS  Google Scholar 

  • O’Shea M, Hekimi S and Schulz M.-F. (1989) Adipokinetic hormone biosynthesis: molecular biological and biochemical analysis of precursors and processing. Abstracts XIth Int. Symp. Comp. Endocr. Malaga,L-69.

    Google Scholar 

  • Plisetskaya E. and Joosse J. (1985) Endocrine control of metabolism in molluscs. In Current Trends in Comparative Endocrinology ( Lofts B. and Holmes W.N., eds.), pp. 1077–1079. Hong Kong University Press, Hong Kong.

    Google Scholar 

  • Plisetskaya E., Soltitskaya L. and Rusacov Y.I. (1978a) Production and role of insulin in the regulation of carbohydrate metabolism in freshwater and marine bivalve molluscs. In Comparative Endocrinology ( Gaillard P.J. and Boer H.H., eds.), pp. 449–453. Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Plisetskaya E., Kazakov V.K., Soltitskaya L. and Leibson L.G. (1978b) Insulin-producing cells in the gut of freshwater bivalve molluscs Anodonta cygnea and Unio pictorum and the role of insulin in the regulation of their carbohydrate metabolism. Gen. Comp. Endocrinol. 35, 133–145.

    Article  PubMed  CAS  Google Scholar 

  • Proux J., Miller C.A., Li J.P., Carney R.L., Girardie A., Delange M. and Schooley D.A. (1987) Identification of an arginine vasopressinlike diuretic hormone from Locusta migratoria. Biochem. Biophys. Res. Comm. 149, 180–186.

    Article  PubMed  CAS  Google Scholar 

  • Roubos E.W. (1984) Cytobiology of the ovulation-neurohormone producing Caudo-Dorsal cells of the snail Lymnaea stagnalis. Int. Rev. Cytol. 89, 295–346.

    Article  CAS  Google Scholar 

  • Rusacov Y.I. and Kazakov V.K. (1979) Preparation of insulin-like substance from molluscs and antiserum against it. Zh. Evol. Biokhim Fiziol. 15, 617–619 (in Russian).

    Google Scholar 

  • Schaller H.C. (1976) Head regeneration is initiated by the release of head activator and head inhibitor. Wilhelm Roux’s Arch. 180, 287–295.

    Article  Google Scholar 

  • Schaller H.C. and Bodenmüller H. (1981) Isolation and amino acid sequence of a morphogenetic peptide from Hydra. Proc. Natl. Acad. Sci. 78, 7000–7004.

    Article  CAS  Google Scholar 

  • Schaller H.C., Hoffmeister S. and Bodenmüller, H. (1984) Hormonal control of regeneration in Hydra. In Biosynthesis, metabolism and mode of action of invertebrate hormones (Hoffmann J. and Porchet M., eds.) pp. 5–9. Springer, Berlin.

    Google Scholar 

  • Schaller H.C., Roberge M., Zachmann B., Hoffmeister S., Schiling E. and Bodenmüller H. (1986) The head activator is released from regenerating hydra bound to a carrier molecule. EMBO J.. 5 1821–1824.

    PubMed  CAS  Google Scholar 

  • Schaller H.C., Schilling E., Theilmann L., Bodenmüller H. and Sachsenheimer W. (1988) Elevated levels of head activator in human brain tumors and in serum of patients with brain and other neurally derived tumors. J. Neurooncology. In press.

    Google Scholar 

  • Scharrer E. (1928) Die Lichtempfindlichheit blinder Elritzen (Untersuchungen über das Zwischenhirn der Fische. I). Z. Vergl. Physiol. 7, 1–38.

    Article  Google Scholar 

  • Scharrer B. (1935) Ueber das Hanströmsche Organ X bei Opisthobranchien. Publ. Staz. Zool. Napoli 15, 132–142.

    Google Scholar 

  • Scheller R.H., Jackson J.F., McAllister L.B., Rothman B.S., Mayeri E. and Axel R. (1983) A single gene encodes multiple neuropeptides mediating a stereotyped behavior. Cell 32, 7–22.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt E.D. and Roubos E.W. (1987) Morphological basis for nonsynaptic communication within the central nervous system by exocytotic release of secretory material from the egg-laying stimulating neuroendocrine caudodorsal cells of Lymnaea stagnalis. Neuroscience 20, 247–257.

    Article  CAS  Google Scholar 

  • Schot L.P.C., Boer H.H. and Montagne-Wajer C. (1984) Characterization of multiple immunoreactive neurons in the central nervous system of the pond snail Lymnaea stagnalis. Histochem. 81, 373–378.

    CAS  Google Scholar 

  • Schulz-Aellen M.-F., Roulet E., Fischer-Lougheed J. and O’Shea M. (1989) Synthesis of a homodimer neurohormone precursor of Locust adipokinetic hormone studied by in vitro translation and cDNA cloning. Neuron 2, 1369–1373.

    Article  PubMed  CAS  Google Scholar 

  • Siegert K.J., Morgan D. and Mordue W. (1985) Primary structures of locust adipokinetic hormones II. Hoppe-Seylers Z. Physiol. Chem. 366, 723–727.

    Article  CAS  Google Scholar 

  • Smit A.B., Vreugdenhil E., Ebberink R.H.M., Geraerts W.P.M., Klootwijk K. and Joosse J. (1988) Growth-controlling neurons produce the precursor of an insulin-related peptide. Nature 331, 535–538.

    Article  PubMed  CAS  Google Scholar 

  • Sossin W.S., Fisher J.M. and Scheller R.H. (1989) Cellular and molecular biology of neuropeptide processing and packaging. Neuron 2, 1407–1417.

    Article  PubMed  CAS  Google Scholar 

  • Steiner D.F. and Chan S.J. (1988) Perspective: an overview of insulin evolution. Horm. metabolic. Res. 20, 443–444.

    Article  CAS  Google Scholar 

  • Stone J.V., Mordue W., Batley K.E. and Morris H.R. (1976) Structure of locust adipokinetic hormone that regulates lipid utilisation during flight. Nature 263, 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Swammerdam Jan (1737) Biblia Naturae. Severinus, van der Aa & van der Aa, Leiden.

    Google Scholar 

  • Taussig R. and Scheller R.H. (1986) The Aplysia FMRFamide gene encodes sequences related to mammalian brain peptides. DNA 5, 453–461.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe A. and Duve H. (1984) Insulin-and glucagon-like peptides in insects and molluscs. Mol. Physiol. 5, 235–260.

    CAS  Google Scholar 

  • Thorpe A. and Duve H. (1988) Insulin found at last. Nature 331, 483–484.

    Article  PubMed  CAS  Google Scholar 

  • Truman J.W. (1983) Hormonal control of ecdysis. In Comprehensive Insect Physiol. Biochem. Pharmacol. (Kerkut G.A. and Gilbert L.I., eds) 13, pp. 413–440.

    Google Scholar 

  • Van Duivenboden Y. (1983) Transfer of semen accelerates onset of egg-laying in female copulants of the hermaphrodite freshwater snail, Lymnaea stagnalis. Int. J. Invert. Reprod. 7, 249–257.

    Google Scholar 

  • Van Minnen J., Smit A.B. and Joosse J. (1989) Central and peripheral expression of genes coding for egg-laying inducing and insulin-related peptides in a snail. Arch. Histol. Cytol. 52, suppl. In press.

    Google Scholar 

  • Vesalius Andreas (1543) De humani corporis fabrica (reprinted by de Forel b.v., Nieuwendijk, The Netherlands, 1975 ).

    Google Scholar 

  • Vreugdenhil E. (1988) The molecular basis of egg laying and egg-laying behaviour in the freshwater snail Lymnaea stagnalis. Thesis, Vrije Universiteit, Amsterdam.

    Google Scholar 

  • Wheeler C.H., Gäde G. and Goldsworthy G.J. (1988) Humoral functions of insect neuropeptides. In Neurohormones in invertebrates. Seminar Series Soc. exp. Biol. 33 ( Thorndyke M.C. and Goldsworthy G.J., eds.) pp. 19–42. Univ. Cambridge Press, Cambridge.

    Google Scholar 

  • Wigglesworth V.B. (1936) The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus (Hemiptera). Q. Jl. micros. Sci. 79, 91–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc.

About this chapter

Cite this chapter

Joosse, J., Geraerts, W.P.M. (1990). Neuropeptides: Unity and Diversity, a Molecular Approach. In: Borkovec, A.B., Masler, E.P. (eds) Insect Neurochemistry and Neurophysiology · 1989 ·. Experimental and Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-4612-4512-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4512-4_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8854-1

  • Online ISBN: 978-1-4612-4512-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics