Skip to main content

Adenosine and Renal Function

  • Chapter
Book cover Adenosine and Adenosine Receptors

Part of the book series: The Receptors ((REC))

Abstract

Exogenous adenosine has been shown to affect nearly all aspects of renal function: renal blood flow and its distribution within the kidney, glomerular filtration rate, renin secretion, urine flow, sodium excretion, transmitter release from renal efferent nerves, and the activity of renal afferent nerves. Many of these effects are produced by adenosine receptors, since the effects are antagonized by alkylxanthines and mimicked by adenosine analogs that act as adenosine receptor agonists. The orders of potency of agonists in producing some of these effects have been determined, and therefore the subclasses of adenosine receptors that are involved have been established. These observations, taken together with the observation that kidneys produce and release adenosine into extracellular fluids, suggest that variations in the concentration of endogenously released adenosine could play important roles in renal function and/or dysfunction. Indeed, it has been postulated that adenosine is the mediator of several physiological and pathophysiological phenomena: the autoregulation of renal blood flow and glomerular filtration rate, the tubuloglomerular feedback response, the effect of macula densa cells on the adjacent reninsecreting juxtaglomerular cells, the hemodynamic changes in acute renal failure, and hypertension in some experimental animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abboud, H. E., and Dousa, T. P. (1983) Action of adenosine on cyclic 3’,5’-nucleotides in glomeruli. Am. J. Physiol. 244, F633–F638.

    PubMed  CAS  Google Scholar 

  • Allison, D. J., Tanagawa, H., and Assaykeen, T. A. (1972) The effects of cyclic nucleotides on plasma renin activity and renal function in dogs, in Control of Renin Secretion,(Assaykeen, T. A., ed.), Plenum, New York, pp. 3–47.

    Google Scholar 

  • Anderson, R. J., and Schrier, R. W. (1980) Clinical spectrum of oliguric and nonoliguric acute renal failure, in Acute Renal Failure (Brenner, M. M., and Stein, J. H., eds.), Churchill-Livingstone, New York, pp. 1–16.

    Google Scholar 

  • Angielski, S., Le Hir, M., and Dubach, U. C. (1983) Transport of adenosine by renal brush border membranes. Pflugers Arch. 397, 75–77.

    Article  PubMed  CAS  Google Scholar 

  • Arend, L. J., Thompson, C. I., and Spielman, W. S. (1985) Dipyridamole decreases glomerular filtration in the sodium-depleted dog. Evidence for mediation by intrarenal adenosine. Circ. Res. 56, 242–251.

    PubMed  CAS  Google Scholar 

  • Arend, L. J., Haramati, A., Thompson, C. I., and Spielman, W. S. (1984) Adenosine-induced decrease in renin release: Dissociation from hemodynamic effects. Am. J. Physiol. 247, F447–F452.

    PubMed  CAS  Google Scholar 

  • Arend, L. J., Sonnenburg, W. K., Smith, W. L., and Spielman, W. S. (1987) Al and A2 adenosine receptors in rabbit cortical collecting tubule cells. Modulation of hormone-stimulated cAMP. J. Clin. Invest. 79, 710–714.

    Article  PubMed  CAS  Google Scholar 

  • Arend, L. J., Thompson, C. I., Brandt, M. A., and Spielman, W. S. (1986) Elevation of intrarenal adenosine by maleic acid decreases GFR and renin release. Kidney Int. 30, 656–661.

    Article  PubMed  CAS  Google Scholar 

  • Baer, H. P. and Vriend, R. (1985) Adenosine receptors in smooth muscle: Structure-activity studies and the question of adenylate cyclase involvement in control of relaxation. Can. J. Physiol. Pharmacol. 63, 972–977.

    Article  PubMed  CAS  Google Scholar 

  • Barchowsky, A., Data, J. L., and Whorton, A. R. (1987) Inhibition of renin release by analogues of adenosine in rabbit renal cortical slices. Hypertension 9, 619–623.

    PubMed  CAS  Google Scholar 

  • Beck, A., Seitelberger, R., and Raberger, G. (1984) Effects of indomethacin on changes in renal blood flow induced by adenosine and its analogues in conscious dogs. Naunyn-Schmiedebergs Arch. Pharmacol. 326, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Belardinelli, L., Rubio, R., and Berne, R. M. (1979) Blockade of Cam dependent rat atrial slow action potentials by adenosine and lanthanum. Pflugers Arch. 380, 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Bhanalaph, T., Mittelman, A., Ambrus, J. L., and Murphy, G. P. (1973) Effect of adenosine and some of its analogs on renal hemodynamics. J. Med. 4, 178–188.

    PubMed  CAS  Google Scholar 

  • Bidani, A. K. and Churchill, P. C. (1983) Aminophylline ameliorates glycerol-induced acute renal failure in rats. Can. J. Physiol. Pharmacol. 61, 567–571.

    Article  PubMed  CAS  Google Scholar 

  • Bidani, A. K., Churchill, P. C., and Packer, W. (1987) Theophylline-induced protection in myoglobinuric acute renal failure: Further characterization. Can. J. Physiol. Pharmacol. 65, 42–45.

    Article  PubMed  CAS  Google Scholar 

  • Blaine, E. H. (1978) Sodium excretion after renal vasodilation by papaverine in conscious and anesthetized sheep. Proc. Soc. Exp. Biol. Med. 158, 250–254.

    PubMed  CAS  Google Scholar 

  • Bohm, M., Bruckner, R., Hackbarth, I., Haubitz, B., Linhart, R., Meyer, W., Schmidt, B., Schmitz, W., and Scholz, H. (1984) Adenosine inhibition of catecholamine-induced increase in force of contraction in guinea-pig atrial and ventricular heart preparations. Evidence against a cyclic AMP- and cyclic GMP-dependent effect. J. Pharmacol. Exp. Ther. 230, 483–492.

    CAS  Google Scholar 

  • Bowmer, C. J., Collis, M. G., and Yates, M. S. (1986) Effect of the adenosine antagonist 8-phenyltheophylline on glycerol-induced acute renal failure in the rat. Br. J. Pharmacol. 88, 205–212.

    PubMed  CAS  Google Scholar 

  • Bradley, A. B. and Morgan, K. G. (1985) Cellular Cat+ monitored by aequorin in adenosine-mediated smooth muscle relaxation. Am. J. Physiol. 248, H109–H117.

    PubMed  CAS  Google Scholar 

  • Brater, D. C., Kaojarem, S., and Chennavasin, P. (1983) Pharmacodynamics of the diuretic effects of aminophylline and acetazolamide alone and combined with furosemide in normal subjects. J. Pharmacol. Exp. Ther. 227, 92–97.

    PubMed  CAS  Google Scholar 

  • Bruckner, R., Fenner, A., Meyer, W., Nobis, T.-M., Schmitz, W., and Scholz, H. (1985) Cardiac effects of adenosine and adenosine analogs in guinea-pig atrial and ventricular preparations: Evidence against arole of cyclic AMP and cyclic GMP. J. Phannacol. Exp. Ther. 234, 766–774.

    CAS  Google Scholar 

  • Churchill, P.C. (1982) Renal effects of 2-chloroadenosine and their antagonism by aminophylline in anesthetized rats. J. Pharmacol. Exp. Ther. 222, 319–323.

    PubMed  CAS  Google Scholar 

  • Churchill, P.C. (1985) Second messengers in renin secretion. Am. J. Physiol. 249, F175–F184.

    PubMed  CAS  Google Scholar 

  • Churchill, P. C. and Bidani, A. K. (1982) Hypothesis: Adenosine mediates the hemodynamic changes in renal failure. Med. Hypotheses 8, 275–285.

    Article  PubMed  CAS  Google Scholar 

  • Churchill, P. C. and Bidani, A. K. (1987) Renal effects of selective adenosine re-ceptor agonists. Am. J. Physiol. 252, F299 F303.

    Google Scholar 

  • Churchill, P. C. and Churchill, M. C. (1982) Isoproterenol-stimulated renin secretion in the rat: Second messenger roles of Ca and cyclic AMP. Life Sci. 30, 1313–1319.

    Article  PubMed  CAS  Google Scholar 

  • Churchill, P. C. and Churchill, M. C. (1985) Al and A2 adenosine receptor activation inhibits and stimulates renin secretion of rat renal cortical slices. J. Pharmacol. Exp. Ther. 232, 589–594.

    PubMed  CAS  Google Scholar 

  • Churchill, P. C., Bidani, A. K., and Schwartz, M. M. (1987) Renal effects of endotoxin in the male rat. Am. J. Physiol. 253, F244–F250.

    PubMed  CAS  Google Scholar 

  • Churchill, P.C., McDonald, F. D., and Churchill, M. C. (1980) Effects of papaverine on basal and on isoproterenol-stimulated reran secretion from rat kidney slices. Life Sci. 27,1299–1305.

    Article  PubMed  CAS  Google Scholar 

  • Churchill, P. C., Rossi, N. F., and Churchill, M. C. (1987) Renin secretory effects of N6-cyclohexyladenosine: Effects of dietary sodium. Am. J. Physiol. 252, F872–F876.

    PubMed  CAS  Google Scholar 

  • Churchill, P. C., Bidani, A. K., Churchill, M. C., and Prada, J. (1984) Renal effects of 2-chloroadenosine in the two-kidney Goldblatt rat. J. Pharmacol. Exp. Ther. 230,302–306.

    PubMed  CAS  Google Scholar 

  • Cook, C. B. and Churchill, P. C. (1984) Effects of renal denervation on the renal responses of anesthetized rats to cyclohexyladenosine. Can. J. Physiol. Pharmacol. 62,934–938.

    Article  PubMed  CAS  Google Scholar 

  • Coulson, R. and Trimble, M. E. (1986) Effects of papaverine and theophylline on renal adenosine transport. J. Pharmacol. Exp. Ther. 239,748–753.

    PubMed  CAS  Google Scholar 

  • Daly, J. W. (1982) Adenosine receptors: targets for future drugs. J. Med. Chem. 25,197–207.

    Article  PubMed  CAS  Google Scholar 

  • Davis, J. O. and Shock, N. W. (1949) The effect of theophylline ethylene diamine on renal function in control subjects and in patients with congestive heart failure. J. Clin. Invest. 28, 1459–1468.

    Article  PubMed  CAS  Google Scholar 

  • Deray, G., Branch, R. A., Herzer, W. A., Ohnishi, A., and Jackson, E. K. (1987) Adenosine inhibits beta-adrenoceptor but not DBcAMP-induced renin release. Am. J. Physiol. 252, F46–F52.

    PubMed  CAS  Google Scholar 

  • Dillingham, M. A. and Anderson, R. J. (1985) Purinergic regulation of basal and arginine vasopressin-stimulated hydraulic conductivity in rabbit cortical collecting tubule. J. Membr. Biol. 88, 277–281.

    Article  PubMed  CAS  Google Scholar 

  • Drury, A. N. and Szent-Györgyi, A. (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J. Physiol. (Lond.), 68, 213–237.

    CAS  Google Scholar 

  • Dunham, E. W. and Vince, R. (1986) Hypotensive and renal vasodilator effects of carbocyclic adenosine (aristeromycin) in anesthetized spontaneously hypertensive rats. J. Pharmacol. Exp. Ther. 238, 954–959.

    PubMed  CAS  Google Scholar 

  • Ekas, R. D., Jr., Steenberg, M. L., and Lokhandwala, M. F. (1983) Increased nor-epinephrine release during sympathetic nerve stimulation and its inhibition by adenosine in the isolated perfused kidney of spontaneously hypertensive rats. Clin. Exp. Hypertens. (A) A5 (1), 41–48.

    Google Scholar 

  • Ekas, R D, Jr., Steenberg, M. L., Eikenburg, D.C., and Lokhandwala, M. R. (1981) Presynatpic inhibition of sympathetic neurotransmission by adenosine in the rat kidney. Eur. J. Pharmacol. 76, 301–307.

    Article  PubMed  CAS  Google Scholar 

  • Eloranta, T. O. (1977) Tissue distribution of S-adenosylmethionine and S-adenosylhomocysteine in the rat. Biochem. J. 166, 521–529.

    PubMed  CAS  Google Scholar 

  • Finkelstein, J. D. and Harris, B. (1973) Methionine metabolism in mammals. Synthesis of S-adenosylhomocysteine in rat tissue. Arch. Biochem. Biophys. 159,160–165.

    Article  PubMed  CAS  Google Scholar 

  • Flamenbaum, W. (1973) Pathophysiology of acute renal failure. Arch. Int. Med. 131, 911–928.

    Article  CAS  Google Scholar 

  • Fray, J. C. S. (1978) Stretch receptor control of renin release in perfused rat kidney: Effect of high perfusate potassium. J. Physiol. 282,207–217.

    PubMed  CAS  Google Scholar 

  • Fredholm, B. B. (1980) Are methylxanthine effects due to antagonism of endogenous adenosine? Trends Pharmacol. Sci. 1,129–131.

    Article  CAS  Google Scholar 

  • Fredholm, B. B. (1984) Cardiovascular and renal actions of methylxanthines. Prog. Clin. Biol. Res. 158, 303–330.

    PubMed  CAS  Google Scholar 

  • Fredholm, B. B. and Hedqvist, P. (1978) Release of 3H-purines from [3H]- adenine labelled rabbit kidney following sympathetic nerve stimulation, and its inhibition by a-adrenoceptor blockade. Br. J. Pharmacol. 64, 239–245.

    PubMed  CAS  Google Scholar 

  • Fredholm, B. B. and Sollevi, A. (1986) Cardiovascular effects of adenosine. Clin. Physiol. 6,1–21.

    Article  PubMed  CAS  Google Scholar 

  • Fredholm, B. B., Hedqvist, P., and Vernet, L. (1978) Effect of theophylline and other drugs on rabbit renal cyclic nucleotide phosphodiesterase, 5’-nucleotidase and adenosine deaminase. Biochem. Pharamacol. 27,2845–2850.

    Article  CAS  Google Scholar 

  • Freeman, R. H., Davis, J. O., Gotshall, R. W., Johnson, J. A., and Spielman, W. S. (1974) The signal perceived by the macula densa during changes in renin release. Cir. Res. 35,307–315.

    CAS  Google Scholar 

  • Gaal, K., Sikios, J., Mozes, T., and Toth, G. F. (1978) Effect of papaverine on renin release in dogs in vivo and in vitro. Acta Physiol. Acad. Sci. Hung. 51, 305–314.

    PubMed  CAS  Google Scholar 

  • Gerkens, J. F., Heidemann, H. T., Jackson, E. K., and Branch, R. A. (1983a) Effect of aminophylline on amphotericin B nephrotoxicity in the dog. J. Pharmacol. Exp. Ther. 224, 609–613.

    CAS  Google Scholar 

  • Gerkens, J. F., Heidemann, H. T., Jackson, E. K., and Branch, R. A. (1983b) Aminophylline inhibits renal vasoconstriction produced by intrarenal hyper-tonic saline. J. Pharmacol. Exp. Ther. 225, 611–615.

    CAS  Google Scholar 

  • Gerkens, J. F. and Smith, A. J. (1985) Effect of captopril and theophylline treatment on cyclosporin-induced nephrotoxicity in rats. Transplantation 2, 213–214.

    Article  Google Scholar 

  • Gotshall, R. W., Davis, J. O., Shade, R. E., Spielman, W., Johnson, J. A., and Braverman, B. (1973) Effects of renal denervation on renin release in sodium-depleted dogs. Am. J. Physiol. 225, 344–349.

    PubMed  CAS  Google Scholar 

  • Haas, J. A. and Osswald, H. (1981) Adenosine induced fall in glomerular capillary pressure. Effect of ureteral obstruction and aortic constriction in the Munichwistar rat kidney. Naunyn-Schmiedebergs Arch. Pharmacol. 317, 86–89.

    Article  PubMed  CAS  Google Scholar 

  • Hackenthal, E., Schwertschlag, U., and Taugner, R. (1983) Cellular mechanisms of renin release. Clin. Exp. Hypertens. (A) A5 (7, 8), 975–993.

    Article  CAS  Google Scholar 

  • Hall, J. E. and Granger, J. P. (1986a) Renal hemodynamics and arterial pressure during chronic intrarenal adenosine infusion in conscious dogs. Am. J. Physiol. 250, F32–F39.

    CAS  Google Scholar 

  • Hall, J. E. and Granger, J. P. (1986b) Adenosine alters glomerular filtration control by angiotensin II. Am. J. Physiol. 250, F917–F923.

    CAS  Google Scholar 

  • Hall, J. E., Granger, J. P., and Hester, R. L. (1985) Interactions between adenosine and angiotensin II in controlling glomerular filtration. Am. J. Physiol. 248, F340–F346.

    PubMed  CAS  Google Scholar 

  • Hashimoto, K. and Kokubun, H. (1971) Adenosine-catecholamine interaction in the renal vascular response. Proc. Soc. Exp. Biol. Med. 136, 1125–1128.

    PubMed  CAS  Google Scholar 

  • Hashimoto, K. and Kumakura, S. (1965) The pharmacological features of the coro-nary, renal, mesenteric and femoral arteries. Jpn. J. Physiol. 15, 540–551.

    Article  CAS  Google Scholar 

  • Hedqvist, P. and Fredholm, B. B. (1976) Effects of adenosine on adrenergic neuro-transmission. Prejunctional inhibition and postjunctional enhancement. Naunyn-Schmiedebergs Arch. Pharmacol. 293,217–223.

    Article  PubMed  CAS  Google Scholar 

  • Hedqvist, P., Fredholm, B. B., and Olundh, S. (1978) Antagonistic effects of theophylline and adenosine on adrenergic neuroeffector transmission in the rabbit kidney. Circ Res. 43,592–598.

    PubMed  CAS  Google Scholar 

  • Heidemann, H., Gerkens, J., and Branch, R. (1982) Prevention of cis-platinum (CP) nephrotoxicity by aminophylline, furosemide and high salt diet—Possible role of tubuloglomerular feedback (TGF). Clin. Res. 30, 253A (abstract).

    Google Scholar 

  • Heidemann, H., Gerkens, J. F., Jackson, E. K., and Branch, R. A. (1983) Effect of aminophylline on renal vasoconstriction produced by amphotericin B in the rat. Naunyn-Schmiedebergs Arch. Pharmacol. 324, 148–152.

    Article  PubMed  CAS  Google Scholar 

  • Humes, D. H. (1986) Role of calcium in pathogenesis of acute renal failure. Am. J. Physiol. 250, F579–F589.

    PubMed  CAS  Google Scholar 

  • Itoh, S., Carretero, O. A., and Murray, R. D. (1985) Possible role of adenosine in the macula densa mechanism of renin release in rabbits. J. Clin. Invest. 76, 1412–1417.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, E. K. and Ohnishi, A. (1987) Development and application of a simple microassay for adenosine in rat plasma. Hypertension 10, 189–197.

    PubMed  CAS  Google Scholar 

  • Jackson, R. C., Morris, H. P., and Weber, G. (1978) Adenosine deaminase and adenosine kinase in rat hepatomas and kidney tumors. Br. J. Cancer 37, 701–713.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, K. A., Kirk, K. L., Daly, J. W., Jonzon, B., Li, Y.-O., and Fredholm, B. B. (1985) A novel 8-phenyl-substituted xanthine derivative is a selective antagonist at adenosine Al receptors in vivo. Acta Physiol. Scand. 125, 341–342.

    Article  Google Scholar 

  • Jing-Yun, P., Bishop, V. S., Ball, N. A., and Haywood, J. R. (1985) Inability of dorsal spinal rhizotomy to prevent renal wrap hypertension in rats. Hypertension 7, 722–728.

    Google Scholar 

  • Johannesson, N., Andersson, K.-E., Joelsson, B., and Persson, C. G. A. (1985) Relaxation of lower esophageal sphincter and stimulation of gastric secretion and diuresis by antiasthmatic xanthines. Role of adenosine antagonism. Am. Rev. Respir. Dis. 131, 26–31.

    PubMed  CAS  Google Scholar 

  • Johns, E. J. and Singer, B. (1973) Effect of propranolol and theophylline on renin release caused by furosemide in the cat. Bur. J. Pharmacol. 23,67–73.

    Article  CAS  Google Scholar 

  • Johnson, J. A., Davis, J. O., and Witty, R. T. (1971) Effects of catecholamines and renal nerve stimulation on renin release in the nonfiltering kidney. Circ. Res. 29,646–653.

    PubMed  CAS  Google Scholar 

  • Jonzon, B., Bergquist, A., Li, Y.-O. and Fredholm, B. B. (1986) Effects of adenosine and two stable adenosine analogues on blood pressure, heart rate and colonic temperature in the rat. Acta Physiol. Scand. 126,491–498.

    Article  PubMed  CAS  Google Scholar 

  • Katholi, R. E. (1983) Renal nerves in the pathogenesis of hypertension in experimental animals and humans. Am. J. Physiol. 245, F1–F14.

    PubMed  CAS  Google Scholar 

  • Katholi, R. E., McCann, W. P., and Woods, W. T. (1985) Intrarenal adenosine produces hypertension via renal nerves in the one-kidney, one clip rat. Hypertension 7 (Suppl. 1), 88–93.

    CAS  Google Scholar 

  • Katholi, R. E., Hageman, G. R., Whitlow, P. L., and Woods, W. T. (1983) Hemodynamic and afferent renal nerve responses to intrarenal adenosine in the dog. Hypertension 5 (Suppl. 1), 149–154.

    CAS  Google Scholar 

  • Katholi, R. E., Whitlow, P. L., Hageman, G. R., and Woods, W. T. (1984) Intrarenal adenosine produces hypertension by activating the sympathetic nervous system via the renal nerves in the dog. J. Hypertens. 2, 349–359.

    PubMed  CAS  Google Scholar 

  • Keeton, T. K. and Campbell, W. B. (1980) The pharmacologic alteration of renin release. Pharmacol. Rev. 32,81–227.

    PubMed  CAS  Google Scholar 

  • Kenakin, T. P. and Pike, N. B. (1987) An in vitro analysis of purine-mediated renal vasoconstriction in rat isolated kidney. Br. J. Pharmacol. 90, 373–381.

    PubMed  CAS  Google Scholar 

  • Kuttesch, J. F., Jr. and Nelson, J. A. (1982) Renal handling of 2’-deoxyadenosine and adenosine in humans and mice. Cancer Chemother. Pharmacol. 8, 221–229.

    Article  PubMed  CAS  Google Scholar 

  • Lang, M. A., Preston, A. S., Handler, J. S., and Forrest, J. N., Jr. (1985) Adenosine stimulates sodium transport in kidney A6 epithelia in culture. Am. J. Physiol. 249, C330–0336.

    PubMed  CAS  Google Scholar 

  • Le Hir, M. and Dubach, U. C. (1984) Sodium gradient-energized concentrative transport of adenosine in renal brush border vesicles. Pflugers Arch. 401, 58–63.

    Article  PubMed  Google Scholar 

  • Lin, J.-J., Churchill, P. C., and Bidani, A. K. (1986) Effect of theophylline on the initiation phase of postischemic acute renal failure in rats. J. Lab. Clin. Med. 108,150–154.

    PubMed  CAS  Google Scholar 

  • Lin, J.-J., Churchill, P.C., and Bidani, A. K. (1987) The effect of dipyridamole on the initiation phase of post-ischemic acute renal failure in rats. Can. J. Physiol. Pharmacol. 65,1491–1495.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J.-J., Churchill, P.C., and Bidani, A. K. (1988) Theophylline in rats during the maintenance phase of post-ischemic acute renal failure. Kidney Int. 33, 24–28.

    Article  PubMed  CAS  Google Scholar 

  • Macias-Nunez, J. F., Garcia-Iglesias, C., Santos, J. C., Sanz, E., and Lopez-Novoa, J. M. (1985) Influence of plasma renin content, intrarenal angiotensin II, captopril, and calcium channel blockers on the vasoconstriction and renin release promoted by adenosine in the kidney. J. Lab. Clin. Med. 106, 562–567.

    PubMed  CAS  Google Scholar 

  • Macias-Nunez, J. R., Revert, M., Fiksen-Olsen, M., Knox, F. G., and Romero, J. C. (1986) Effect of allopurinol on the renovascular responses to adenosine. J. Lab. Clin. Med. 108, 30–36.

    PubMed  CAS  Google Scholar 

  • Miklos, E. S. and Juhasz-Nagy, A. (1984) Calcium antagonist verapamil inhibits adenosine-induced renal vasoconstriction in the dog. ActaPhysiol. Hung. 63, 161–165.

    PubMed  CAS  Google Scholar 

  • Miller, W. L., Thomas, R. A., Berne, R. M., and Rubio, R. (1978) Adenosine production in the ischemic kidney. Circ. Res. 43,390–397.

    PubMed  CAS  Google Scholar 

  • Murray, R. D. and Churchill, P. C. (1984) The effects of adenosine receptor agonists in the isolated-perfused rat kidney. Am. J. Physiol. 247, H343–H348.

    PubMed  CAS  Google Scholar 

  • Murray, R. D. and Churchill, P. C. (1985) The concentration-dependency of the renal vascular and Tenn secretory responses to adenosine receptor agonists. J. Pharmacol. Exp. Ther. 232,189–193.

    PubMed  CAS  Google Scholar 

  • Nechay, B. R. (1966) Renal effects of exogenous adenosine derivatives in the chicken. J. Pharmacol. Exp. Ther. 153,329–336.

    CAS  Google Scholar 

  • Needleman, P., Minkes, M. S., and Douglas, J. R., Jr. (1974) Stimulation of prostaglandin biosynthesis by adenine nucleotides. Profile of prostaglandin release by perfused organs. Circ. Res. 34,455–460.

    PubMed  CAS  Google Scholar 

  • Nelson, J. A., Kuttesch, J. R., Jr., and Herbert, B. H. (1983) Renal secretion ofpurine nucleosides and their analogs in mice. Biochem. Pharmacol. 32,2323–2327.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, D. P. and Chick, T. W. (1973) A re-evaluation of parenteral amino-phylline. Am. Rev. Respir. Dis. 108, 241–247.

    PubMed  CAS  Google Scholar 

  • Ono, H., Inagaki, K., and Hashimoto, K. (1966) A pharmacological approach to the nature of the autoregulation of the renal blood flow. Jpn. J. Physiol. 16, 625-.634.

    Google Scholar 

  • Opgenorth, T. J., Burnett, J. C., Jr., Granger, J. P., and Scriven, T. A. (1986) Effects of atrial natriuretic peptide on renin secretion in nonfiltering kidney. Am. J. Physiol. 250, F798–F801.

    PubMed  CAS  Google Scholar 

  • Osborn, J. E., Hoversten, L. G., and DiBona, G. F. (1983) Impaired blood flow auto-regulation in nonfiltering kidneys: Effects of theophylline administration. Proc. Soc. Exp. Biol. Med. 174, 328–335.

    PubMed  CAS  Google Scholar 

  • Osswald, H. (1975) Renal effects of adenosine and their inhibition by theophylline in dogs. Naunyn-Schmiedebergs Arch. Pharmacol. 288, 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Osswald, H. (1983) Adenosine and renal function, in Regulatory Function of Adenosine (Berne, R. M., Rall, T. W., and Rubio, R. eds.), Martins Nijhoff, Boston, pp. 399–415.

    Google Scholar 

  • Osswald, H. (1984) The role of adenosine in the regulation of glomerular filtration rate and renin secretion. Trends Pharmacol. Sci. 5, 94–97.

    Article  CAS  Google Scholar 

  • Osswald, H., Hermes, H. H., and Nabakowski, G. (1982) Role of adenosine in signal transmission of tubuloglomerular feedback. Kidney Int. 22 (Supp1.12), 136–142.

    CAS  Google Scholar 

  • Osswald, H., Nabakowski, G., and Hermes, H. (1980) Adenosine as a possible mediator of metabolic control of glomerular filtration rate. Int. J. Biochem. 12,263–267.

    Article  PubMed  CAS  Google Scholar 

  • Osswald, H., Schmitz, H.-J., and Heindenreich, O. (1975) Adenosine response of the rat kidney after saline loading, sodium restriction and hemorrhagia. Pflugers Arch. 357, 323–333.

    Article  PubMed  CAS  Google Scholar 

  • Osswald, H., Schmitz, H.-J., and Kemper, R. (1977) Tissue content of adenosine, inosine and hypoxanthine in the rat kidney after ischemia and postischemic recirculation. Pflugers Arch. 371, 45–49.

    Article  PubMed  CAS  Google Scholar 

  • Osswald, H., Schmitz, H.-J., and Kemper, R. (1978a) Renal action of adenosine: Effect on renin secretion in the rat. Naunyn-Schmiedebergs Arch. Pharmacol. 303, 95–99.

    Article  CAS  Google Scholar 

  • Osswald, H., Spielman, W. S., and Knox, F. G. (1978b) Mechanism of adenosine-mediated decreases in glomerular filtration rate in dogs. Circ. Res. 43, 465–469.

    CAS  Google Scholar 

  • Persson, C. G. A., Andersson, K.-E., and Kjellin, G. (1986) Minireview. Effects of enprofylline and theophylline may show the role of adenosine. Life Sci. 38, 1057–1072.

    Article  PubMed  CAS  Google Scholar 

  • Persson, C. G. A., Erjefalt, I., Edholm, L.-E., Karisson, J.-A., and Lamm, C.-J. (1982) Tracheal relaxant and cardiostimulant actions of xanthines can be differentiated from diuretic and CNS-stimulant effects. Role of adenosine antagonism? Life Sci. 31, 2673–2681.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W. and Wu, P. H. (1981) Indomethacin, iboprofen and meclofenamate inhibit adenosine uptake by rat brain synaptosomes. Eur. J. Pharmacol. 72, 139–140.

    Article  PubMed  CAS  Google Scholar 

  • Premen, A. J., Hall, J. E., Mizelle, H. L., and Cornell, J. E. (1985) Maintenance of renal autoregulation during infusion of aminophylline or adenosine. Am. J. Physiol. 248, F366–F373.

    PubMed  CAS  Google Scholar 

  • Ramos-Salazar, A. and Baines, A. D. (1986) Role of 5’-nucleotidase in adenosine-mediated renal vasoconstriction during hypoxia. J. Pharmacol. Exp. Ther. 236,494–499.

    PubMed  CAS  Google Scholar 

  • Rasmussen, H. and Barrett, P. Q. (1984) Calcium messenger system: An integrated view. Physiol. Rev. 64, 938–984.

    PubMed  CAS  Google Scholar 

  • Rossi, N., Churchill, P., Ellis, V., and Amore, B. (1988) Mechanism of adenosine receptor-induced renal vasoconstriction in rats. Am. J. Physiol. Ther. 255, H885–H890.

    CAS  Google Scholar 

  • Rossi, N. F., Churchill, P.C., and Churchill, M. C. (1987a) Pertussis toxin reverses adenosine receptor-mediated inhibition of renn secretion in rat renal cortical slices. Life Sci. 40, 481–487.

    Article  CAS  Google Scholar 

  • Rossi, N. F., Churchill, P. C., Jacobson, K. A., and Leahy, A. E. (1987b) Further characterization on the renovascular effects of N6-cyclohexyladenosine in the isolated perfused rat kidney. J. Pharmacol. Exp. Ther. 240,911–915.

    CAS  Google Scholar 

  • Roy, C. (1984) Regulation by adenosine of the vasopressin-sensitive adenylate cyclase in pig-kidney cells (LLC-PFIL) grown in defined media. Eur. J. Biochem. 143, 243–250.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, K., Aono, J., and Haruta, K. (1981) Species differences in renal vascular effects of diypridamole and in the potentiation of adenosine action by dipyridamole. J. Cardiovasc. Pharmacol. 3,420–430.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, K., Yasuda, K., and Hashimoto, K. (1968) Role of catecholamine and adenosine in the ischemic response following release of a renal artery occlusion. Jpn. J. Physiol. 18, 673–685.

    Article  PubMed  CAS  Google Scholar 

  • Schatz, R. A., Vunnam, C. R., and Sellinger, O. Z. (1977) Species and tissue differences in the catabolism of S-adenosyl-L-homocysteine: A quantitative, chromatographic study. Life Sci. 20, 375–383.

    Article  PubMed  CAS  Google Scholar 

  • Schnermann, J., Osswald, H., and Hermle, M. (1977) Inhibitory effect of methyl-xanthines on feedback control of glomerular filtration rate in the rat kidney. Pflugers Arch. 369, 39–48.

    Article  PubMed  CAS  Google Scholar 

  • Schutz, W., Kraupp, O., Bacher, S., and Raberger, G. (1983) The effect of a long-acting adenosine analog on blood flow through various organs in the dog. Basic Res. Cardiol. 78, 679–684.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzman, M., Pinkas, R., and Raz, A. (1981) Evidence for different purinergic receptors for ATP and ADP in rabbit kidney and heart. Eur. J. Pharmacol. 74,167–173.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J. B., Daugherty, R. M. Jr., Dabney, J. M., and Haddy, F. J. (1965) Role of chemical factors in regulation of flow through kidney, hindlimb, and heart. Am. J. Physiol. 208, 813–824.

    PubMed  CAS  Google Scholar 

  • Skott, O. and Baumbach, L. (1985) Effects of adenosine on renin release from iso-lated rat glomeruli and kidney slices. ’lingers Arch. 404, 232–237.

    CAS  Google Scholar 

  • Smith, H. (1951) The Kidney. Structure and Function in Health and Disease.(Oxford, New York).

    Google Scholar 

  • Sollevi, A., Lagerkranser, M., Andreen, M., and Irestedt, L. (1984) Relationship between arterial and venous adenosine levels and vasodilatation during ATP-and adenosine-infusion in dogs. Acta Physiol. Scand. 120, 171–176.

    Article  PubMed  CAS  Google Scholar 

  • Spielman, W. S. (1984) Antagonistic effect of theophylline on the adenosine-in-duced decrease in renin release. Am. J. Physiol. 247, F246–F251.

    PubMed  CAS  Google Scholar 

  • Spielman, W. S. and Osswald, H. (1978) Characterizaiton of the postocclusive re-sponse of renal blood flow in the cat. Am. J. Physiol. 235, F286–F290.

    PubMed  CAS  Google Scholar 

  • Spielman, W. S. and Osswald, H. (1979) Blockade of postocclusive renal vasocon-striction by an angiotensin II antagonist: Evidence for an angiotensin-adeno-sine interaction. Am. J. Physiol. 237, F463–F467.

    PubMed  CAS  Google Scholar 

  • Spielman, W. S. and Thompson, C. I. (1982) A proposed role for adenosine in the regulation of renal hemodynamics and renin release. Am. J. Physiol. 242, F423–F435.

    PubMed  CAS  Google Scholar 

  • Spielman, W. S., Britton, S. L., and Fiksen-Olsen, M. J. (1980) Effect of adenosine on the distribution of renal blood flow in dogs. Circ. Res. 46, 449–456.

    PubMed  CAS  Google Scholar 

  • Stein, J. H., Lifschitz, M. D., and Barnes, L. D. (1978) Current concepts on the pathophysiology of acute renal failure. Am. J. Physiol. 234, F171–F181.

    PubMed  CAS  Google Scholar 

  • Stocker, W., Roos, G., Lange, H. W., and Hempel, K. (1977) Monitoring the spe-cific radioactivity of S-adenosylmethionine in kidney in vivo. Eur. J. Bio-chem. 73,163–169.

    CAS  Google Scholar 

  • Tagawa, H. and Vander, A. J. (1970) Effects of adenosine compounds on renal function and renin secretion in dogs. Circ. Res. 26,327–338.

    PubMed  CAS  Google Scholar 

  • Thompson, C. I., Sparks, H. V., and Spielman, W. S. (1985) Renal handling and production of plasma and urinary adenosine. Am. J. Physiol. 248, F545–F551.

    PubMed  CAS  Google Scholar 

  • Thurau, K. (1964) Renal hemodynamics. Am. J. Med. 36,698–719.

    Article  PubMed  CAS  Google Scholar 

  • Trimble, M. E. and Coulson, R. (1984) Adenosine transport in perfused rat kidney and renal cortical membrane vesicles. Am. J. Physiol. 246, F794–F803.

    PubMed  CAS  Google Scholar 

  • Ueda, J., Nakanishi, H., and Abe, Y. (1978) Effect of glucagon on renin secretion in the dog. Eur. J. Pharmacol. 52, 85–92.

    Article  PubMed  CAS  Google Scholar 

  • Verney, E.G. and Winton, F. R. (1930) The action of caffeine on the isolated kidney of the dog. J. Physiol. (Lond.) 69,1153–1170.

    Google Scholar 

  • Viskoper, R. J., Maxwell, M. H., Lupu, A. N., and Rosenfeld, S. (1977) Renin stimulation by isoproterenol and theophylline in the isolated perfused kidney. Am. J. Physiol. 232, F248–F253.

    PubMed  CAS  Google Scholar 

  • Visscher, M. B. (1964) Concluding remarks. Circ. Res. 14/15 (Suppl. I), 288–291.

    Google Scholar 

  • Waugh, W. H. (1964) Circulatory autoregulation in the fully isolated kidney and in the humorally supported, isolated kidney. Circ. Res. 14/15 (Suppl.I), 156–169.

    Google Scholar 

  • Winer, N., Chokshi, D. S., and Wallcenhorst, W. G. (1971) Effects of cyclic AMP, sympathomimetic amines, and adrenergic receptor antagonists on renin secretion. Circ. Res. 29,239–248.

    PubMed  CAS  Google Scholar 

  • Winer, N., Chokshi, D. S., Yoon, M. S., and Freedman, A. D. (1969) Adrenergic receptor mediation of renin secretion. J. Clin. Endocrinol. 29,1168–1175.

    Article  CAS  Google Scholar 

  • Witty, R. T., Davis, J. O., Johnson, J. A., and Prewitt, R. L. (1971) Effects of papaverine and hemorrhage on renin secretion in the nonfiltering kidney. Am. J. Physiol. 221,1666–1671.

    PubMed  CAS  Google Scholar 

  • Witty, R. T., Davis, J. O., Shade, R. E., Johnson, J. A., and Prewitt, R. L. (1972) Mechanisms regulating renin release in dogs with thoracic caval constriction. Circ. Res. 31,339–347.

    PubMed  CAS  Google Scholar 

  • Woodcock, E. A. Leung, E., and Johnston, C. I. (1986) Adenosine receptors in papilla of human kidneys. Clin. Sci. 70, 353–357.

    PubMed  CAS  Google Scholar 

  • Woodcock, E. A., Loxley, R., Leung, E., and Johnson, C. I. (1984) Demonstration of RA-adenosine receptors in rat renal papillae. Biochem. Biophys. Res. Commun. 121, 434–440.

    Article  CAS  Google Scholar 

  • Wright, F. S. (1981) Characteristics of feedback control of glomerular filtration rate. Fed. Proc. 40, 87–92.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc.

About this chapter

Cite this chapter

Churchill, P.C., Bidani, A.K. (1990). Adenosine and Renal Function. In: Williams, M. (eds) Adenosine and Adenosine Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4504-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4504-9_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8850-3

  • Online ISBN: 978-1-4612-4504-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics