Skip to main content

Part of the book series: The Receptors ((REC))

Abstract

In contrast to the progress towards consensus regarding the sites and mechanisms of adenosine actions (Williams and Jacobson, 1990; Trivedi et al., 1990), the sites and mechanisms of adenosine formation and subsequent release are still the subjects of heated controversy. However, taken together with the demonstration of specific receptors for adenosine, the study of purine formation and release from tissues has contributed to at least two important hypotheses of tissue control and metabolic regulation. One is the purinergic nerve hypothesis (Burnstock, 1972, 1981), and the second is that adenosine might be an autonomous signal of cellular energy status (Berne, 1964; Lowenstein et al., 1983; Newby, 1984). In this chapter, the stimuli that give rise to adenosine release from various tissues will be reviewed in relation to the specific cell types involved. The biochemical mechanisms available for the formation of adenosine will then be discussed with emphasis given to the possibility of formation from both cytoplasmic and released nucleotides. Finally, some conclusions will be drawn as to the mechanisms of adenosine formation and release, and their physiological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abood, L. G., Koketsu, K., and Miyamoto, S. (1962) Outflux of various phosphates during membrane depolarisation of excitable tissues. Am. J. Physiol. 202, 469–474.

    PubMed  CAS  Google Scholar 

  • Achterberg, P. W., Harmsen, E., and De Jong, J. W. (1985) Adenosine deaminase inhibition and myocardial purine release during normoxia and ischemia. Cardiovasc. Res. 19, 593–598.

    PubMed  CAS  Google Scholar 

  • Achterberg, P. W., Stroeve, R. J., and De Jong, J. W. (1986) Myocardial adenosine cycling rates during normoxia and under conditions of stimulated purine release. Biochem. J. 235, 13–17.

    PubMed  CAS  Google Scholar 

  • Alhumayyd, M. and White, T. D. (1985) Adrenergic and possible nonadrenergic sources of ATP release from nerve varicosities isolated from ileal myenteric plexus. J. Pharmacol. Exp. Ther. 233, 796–800.

    CAS  Google Scholar 

  • Angel, A., Desai, K. S., and Halperin, H. L. (1971) Reduction in adipocyte ATP by lipolytic agents: relation to intracellular free fatty acid accumulation. J. Lipid Res. 12, 203–213.

    PubMed  CAS  Google Scholar 

  • Arch, J. R. S. and Newsholme, E. A. (1978) The control of the metabolism and the hormonal role of adenosine. Essays Biochem. 14, 82–123.

    PubMed  CAS  Google Scholar 

  • Asimakis, G. K., Wilson, D. E., and Conti, V. R. (1985) Release of adenosine and AMP from rat heart mitochondria. Life Sci. 37, 2373–2380.

    PubMed  CAS  Google Scholar 

  • Barberis, C., Guibert, B., Daudet, F., Charriere, B., and Leviel, V. (1984) In vivo release of adenosine from cat basal ganglia—studies with a push pull cannula. Neurochem. Int. 6, 545–551.

    CAS  Google Scholar 

  • Bardenheuer, H. and Schrader, J. (1986) Supply-to-demand ratio for oxygen determines formation of adenosine by the heart. Am. J. Physiol. 250, H173 - H180.

    Google Scholar 

  • Baron, M. D., Pope, B., and Luzio, J. P. (1986) The membrane topography of 5′-nucleotidase in rat hepatocytes. Biochem. J. 236, 495–502.

    PubMed  CAS  Google Scholar 

  • Belloni, F. L., Elkin, P. L., and Giannotto, B. (1985) The mechanism of adenosine release from hypoxic rat liver cells. Brit. J. Pharmac. 85, 441–446.

    CAS  Google Scholar 

  • Belloni, F. L., Phair, R. D., and Sparks, H. V. (1979) The role of adenosine in prolonged vasodilation following flow-restricted exercise of canine skeletal muscle. Circ. Res. 44, 759–766.

    PubMed  CAS  Google Scholar 

  • Bencherif, M., Berne, R. M., and Rubio, R. (1986) The release of purines by the frog sympathetic ganglion is the result of activation of postsynaptic elements. J. Physiol. 371, 274 P.

    Google Scholar 

  • Bender, A. S., Wu, P. H., and Phillis, J. W. (1981) The rapid uptake and release of [3H]adenosine by rat cerebral cortical synaptosomes. J. Neurochem. 36, 651–660.

    PubMed  CAS  Google Scholar 

  • Berne, R. M. (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am. J. Physiol. 204, 317–322.

    PubMed  CAS  Google Scholar 

  • Berne, R. M. (1964) Regulation of coronary blood flow. Annu. Rev. Physiol. 44, 1–29.

    CAS  Google Scholar 

  • Berne, R. M. (1980) The role of adenosine in the regulation of coronary blood flow. Circ. Res. 47, 807–813.

    PubMed  CAS  Google Scholar 

  • Berne, R. M. and Rubio, R. (1974) Adenine and nucleotide metabolism in the heart. Circ. Res. 34 and 35 suppl. 3, 109–118.

    Google Scholar 

  • Blusztajn, J. K., Zeisel, S. H., and Wurtman, R. J. (1982) Phospholipid methylation and cholinergic neurons, in Biochemistry of S-Adenosylmethionine and Related Compounds ( Usdin, E., Borchardt, R. T., and Craveling, C. R., eds.), Macmillan, London, pp. 155–164.

    Google Scholar 

  • Bockman, E. L. and McKenzie, J. E. (1983) Tissue adenosine content in active coleus and gracilis muscle of cats. Am. J. Physiol. 244, H552 - H559.

    PubMed  CAS  Google Scholar 

  • Bockman, E. L., Berne, R. M., and Rubio, R. (1976) Adenosine and active hy- peraemia in dog skeletal muscle. Am. J. Physiol. 230, 1531–1537.

    PubMed  CAS  Google Scholar 

  • Bontemps, F., Van den Berghe, G., and Hers, H. G. (1983) Evidence for a substrate cycle between AMP and adenosine in isolated hepatocytes. Proc. Nad. Acad. Sci. USA 80, 2829–2833.

    CAS  Google Scholar 

  • Borchardt, R. T. (1980)N- and O-methylation, in Enzymatic Basis of Detoxification (Jakoby, W. B., ed.), Academic, New York, pp. 43–62.

    Google Scholar 

  • Borregaard, N. and Herlin, T. (1982) Energy metabolism of human neutrophils during phagocytosis. J. Clin. Invest. 70, 550–557.

    PubMed  CAS  Google Scholar 

  • Braas, K. M., Zarbin, M. A., and Snyder, S. H. (1987) Endogenous adenosine and adenosine receptors localized to ganglian cells of the retina. Proc. Natl. Acad. Sci. USA 84, 3906–3910.

    PubMed  CAS  Google Scholar 

  • Braas, K. M., Newby, A. C., Wilson, V. S., and Snyder, S. H. (1986) Adenosine-containing neurones in the brain localized by immunocytochemistry. J. Neurosci. 6, 1952–1961.

    PubMed  CAS  Google Scholar 

  • Bukoski, R. D. and Sparks, H. V. (1986) Adenosine production and release by adult rat cardiocytes. J. Mol. Cell. Cardiol. 18, 595–605.

    PubMed  CAS  Google Scholar 

  • Bukoski, R. D., Sparks, H. V., and Mela, L. M. (1983) Rat heart mitochondria release adenosine. Biochem. Biophys. Res. Commun. 113, 990–995.

    PubMed  CAS  Google Scholar 

  • Bukoski, R. D., Sparks, H. V., and Mela-Riker, L. M. (1986) Mechanism of adenosine production by rat heart mitochondria. Biochim. Biophys. Acta. 884, 25–30.

    CAS  Google Scholar 

  • Bunger, R. and Soboll, S. (1986) Cytosolic adenylates and adenosine release in perfused working heart. Eur. J. Biochem. 159, 203–213.

    PubMed  CAS  Google Scholar 

  • Burger, R. M. and Lowenstein, J. M. (1970) Preparation and properties of 5′-nucleo-tidase from smooth muscle of small intestine. J. Biol. Chem. 245, 6274–6280.

    PubMed  CAS  Google Scholar 

  • Bumstock, G. (1972) Purinergic nerves. Pharmacol. Revs. 24, 509–581.

    Google Scholar 

  • Burnstock, G. (1976a) Do some nerve cells release more than one transmitter? Neurosci. 1, 239–248.

    CAS  Google Scholar 

  • Bumstock, G. (1976b) Purine nucleotides. Adv. Biochem. Psychopharm. 15, 225–235.

    Google Scholar 

  • Bumstock, G. (1981) Neurotransmitters and trophic factors in the autonomic nervous system. J. Physiol. 313, 1–35.

    Google Scholar 

  • Bumstock, G., Crowe, R., and Wong, H. K. (1979) Comparative pharmacological and histochemical evidence forpurinergic inhibitory innervation of the portal vein of the rabbit but not guinea pig. Br. J. Pharmacol. 65, 377–388.

    Google Scholar 

  • Burnstock, G., Campbell, G., Satchell, D. G., and Smythe, A. (1970) Evidence that ATP or a related nucleotide is the transmitter substance released by nonadrenergic inhibitory nerves in the gut. Brit. J. Pharmacol. 40, 668–688.

    CAS  Google Scholar 

  • Bumstock, G., Cocks, T., Kasakov, L., and Wong, H. K. (1978a) Direct evidence for ATP release from nonadrenergic, noncholinergic (purinergic) nerves in the guinea-pig taenia coli and bladder. Eur. J. Pharmacol. 49, 145–149.

    Google Scholar 

  • Bumstock, G., Cocks, T., Crowe, R., and Kasakov, L. (1978b) Purinergic innerva- tion of the guinea pig urinary bladder. Br. J. Pharmacol. 63, 125–138.

    Google Scholar 

  • Chaudhry, A., Downie, J. W., and White, T. D. (1984) Tetrodotoxin resistant release of ATP from superfused rabbit detrusor muscle during electrical field stimulation in the presence of luciferin-luciferase. Can. J. Physiol. Pharmacol. 62, 153–156.

    PubMed  CAS  Google Scholar 

  • Clemens, M. G. and Forrester, T. (1980) Appearance of ATP in the coronary sinus effluent from isolated working rat heart in response to hypoxia. J. Physiol. 312, 143–158.

    Google Scholar 

  • Cramer, H. (1977) Cyclic 3′5′-nucleotides in extracellular fluids of neural systems. J. Neurosci. Res. 3, 241–246.

    PubMed  CAS  Google Scholar 

  • Cronstein, B. N., Kramer, S. B., Weissman, G., and Hirschhorn, R. (1983) Adenosine: a physiological modulator of superoxide anion generation by human neutrophils. J. Exp. Med. 158, 1160–1177.

    PubMed  CAS  Google Scholar 

  • Cusack, N. J., Pearson, J. D., and Gordon, J. L. (1983) Stereoselectivity of ecto- nucleotidases on vascular endothelial cells. Biochem. J. 214, 975–981.

    PubMed  CAS  Google Scholar 

  • Daval, J. L. and Barberis, C. (1981) Release of radiolabeled adenosine from per-fused synaptosome beds. Biochem. Pharmacol. 30, 2559–2567.

    PubMed  CAS  Google Scholar 

  • Daval, J. L., Barberis, C., and Gayet, J. (1980) Release of adenosine derivatives from superfused synaptosome preparations: effects of depolarising agents and metabolic inhibitors. Brain Res. 181, 161–174.

    PubMed  CAS  Google Scholar 

  • Des Rosiers, C., Lalanne, H., and Willemot, J. (1982) Glycerol-induced adenine nucleotide catabolism in rat liver cells. Can. J. Biochem. 60, 1101–1108.

    PubMed  Google Scholar 

  • Deussen, A., Moser, G., and Schrader, J. (1986) Contribution of coronary endothelial cells to cardiac adenosine production. Pflugers Arch. 406, 608–614.

    PubMed  CAS  Google Scholar 

  • Deuticke, B. and Gerlach, E. (1966) Abbau der freier Nucleotide in Herz, Skeletmuskel, Gehir and Leben der Ratter bei Sauerstoffmangel. Pflugers Arch. 292, 239–254.

    CAS  Google Scholar 

  • Dobson, J. G., Rubio, R., and Berne, R. M. (1971) Role of adenine nucleotides and inorganic phosphate in the regulation of skeletal muscle blood flow. Circ. Res. 29, 375–384.

    PubMed  CAS  Google Scholar 

  • Doore, B. J., Basher, M. M., Spitzer, N., Mawe, R. C., and Saier, M. N. (1975) Cyclic AMP output from rat glioma cultures. J. Biol. Chem. 250, 4371–4372.

    PubMed  CAS  Google Scholar 

  • Dornand, J., Bonnafous, J. C., Gavach, C., and Mani, J. C. (1979) 5′-nucleotidase facilitated adenosine transport by mouse lymphocytes. Biochemie 61, 973–977.

    CAS  Google Scholar 

  • Fain, J. N. (1979) Effect of lipolytic agents on adenosine and AMP formation by fat-cells. Biochim. Biophys. Acta. 573, 510–520.

    PubMed  CAS  Google Scholar 

  • Fleit, H., Conklyn, M., Stebbins, R. D., and Silber, R. (1975) Function of 5′-nucleotidase in the uptake of adenosine from AMP by human lymphocytes. J. Biol. Chem. 250, 8889–8892.

    PubMed  CAS  Google Scholar 

  • Foley, D. H., Miller, W. L., Rubio, R., and Berne, R. M. (1979) Transmural distribution of myocardial adenosine content during coronary constriction. Am. J. Physiol. 226, H833 - H838.

    Google Scholar 

  • Forrester, T. (1972) A quantitative estimation of ATP released from human forearm muscle during sustained exercise. J. Physiol. (London) 221, 26P, 27 P.

    Google Scholar 

  • Forrester, T. (1981) Adenosine or ATP, in Vasodilatation ( Vanhoutte, P. M. and Leusen, I., eds.), Raven, New York, pp. 205–229.

    Google Scholar 

  • Fredholm, B. B. (1976) Release of adenosine like material from isolated perfused dog adipose tissue following sympathetic nerve stimulation and its inhibition by adrenergic alpha receptor blockade. Acta. Physiol. Scand. 96, 422–430.

    CAS  Google Scholar 

  • Fredholm, B. B. and Hedqvist, P. (1978) Release of [3H]purines from [3H]adenine labeled rat kidney following sympathetic nerve stimulation and its inhibition by alpha adrenoreceptor blockade. Br. J. Pharmacol. 64, 239–246.

    PubMed  CAS  Google Scholar 

  • Fredholm, B. B. and Hjemdahl, P. (1979) Uptake and release of adenosine in isolated rat fat cells. Acta. Physiol. Scand. 105, 257–267.

    PubMed  CAS  Google Scholar 

  • Fredholm, B. B. and Sollevi, A. (1981) The release of adenosine and inosine from canine subcutaneous adipose tissue by nerve stimulation and norepinephrine. J. Physiol. 313, 351–367.

    PubMed  CAS  Google Scholar 

  • Fredholm, B. B. and Vernet, L. (1978) Morphine increases depolarisation induced purine release from hypothalamic synaptosomes. Acta. Physiol. Scand. 104, 502–504.

    PubMed  CAS  Google Scholar 

  • Fredholm, B. B. and Vernet, L. (1979) Release of [3H]nucleotides from [3H]adenine labeled hypothalamic synaptosomes. Acta. Physiol. Scand. 106, 97–107.

    PubMed  CAS  Google Scholar 

  • Fredholm, B. B., Fried, G., and Hedqvist, P. (1982) Origin of adenosine released from rat vas deferens by nerve stimulation. Eur. J. Pharmacol. 79, 233–243.

    PubMed  CAS  Google Scholar 

  • Frick, G. P. and Lowenstein, J. M. (1976) Studies of 5′-nucleotidase in the perfused rat heart. J. Biol. Chem. 251, 6372–6378.

    PubMed  CAS  Google Scholar 

  • Frick, G. P. and Lowenstein, J. M. (1978) Vectorial production of adenosine by 5′- nucleotidase in the perfused heart. J. Biol. Chem. 253, 1240–1244.

    PubMed  CAS  Google Scholar 

  • Gerlach, E., Deuticke, B., and Dreisbach, R. H. (1963) Der Nucleotid Abbau in Hertzmuskel bei Sauerstoffmangel und seine Mogliche Bedeutung fur die Coronardurchblutung. Naturwissenschaften 50, 228–229.

    CAS  Google Scholar 

  • Gordon, J. L. (1986) Extracellular ATP: Effects, sources, and fate. Biochem. J. 233, 309–319.

    PubMed  CAS  Google Scholar 

  • Gordon, J. L., Pearson, J. D., and Slakey, L. L. (1986) Hydrolysis of extracellular adenine nucleotides by cultured endothelial cells from pig aorta: feed forward inhibition of adenosine production at the cell surface. J. Biol. Chem. 261, 15496–15504.

    PubMed  CAS  Google Scholar 

  • Hirata, H. and Axelrod, J. (1980) Phospholipid methylation and biological signal transmission. Science 209, 1082–1090.

    PubMed  CAS  Google Scholar 

  • Hollins, C. and Stone, T. W. (1980) Characteristics of the release of adenosine from slices of rat cerebral cortex. J. Physiol. 303, 73–82.

    PubMed  CAS  Google Scholar 

  • Hollins, C., Stone, T. W., and Lloyd, H. (1980) Neuronal (Na, K)-ATPase and the release of purines from mouse and rat cerebral cortex. Neurosci. Lett. 20, 217–221.

    PubMed  CAS  Google Scholar 

  • Holmsen, H. and Weiss, H. J. (1979) Secretable storage pools in platelets. Annu. Rev. Med. 30, 119–134.

    PubMed  CAS  Google Scholar 

  • Holton, P. (1959) The liberation of ATP on antidromic stimulation of sensory nerves. J. Physio1. 145, 494–504.

    CAS  Google Scholar 

  • Holton, F. A. and Holton, P. (1954) The capillary dilator substances in dry powders of spinal mots: a possible role of Al? in chemical transmission from nerve endings. J. Physiol. 126, 124–140.

    PubMed  CAS  Google Scholar 

  • Huang, E. M. and Detwiler, T. C. (1986) Stimulus-response coupling mechanisms, in Biochemistry of Platelets ( Philips, D. R. and Schuman, M. A., eds.), Academic, London, pp. 1–68.

    Google Scholar 

  • Imai, S., Imai, H., and Jin, H. (1986) Myocardial tissue fluid adenosine and the hyperemic responses. Pflugers Archiv. 407 suppl. 1, S 17.

    Google Scholar 

  • Imai, S., Riley, A. L., and Berne, R. M. (1964) Effect of ischemia on adenine nucleotides in cardiac and skeletal muscle. Circ. Res. 15, 443–450.

    PubMed  CAS  Google Scholar 

  • Israel, M., Lesbats, B., Meunier, F. M., and Stinnakre, J. (1976) Post synaptic release of ATP induced by single impulse transmitter action. Proc. Roy. Soc. B. 193, 461–468.

    CAS  Google Scholar 

  • Itoh, R. (198la) Purification and some properties of cytosol 5′-nucleotidase from rat liver. Biochim. Biophys. Acta. 657, 402–410.

    PubMed  CAS  Google Scholar 

  • Itoh, R. (198lb) Regulation of cytosol 5′-nucleotidase by adenylate energy charge. Biochim. Biophys. Acta. 659, 34–37.

    Google Scholar 

  • Itoh, R. (1982) Studies on some molecular properties of cytosol 5′-nucleotidase from rat liver. Biochim. Biophys. Acta. 716, 110–113.

    PubMed  CAS  Google Scholar 

  • Itoh, R. and Oka, J. (1985) Evidence for existence of a cytosol 5′-nucleotidase in chicken heart: comparison of some properties of heart and liver enzymes. Comp. Biochem. Physiol. 81B, 159–163.

    CAS  Google Scholar 

  • Itoh, R., Oka, J., and Ozasa, H. (1986) Regulation of heat cytosolic 5′-nucleotidase by adenylate energy charge. Biochem. J. 235, 847–851.

    PubMed  CAS  Google Scholar 

  • Jacobson, S. L. and Piper, H. M. (1986) Cell cultures of adult cardiomyocytes as models of the myocardium. J. Mol. Cell. Cardiol. 18, 661–678.

    PubMed  CAS  Google Scholar 

  • Jhamandas, K. and Dumbrille, A. (1980) Regional release of [3H]adenosine derivatives from rat brain in vivo: effects of excitatory amino acids, opiate agonists and benzodiazepines. Can. J. Physiol. Pharmacol. 58, 1262–1278.

    PubMed  CAS  Google Scholar 

  • Jonzon, B. and Fredholm, B. B. (1985) Release of purines, noradrenaline and GABA from rat hippocampal slices by field stimulation. J. Neurochem. 44, 217–224.

    PubMed  CAS  Google Scholar 

  • Katori, M. and Berne, R. M. (1966) Release of adenosine from anoxic hearts: relationship to coronary blood flow. Circ. Res. 19, 420–425.

    PubMed  CAS  Google Scholar 

  • Katsuragi, T. and Su, C. (1980) Purine release from vascular adrenergic nerves by high potassium and a calcium ionophore A23187. J. Pharmacol. Exp. Ther. 215, 685–690.

    PubMed  CAS  Google Scholar 

  • Katsuragi, T. and Su, C. (1981) Facilitation by clonidine of high KCl induced purine release from the rabbit pulmonary artery. Br. J. Pharmacol. 74, 709–713.

    PubMed  CAS  Google Scholar 

  • Keller, F. and Zimmerman, H. (1983) Ecto-ATPase activity at the cholinergic nerve endings of the Torpedo electric organ. Life Sci. 33, 2635–2641.

    PubMed  CAS  Google Scholar 

  • Knabb, R. M., Ely, S. W., Bacchus, A. N., Rubio, R., and Berne, R. M. (1983) Consistent parallel relationships among myocardial oxygen consumption, coronary blood flow and pericardial infusate adenosine concentration with various interventions and beta blockade in the dog. Circ. Res. 53, 33–41.

    PubMed  CAS  Google Scholar 

  • Kreutzberg, G. W., Heymann, D., and Reddington, M. (1986) 5′-nucleotidase in the nervous system, in Cellular Biology of Ecto-Enzymes (Kreutzberg, G. W., Reddington, M., and Zimmerman, H., eds.), Springer-Verlag, Berlin, pp. 148–175.

    Google Scholar 

  • Kuperman, A. S., Volpert, W. A., and Okamoto, M. (1964) Release of adenine nucleotides from nerve axons. Nature 204, 1000–1001.

    PubMed  CAS  Google Scholar 

  • Lagercrantz, H. (1976) On the composition and function of large dense cored vesicles in sympathetic nerves. Neurosci. 1, 81–92.

    CAS  Google Scholar 

  • Lee, K. S., Schubert, P., Reddington, M., and Kreutzberg, G. W. (1986) The distribution of adenosine Al receptors and 5’-nucleotidase in the hippocampal formations of several mammalian species. J. Comp. Neurol. 246, 427–434.

    PubMed  CAS  Google Scholar 

  • Lee, K., Schubert, P., Gribkoff, V., Sherman, B., and Lynch, G. (1982) A combined in vivo/in vitro study of the presynaptic release of adenosine derivatives in the hippocampus. J. Neurochem. 38, 80–83.

    PubMed  CAS  Google Scholar 

  • Levitt, B. and Westfall, D. P. (1982) Factors influencing the release of purines and norepinephrine in the rabbit portal vein. Blood Vessels 19, 30–40.

    PubMed  CAS  Google Scholar 

  • Lloyd, H. G. E. and Schrader, J. (1986) The importance of the transmethylation pathway in the production of adenosine. Pflug. Arch. 407 Suppl. 1, S21.

    Google Scholar 

  • Lloyd, H. G. E. and Stone, T. W. (1980) Factors effecting the release of purines from mouse cerebral cortex: potassium removal and metabolic inhibitors. Biochem. Pharmacol. 30, 1239–1243.

    Google Scholar 

  • Lloyd, H. G. E. and Stone, T. W. (1983) A different time course of purine release from rat brain slices and synaptosomes. J. Physiol. 340,57P, 58 P.

    Google Scholar 

  • Lomax, C. A. and Henderson, J. F. (1973) Adenosine formation and metabolism during ATP catabolism in Ehrlich ascites tumour cells. Cancer Res. 33, 2825–2829.

    PubMed  CAS  Google Scholar 

  • Lowenstein, J. M., Naito, Y., and Collinson, A. R. (1986) Regulatory properties of intracellular and ecto-5′-nucleotidases and their possible role in production of adenosine. Pflugers Arch. 407 suppl. 1, S9.

    Google Scholar 

  • Lowenstein, J. M., Yu, M. K., and Naito, Y. (1983) Regulation of adenosine metabolism by 5′-nucleotidase, in Regulatory Function of Adenosine ( Berne, R. M., Rall, T. W., and Rubio, R., eds.), Martins Nijhoff, The Hague, pp. 117–131.

    Google Scholar 

  • Luchelli-Fortis, M. A., Fredholm, B. B., and Langer, S. Z. (1979) Release of radioactive purines from cat nictitating membrane labeled [3H]adenine. Eur. J. Pharmacol. 58, 389–398.

    PubMed  CAS  Google Scholar 

  • Luzio, J. P., Bailyes, E. M., Baron, M., Siddle, K., Mullock, B. M., Geuze, H. J., and Stanley, K. K. (1986) The properties, structure, function, intracellular localization and movement of hepatic 5’-nucleotidase, in Cellular Biology of Ectoenzymes ( Kreutzberg, G. W., Reddington, M., and Zimmerman, H., eds.), Springer-Verlag, Berlin, pp. 89–116.

    Google Scholar 

  • Mcllwain, H. (1972) Regulatory significance of the release and action of adenine derivatives in cerebral systems. Biochem. Soc. Symp. 36, 69–85.

    Google Scholar 

  • Mcllwain, H. (1985) The endogenously formed adenosine of the brain: its status as a regulator signal appraised in relation to actions of homocysteine, in Purines Pharmacology and Physiological Roles ( Stone, T. W., ed.), Macmillan, London, pp. 215–220.

    Google Scholar 

  • Mcllwain, H. and Poll, J. D. (1986) Adenosine in cerebral homeostatic role: appraisal through actions of homocysteine, colchicine and dipyridamole. J. Neurobiol. 17, 39–49.

    Google Scholar 

  • Mackenzie, I., Burnstock, G., and Dolly, J. D. (1982) The effects of purified botulinum neurotoxin type A on cholinergic, adrenergic and nonadrenergic atropine resistant autonomic neuromuscular transmission. Neurosci. 7, 997–1006.

    CAS  Google Scholar 

  • McKenzie, J. E., Steffan, R. P., and Haddy, F. J. (1982) Relationship between adenosine and coronary resistance in conscious exercising dogs. Am. J. Physiol. 242, H24 - H29.

    PubMed  CAS  Google Scholar 

  • Maire, J. C., Medilanski, J., and Straub, R. W. (1982) Uptake and release of adenosine derivatives in mammalian non-myelinated nerve fibre at rest and during activity. J. Physiol. 323, 589–602.

    PubMed  CAS  Google Scholar 

  • Maire, J. C., Medilanski, J., and Straub, R. W. (1984) Release of adenosine, inosine and hypoxanthine from rabbit non-myelinated nerve fibres at rest and during activity. J. Physiol. 357, 67–78.

    PubMed  CAS  Google Scholar 

  • Mann, J. S., Renwick, A. G., and Holgate, S. T. (1986) Release of adenosine and its metabolites from activated human leucocytes. Clin. Sci. 70, 461–468.

    PubMed  CAS  Google Scholar 

  • Martin, S. E. and Bockuran, E. L. (1986) Adenosine regulates blood flow and glucose uptake in adipose tissue of dogs. Am. J. Physiol. 250, H1127 - H1135.

    PubMed  CAS  Google Scholar 

  • Meghji, P., Holmquist, C. A., and Newby, A. C. (1985) Adenosine formation and release from neonatal-rat heart cells in culture. Biochem. J. 229, 799–805.

    PubMed  CAS  Google Scholar 

  • Meghji, P., Middleton, K. H., and Newby, A. C. (1988) Absolute rates of adenosine formation during ischaemia in rat and pigeon hearts. Biochem. J. 249, 695–703.

    PubMed  CAS  Google Scholar 

  • Meunier, F. M., Israel, M., and Lesbats, B. (1975) Release of ATP from stimulated nerve electroplaque junctions. Nature 257, 407–408.

    PubMed  CAS  Google Scholar 

  • Michaelson, D. M. (1978) Is presynaptic acetylcholine release accompanied by the secretion of the synaptic vesicle contents? FEBS Lett. 89, 51–53.

    PubMed  CAS  Google Scholar 

  • Miller, W. L., Belardinelli, L., Bacchus, A., Foley, D. H., Rubio, R., and Berne, R. M. (1979) Canine myocardial adenosine and lactate production, oxygen consumption and coronary blood flow during stellate ganglia stimulation. Circ. Res. 45, 708–718.

    PubMed  CAS  Google Scholar 

  • Mills, D. C. B. (1973) Changes in adenylate energy charge in human blood platelets induced by adenosine diphosphate. Nature 243, 220–222.

    CAS  Google Scholar 

  • Morel, N. and Meunier, F. M. (1981) Simultaneous release of acetylcholine and ATP from stimulated cholinergic synaptosomes. J. Neurochem. 36, 1766–1773.

    PubMed  CAS  Google Scholar 

  • Morgan, B. P., Luzio, J. P., and Campbell, A. K. (1986) Intracellular Ca2+ and cell injury: a paradoxical role of Ca2+ in complement membrane attack. Cell. Calcium 7, 399–411.

    PubMed  CAS  Google Scholar 

  • Mustafa, S. J. (1979) Effects of coronary vasodilator drugs on the uptake and release of adenosine in cardiac cells. Biochem. Pharmacol. 28, 2617–2624.

    PubMed  CAS  Google Scholar 

  • Nagy, A., Schuster, T. A., and Rosenberg, M. D. (1983) Adenosine triphosphate activity at the external surface of chick brain synaptosomes. J. Neurochem. 40, 226–234.

    PubMed  CAS  Google Scholar 

  • Naito, Y. and Tsushima, K. (1976) 5′-nucleotidase from chicken liver. Purification and some properties. Biochim. Biphys. Acta. 438, 159–168.

    CAS  Google Scholar 

  • Nakatsu, K. and Drummond, G. I. (1972) Adenylate metabolism and adenosine formation in the heart. Am. J. Physiol. 223, 1119–1127.

    PubMed  CAS  Google Scholar 

  • Nees, S. and Gerlach, E. (1983) Adenine nucleotide and adenosine metabolism in coronary endothelial cells, in Regulatory Function of Adenosine ( Berne, R. M., Rall, T. W., and Rubio, R., eds.), Martinus Nijhoff, The Hague, pp. 347–360.

    Google Scholar 

  • Nees, S., Bock, M., Herzog, V., Becker, B. F., Des Rosiers, C., and Gerlach, E. (1985a) The adenine nucleotide metabolism of the coronary endothelium: implications for the regulation of coronary flow by adenosine, in Adenosine: Receptors and Modulation of Cell Function ( Staphanovic, V., Rudolphi, K., and Schubert, P., eds.), IRL, Oxford, pp. 419–436.

    Google Scholar 

  • Nees, S., Herzog, V., Becker, B. F., Bock, M., Des Rosiers, C. H., and Gerlach, E. (1985b) The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res. Cardiol. 80, 515–529.

    PubMed  CAS  Google Scholar 

  • Newby, A. C. (1980) Role of adenosine deaminase, ecto-5′-nucleotidase and ecto(non-specific phosphatase) in cyanide-induced AMP catabolism in rat polymorphonuclear leucocytes. Biochem. J. 186, 907–918.

    PubMed  CAS  Google Scholar 

  • Newby, A. C. (1981) The interaction of inhibitors with adenosine metabolizing enzymes in intact isolated cells. Biochem. Pharm. 30, 2611–2615.

    PubMed  CAS  Google Scholar 

  • Newby, A. C. (1984) Adenosine and the concept of retaliatory metabolites. Trends Biochem. Sci. 9, 42–44.

    CAS  Google Scholar 

  • Newby, A. C. (1986) How does dipyridamole elevate extracellular adenosine concentration? Predictions from a three compartment model of adenosine formation and inactivation. Biochem. J. 237, 845–851.

    PubMed  CAS  Google Scholar 

  • Newby, A. C. and Holmquist, C. A. (1981) Adenosine production inside rat polymorphonuclear leucocytes. Biochem. J. 200, 399–403.

    PubMed  CAS  Google Scholar 

  • Newby, A. C. and Meghji, P. (1986) The mechanism of adenosine formation in the heart. Biochem. Soc. Trans. 14, 1110–1111.

    CAS  Google Scholar 

  • Newby, A. C., Luzio, J. P., and Hales, C. N. (1975) The properties and extra-cellular location of 5′-nucleotidase of the rat fat-cell plasma membrane. Biochem. J. 146, 625–633.

    PubMed  CAS  Google Scholar 

  • Newby, A. C., Worku, Y., and Meghji, P. (1987) Critical evaluation of the role of ecto-and cytosolic 5′-nucleotidase in adenosine formation, in Topics and Perspectives in Adenosine Research ( Gerlach, E. and Becker, B. F., eds.), Springer-Verlag, Berlin, pp. 155–170.

    Google Scholar 

  • Newman, M. E. (1983) Adenosine binding sites in brain; relationship to endogenous levels of adenosine and to its physiological and regulatory roles. Neurochem. Int. 5, 21–25.

    PubMed  CAS  Google Scholar 

  • Newman, M. E. and Mcllwain, H. (1977) Adenosine as a constituent of the brain and of isolated cerebral tissues and its relationship to the generation of cyclic AMP. Biochem. J. 164, 131–137.

    PubMed  CAS  Google Scholar 

  • Newsholme, E. A. and Start, C. (1973) Regulation of carbohydrate metabolism in muscle. Regulation in Metabolism ( Wiley, London ), pp. 111–113.

    Google Scholar 

  • Nishiki, K., Ereciniska, M., and Wilson, D. F. (1978) Energy relationships between cytosolic metabolism and mitochondrial respiration in rat heart. Am. J. Physiol. 234, C73 - C81.

    PubMed  CAS  Google Scholar 

  • Ogasawara, N., Goto, H., Yamada, Y., and Watanabe, T. (1978) Distribution of AMP deaminase isoenzymes in rat tissues. Eur. J. Biochem. 87, 297–304.

    PubMed  CAS  Google Scholar 

  • Osswald, H., Hermes, H. H., and Nabakowski, G. (1982) Role of adenosine in signal transmission of tubuloglomerular feedback. Kidney Int. 22 suppl 12, S 136–S142.

    CAS  Google Scholar 

  • Osswald, H., Nabakowski, G., and Hermes, H. (1980) Adenosine as a possible mediator of metabolic control of glomerular filtration rate. Int. J. Biochem. 12, 263–267.

    PubMed  CAS  Google Scholar 

  • Osswald, H., Schmitz, H. J., and Kemper, R. (1977) Tissue content of adenosine, inosine and hypoxanthine in the rat kidney after ischaemia and post ischaemic recirculation. Pflugers Arch. 371, 45–49.

    PubMed  CAS  Google Scholar 

  • Paddle, B. M. and Burnstock, G. (1974) Release of ATP from perfused heart during coronary vasodilation. Blood Vessels 11, 110–119.

    PubMed  CAS  Google Scholar 

  • Paik, W. K. and Kim, S. (1980) Protein Methylation ( Wiley-Interscience, New York).

    Google Scholar 

  • Patel, A. K. and Campbell, A. K. (1987) The membrane attack complex of complement induces permeability changes via thresholds in individual cells. Immunol. 60, 135–140.

    CAS  Google Scholar 

  • Pearson, J. D. (1985) Ectonucleotidases. Measurement of activities and use of inhibitors. Methods in Pharm. 6, 83–108.

    CAS  Google Scholar 

  • Pearson, J. D. and Gordon, J. L. (1979) Vascular endothelium and smooth muscle cells selectively release adenine nucleotides. Nature 281, 384–386.

    PubMed  CAS  Google Scholar 

  • Pearson, J. D. and Gordon, J. L. (1985) Nucleotide metabolism by endothelium. Annu. Rev. Physiol. 47, 617–627.

    PubMed  CAS  Google Scholar 

  • Pearson, J. D., Carleton, J. S., and Gordon, J. L. (1980) Metabolism of adenine nucleotides by ecto-enzyme of vascular endothelial and smooth muscle cells in culture. Biochem. J. 190, 421–429.

    PubMed  CAS  Google Scholar 

  • Perez, M. T. R. and Ehinger, B. (1986) Adenosine uptake and release in the rabbit retina, in Retina Signal Systems, Degenerations and Transplants ( Agardh, E. and Ehinger, B., eds.), Elsevier, Amsterdam, pp. 105–121.

    Google Scholar 

  • Perez, M. T. R., Ehinger, B. E., Linstrom, K., and Fredholm, B. B. (1986) Release of endogenous and radioactive purines from the rabbit retina. Brain Res. 398, 106–112.

    PubMed  CAS  Google Scholar 

  • Perkins, M. N. and Stone, T. W. (1980) Blockade of striatal neuron responses to morphine by aminophylline: evidence for adenosine mediation of opiate action. Br. J. Pharmacol. 69, 131–137.

    PubMed  CAS  Google Scholar 

  • Perkins, M. N. and Stone, T. W. (1983) In vivo release of [3H]purines by quinolinic acid and related compounds. Brit. J. Pharmacol. 80, 263–267.

    CAS  Google Scholar 

  • Phair, R. D. and Sparks, H. V. (1979) Adenosine content of skeletal muscle during active hyperemia and ischemic contraction. Am. J. Physiol. 237, Hl-H9.

    Google Scholar 

  • Phillis, J. W., Jiang, Z. G., Chelack, B. J., and Wu, P. H. (1979) Morphine enhances adenosine release from the in vivo rat cerebral cortex. Eur. J. Pharmacol. 65, 97–100.

    Google Scholar 

  • Pollard, H. B. and Pappas, G. D. (1979) Veratridine activated release of ATP from synaptosomes: evidence for calcium dependence and blockade by tetrodotoxin. Biochem. Biophys. Res. Comm. 88, 1315–1321.

    PubMed  CAS  Google Scholar 

  • Pons, F., Bruns, R. F., and Daly, J. W. (1980) Depolarization-evoked accumulation of cAMP in brain slices: the requisite intermediate adenosine is not derived from hydrolysis of released ATP. J. Neurochem. 34, 1319–1323.

    PubMed  CAS  Google Scholar 

  • Potter, P. and White, T. D. (1980) Release of adenosine 5′-triphosphate from syn- aptosomes from different regions of rat brain. Neurosci. 5, 1351–1356.

    CAS  Google Scholar 

  • Potter, P. and White, T. D. (1982) Lack of effect of 6-hydroxydopamine pretreatment on depolarisation induced release of ATP from rat brain synaptosomes. Eur. J. Pharmacol. 80, 143–147.

    PubMed  CAS  Google Scholar 

  • Pull, I. and McIlwain, H. (1972) Adenine derivatives as neurohumoral agents in the brain. The quantities liberated on excitation of superfused cerebral tissues. Biochem. J. 130, 975–981.

    PubMed  CAS  Google Scholar 

  • Pull, I. and Mcrlwain, H. (1973) Output of 14C adenine nucleotides and their derivatives from cerebral tissues. Biochem. J. 136, 893–901.

    PubMed  CAS  Google Scholar 

  • Pull, I. and Mcllwain, H. (1976) Centrally active drugs and related compounds examined for action on output of adenine derivatives from superfused tissues of the brain. Biochem. Pharmacol. 25, 293–298.

    PubMed  CAS  Google Scholar 

  • Pull, I. and Mcllwain, H. (1977) Adenine mononucleotides and their metabolites liberated from and applied to isolated tissue of the mammalian brain. Neurochem. Res. 2, 203–216.

    CAS  Google Scholar 

  • Raggi, A., Ronca-Testoni, S., and Ronca, G. (1969) Distribution of AMP aminohydrolase, myokinase and creatine kinase activities in skeletal muscle. Biochim. Biophys. Acta. 178, 619–622.

    PubMed  CAS  Google Scholar 

  • Ramos-Salazar, A. and Baines, A. D. (1986) Role of 5′-nucleotidase in adenosine-mediated renal vasoconstriction during hypoxia. J. Pharm. Exp. Ther. 236, 494–499.

    CAS  Google Scholar 

  • Reddington, M. and Pusch, R. (1983) Adenosine metabolism in rat hippocampal slice preparation: incorporation into S-adenosylhomocysteine. J. Neurochem. 40, 285–290.

    PubMed  CAS  Google Scholar 

  • Rehncrona, S., Siesjo, B. K., and Westerberg, E. (1978) Adenosine and cyclic AMP in cerebral cortex of rats in hypoxia, status epilepticus and hypercapnia. Acta. Physiol. Scand. 104, 453–463.

    PubMed  CAS  Google Scholar 

  • Richardson, P. J. (1983) Presynaptic distribution of the cholinergic specific antigen chol-1 and 5′-nucleotidase in rat brain as determined by complement-mediated release of neurotransmitters. J. Neurochem. 41, 640–648.

    PubMed  CAS  Google Scholar 

  • Richardson, P. J. and Brown, S. J. (1987) ATP release from affinity purified cholinergic nerve terminals. J. Neurochem. 48, 622–630.

    PubMed  CAS  Google Scholar 

  • Richardson, P.J.,Brown, S. J., Bailyes, E. M., and Luzio,J. P. (1987) Ecto-enzymes control adenosine modulation of immunoisolated cholinergic synapses. Nature 327, 232–234.

    PubMed  CAS  Google Scholar 

  • Richman, H. G. and Wyborny, L. (1964) Adenine nucleotide degradation in the rabbit heart. Am. J. Physiol. 207, 1139–1145.

    PubMed  CAS  Google Scholar 

  • Roberts, P. A., Newby, A. C., Hallet, M. B., and Campbell, A. K. (1985) Inhibition by adenosine of reactive oxygen metabolite production by human polymorphonuclear leucocytes. Biochem. J. 227, 669–674.

    PubMed  CAS  Google Scholar 

  • Rodbell, M. (1966) The metabolism of isolated fat cells. J. Biol. Chem. 241, 3909–3917.

    PubMed  CAS  Google Scholar 

  • Rubio, R., Berne, R. M., and Dobson, J. G. (1973) Sites of adenosine production in cardiac and skeletal muscle. Am. J. Physiol. 225, 938–953.

    PubMed  CAS  Google Scholar 

  • Rubio, R., Wiedmeier, V. T., and Berne, R. M. (1974) Relationship between coronary flow and adenosine production and release. J. Mol. Cell. Cardiol. 6, 561–566.

    PubMed  CAS  Google Scholar 

  • Rubio, R., Berne, R. M., Buckman, E. L., and Curnish, R. R. (1975) Relationship between adenosine concentration and oxygen supply in rat brain. Am. J. Physiol. 228, 1896–1902.

    PubMed  CAS  Google Scholar 

  • Rutherford, A. and Bumstock, G. (1978) Neuronal and non-neuronal compartments in the overflow of labeled adenyl compounds from guinea-pig taenia con. Eur. J. Pharmacol. 48, 195–202.

    PubMed  CAS  Google Scholar 

  • Saito, D., Nixon, D. G., Vomacka, R. B., and Olsson, R. A. (1980) Relationship of cardiac oxygen usage adenosine content and coronary resistance in dogs. Circ. Res. 47, 875–882.

    PubMed  CAS  Google Scholar 

  • Sasaki, T., Abe, A., and Sakagami, T. (1983) Ecto-5′-nucleotidase does not catalyse vectorial production of adenosine in perfused rat liver. J. Biol. Chem. 258, 6947–6951.

    PubMed  CAS  Google Scholar 

  • Satchell, D. G. and Burnstock, G. (1971) Quantitative studies of the release of purine compounds following stimulation of non-adrenergic inhibitory nerves in the stomach. Biochem. Pharmacol. 20, 1694–1697.

    CAS  Google Scholar 

  • Sattin, A. and Rall, T. W. (1970) The effect of adenosine and adenine nucleotides on the cyclic AMP content of guinea-pig cerebral cortex slices. Mol. Pharmacol. 6, 13–23.

    PubMed  CAS  Google Scholar 

  • Sawynok, J. and Jhamandas, K. H. (1976) Inhibition of acetylcholine released from cholinergic nerves by adenosine, adenine nucleotides and morphine: antagonism by theophylline. J. Pharmacol. Exp. Ther. 197, 379–390.

    PubMed  CAS  Google Scholar 

  • Schrader, J. (1983) Metabolism of adenosine and sites of production in the heart, in Regulatory Function of Adenosine (Berne, R. M., Rall, T. W., and Rubio, R., eds.), Martinus Nijhoff, Boston, The Hague, pp. 133–156.

    Google Scholar 

  • Schrader, J. and Gerlach, E. (1977) Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pflugers Arch. 367, 129–135.

    Google Scholar 

  • Schrader, J., Schutz, W., and Bardenheuer, J. (1981) Role of S-adenosylhomocysteine hydrolase in adenosine metabolism in the mammalian heart. Biochem. J. 196, 65–70.

    PubMed  CAS  Google Scholar 

  • Schrader, J., Thompson, C. I., Hiendlmayer, G., and Gerlach, E. (1982) Role of purines in acetylcholine-induced coronary vasodilation. J. Mol. Cell. Cardiol. 14, 427–430.

    PubMed  CAS  Google Scholar 

  • Schrader, J., Wahl, M., Kuschinsky, W., and Kreutzberg, G. W. (1980) Increase of adenosine content in cerebral cortex of the cat during bicuculline-induced seizure. Pflugers Arch. 387, 245–251.

    PubMed  CAS  Google Scholar 

  • Schubert, P., Komp, W., and Kreutzberg, G. W. (1979) Correlation of 5’-nucleotidase activity and selective transneuronal transfer of adenosine in the hippocampus. Brain Res. 168, 419–424.

    PubMed  CAS  Google Scholar 

  • Schubert, P., Lee, K., West, M., Deadwyler, S., and Lynch, G. (1976) Stimulation dependent release of [3H] adenosine derivatives from the central axon terminals to target neurones. Nature 260, 541, 542.

    Google Scholar 

  • Schutz, W., Schrader, J., and Gerlach, E. (1981) Different sites of adenosine formation in the heart. Am. J. Physiol. 240, H963 - H970.

    PubMed  CAS  Google Scholar 

  • Schwabe, U., Ebert, R., and Abler, H. C. (1973) Adenosine release from fat cells and its significance for the effects on cAMP levels and lipolysis. Naunyn Schmiederbergs Arch. Pharmacol. 276, 133–148.

    CAS  Google Scholar 

  • Schwabe, U., Schonhofer, P. S., and Ebert, R. (1974) Facilitation by adenosine of the action of insulin on the accumulation of cAMP, lipolysis and glucose oxidation in isolated fat-cells. Eur. J. Biochem. 46, 537–545.

    PubMed  CAS  Google Scholar 

  • Shimizu, H., Creveling, C. R., and Daly, J. (1970) Stimulated formation of cyclic AMP in cerebral cortex: synergism between electrical activity and biogenic amines. Proc. Natl. Acad. Sci. 65, 1033–1044.

    PubMed  CAS  Google Scholar 

  • Silinsky, E. M. and Hubbard, J. I. (1973) Release of ATP from rat motor nerve terminals. Nature 243, 404, 405.

    Google Scholar 

  • Smith, A. D. (1977) Dale’s principle today: adrenergic tissues, in Neurone Concepts Today ( Szentagothai, J., Hamori, J., and Vizi, E. S., eds.), Akad. Kiado, Budapest, pp. 49–61.

    Google Scholar 

  • Snyder, S. H. (1985) Adenosine as a neuromodulator. Ann. Rev. Neurosci. 8, 103–124.

    PubMed  CAS  Google Scholar 

  • Sollevi, A. and Fredholm, B. B. (1981) The antilipolytic effect of endogenous and exogenous adenosine in canine adipose tissue in situ. Acta. Physiol. Scand. 113, 53–60.

    PubMed  CAS  Google Scholar 

  • Sollevi, A. and Fredholm, B. B. (1983) Influence of adenosine on the vascular responses to sympathetic nerve stimulation in the canine subcutaneous adipose tissue. Acta. Physiol. Scand. 119, 15–24.

    PubMed  CAS  Google Scholar 

  • Sorenson, R. G. and Mahler, H. R. (1982) Localisation of endogenous ATPases at the nerve terminal. J. Bioenerg. Biomembr. 14, 527–547.

    Google Scholar 

  • Spector, R., Coakley, G., and Blakely, R. (1980) Methionine recycling in brain: a role for folates and vitamin B-12. J. Neurochem. 34, 132–137.

    PubMed  CAS  Google Scholar 

  • Spielman, W. S. and Thompson, C. I. (1982) A proposed role for adenosine in the regulation of renal hemodynamics and renin release. Am. J. Physiol. 242, F423 - F435.

    PubMed  CAS  Google Scholar 

  • Stanley, K. K., Edwards, M. R., and Luzio, J. P. (1980) Subcellular distribution and movement of 5′-nucleotidase. Biochem. J. 186, 59–69.

    PubMed  CAS  Google Scholar 

  • Stjarne, L., Hedqvist, P., and Lagercrantz, H. (1970) Catecholamines and adenine nucleotide material in effluent from stimulated adrenal medulla and spleen: a study of the exocytosis hypothesis for hormone secretion and neurotransmitter release. Biochem. Pharmacol. 19, 1147–1158.

    CAS  Google Scholar 

  • Stone, T. W. (1981a) The effects of morphine and methionine-enkephalin on the release of purines from cerebral cortex slices of rats and mice. Br. J. Pharmacol. 74, 171–176.

    PubMed  CAS  Google Scholar 

  • Stone, T. W. (198lb) Actions of adenine dinucleotides on the vas deferens, guinea-pig taenia aeci and bladder. Eur. J. Pharmacol. 75, 93–102.

    PubMed  CAS  Google Scholar 

  • Stone, T. W. (1981c) Physiological roles for adenosine and ATP in the nervous system. Neurosci. 6, 523–555.

    CAS  Google Scholar 

  • Stone, T. W. and Perkins, M. N. (1979) Is adenosine the mediator of opiate action on neuronal firing rates. Nature 281, 227–228.

    PubMed  CAS  Google Scholar 

  • Stone, T. W., Hollins, C., and Lloyd, H. (1981) Methylxanthines modulate adenosine release from slices of cerebral cortex. Brain Res. 207, 421–431.

    PubMed  CAS  Google Scholar 

  • Su, C. (1975) Neurogenic release of purine compounds in blood vessels. J. Pharmacol. Exp. Ther. 195, 159–166.

    PubMed  CAS  Google Scholar 

  • Su, C. (1978) Purinergic inhibition of adrenergic transmission in rabbit blood vessels. J. Pharmacol. Exp. Ther. 204, 351–361.

    PubMed  CAS  Google Scholar 

  • Su, C. (1983) Purinergic neurotransmission and neuromodulation. Ann. Rev. Pharmacol. Toxicol. 23, 397–411.

    CAS  Google Scholar 

  • Su, C., Bevan, J., and Bumstock, G. (1971) [3H]adenosine release during stimulation of enteric nerves. Science 173, 337–339.

    Google Scholar 

  • Sulakhe, P. V. and Phillis, J. W. (1975) The release of [3H]adenosine and its derivatives from cat sensorimotor cortex. Life Sci. 17, 551–556.

    PubMed  CAS  Google Scholar 

  • Thompson, C. I., Rubio, R., and Berne, R. M. (1980) Changes in adenosine and glycogen phosphorylase activity during the cardiac cycle. Am. J. Physiol. 238, H389 - H398.

    PubMed  CAS  Google Scholar 

  • Trams, E. G. (1974) Evidence for ATP action on the cell surface. Nature 252, 480–482.

    PubMed  CAS  Google Scholar 

  • Trivedi, B. K., Bridges, A. J., and Bruns, R. F. (1990) Structure-activity relationships of adenonine Al and A2 receptors, inAdenonine and Adenonine Receptors chapter.

    Google Scholar 

  • Ueland, P. M. (1982) Pharmacological and biochemical aspects of S-adenosylhomocysteine and S-adenosylhomocyteine hydrolase. Pharmacol. Rev. 34, 223–253.

    PubMed  CAS  Google Scholar 

  • Ueland, P. M. and Saebo, J. (1979) Sequestration of adenosine in crude extracts from mouse liver and other tissues. Biochem. Biophys. Acta. 587, 341–352.

    PubMed  CAS  Google Scholar 

  • Usdin, E., Borchardt, R. T., and Crevelling, C. R. (eds.) (1979) Transmethylation ( Elsevier/North Holland, New York ).

    Google Scholar 

  • Van den Berghe, G., Van Pottlesberghe, C., and Hers, H. G. (1977) A kinetic study of the soluble 5’-nucleotidase of rat liver. Biochem. J. 162, 611–616.

    PubMed  Google Scholar 

  • Wachstein, H. and Meisel, E. (1957) Histochemistry of hepatic phosphatases at physiological pH. Am. J. Clin. Pathol. 27, 13–23.

    PubMed  CAS  Google Scholar 

  • Wagle, S. R., Ingebretsen, W. R., and Sampson, L. (1973) Studies on the in vitro effects of insulin on glycogen synthesis and ultrastructure in isolated rat liver hepatocytes. Biochem. Biophys. Res. Commun. 53, 937–943.

    PubMed  CAS  Google Scholar 

  • Westfall, D. P., Stitzel, R. E., and Rowe, J. N. (1978) Post-junctional effects and neural release of purine compounds in guinea-pig vas deferens. Eur. J. Pharmacol. 50, 27–38.

    PubMed  CAS  Google Scholar 

  • White, T. D. (1978) Release of ATP from a synaptosomal preparation by elevated extracellular potassium and by veratradine. J. Neurochem. 30, 329–336.

    PubMed  CAS  Google Scholar 

  • White, T. D. and Leslie, R. A. (1982) Depolarisation-induced release of adenosine 5’-triphosphate from isolated varicosities derived from the myenteric plexus of the guinea-pig small intestine. J. Neurosci. 2, 206–215.

    PubMed  CAS  Google Scholar 

  • White, T. D., Downie, J. W., and Leslie, R. A. (1985) Characteristics of potassium and veratradine induced release of ATP from synaptosomes prepared from dorsal and ventral spinal cord. Brain Res. 334, 372–374.

    PubMed  CAS  Google Scholar 

  • White, T. D., Potter, P., and Wonnacott, S. (1980) Depolarisation induced release of ATP from cortical synaptosomes is not associated with acetylcholine release. J. Neurochem. 34, 1109–1112.

    PubMed  CAS  Google Scholar 

  • White, T. D., Potter, P., Moody, C., and Burnstock, G. (1981) Tetrodotoxic-resistant release of ATP from guinea-pig taenia con and vas deferens during electrical field stimulation in the presence of luciferin-luciferase. Can. J. Physiol. Pharmacol. 59, 1094–1100.

    PubMed  CAS  Google Scholar 

  • Williams, M. and Jacobson, K. A. (1990) this volume.

    Google Scholar 

  • Winn, H. R., Rubio, R., and Berne, R. M. (1979) Brain adenosine production during 60 seconds of ischaemia. Circ. Res. 45, 486–492.

    PubMed  CAS  Google Scholar 

  • Winn, H. R., Rubio, R., and Berne, R. M. (1980a) Changes in brain adenosine during bicuculline-induced seizures in rats: Effects of hypoxia and altered systemic blood pressure. Circ. Res. 47, 481–491.

    Google Scholar 

  • Winn, H. R., Welsh, J. E., Rubio, R., and Berne, R. M. (1980b) Brain adenosine production in rats during sustained alteration in systemic blood pressure. Am. J. Physiol. 239, H636–H641.

    Google Scholar 

  • Winn, H. R., Rubio, R., and Berne, R. M. (1981) Brain adenosine concentration during hypoxia in rats. Am. J. Physiol. 241, H235 - H242.

    Google Scholar 

  • Winn, H. R., Morii, S., Weaver, D. D., Reed, J. C., Ngai, A. C., and Berne, R. M. (1983) Changes in brain adenosine concentration during hypoglycemia and posthypoxic hyperemia. J. Cereb. Blood Flow Metabol. 3 suppl 1, S449, S450.

    Google Scholar 

  • Worku, Y. and Newby, A. C. (1982) Nucleoside exchange catalysed by the cytoplasmic 5′-nucleotidase. Biochem. J. 205, 503–510.

    PubMed  CAS  Google Scholar 

  • Worku, Y. and Newby, A. C. (1983) The mechanism of adenosine production in rat polymorphonuclear leucocytes. Biochem. J. 214, 325–330.

    PubMed  CAS  Google Scholar 

  • Worku, Y., Luzio, J. P., and Newby, A. C. (1984) Identification of histidyl and cysteinyl residues essential for catalysis by 5′-nucleotidase. FEBS Lett. 167, 235–240.

    PubMed  CAS  Google Scholar 

  • Wojcik, W. J. and Neff, N. H. (1983) Location of adenosine release and adenosine A2 receptors to rat striatal neurons. Life Sci. 33, 755–763.

    PubMed  CAS  Google Scholar 

  • Wu, P. H. and Phillis, J. W. (1978) Distribution and release of adenosine triphosphate in rat brain. Neurochem. Res. 3, 563–571.

    PubMed  CAS  Google Scholar 

  • Wu, P. H., Moron, M., and Barraco, R. (1984) Organic calcium channel blockers enhance [3H]purine release from rat brain cortical synaptosomes. Neurochem. Res. 9, 1019–1031.

    PubMed  CAS  Google Scholar 

  • Wu, P. H., Phillis, J. W., and Yuen, H. (1982) Morphine enhances the release of 3H-purines from rat brain cerebral cortical prisms. Pharmacol. Biochem. Behay. 17, 749–755.

    CAS  Google Scholar 

  • Wyllie, M. G. and Gilbert, J. C. (1980) Exocytotic release of noradrenaline from synaptosomes. Biochem. Pharmacol. 29, 1302–1303.

    PubMed  CAS  Google Scholar 

  • Zetterstrom, T., Vernet, L., Ungerstedt, U., Tossman, U., Jonzon, B., and Fredholm, B. B. (1982) Purines levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci. Letts. 29, 111–115.

    CAS  Google Scholar 

  • Zimmerman, H. (1978) Turnover of adenine nucleotides in cholinergic synaptical vesicles of the Torpedo electric organ. Neurosci. 3, 827–836.

    Google Scholar 

  • Zimmerman, H. and Denston, C. R. (1977) Recycling of synaptic vesicles in the cholinergic synapses of the Torpedo electric organ during induced transmitter release. Neurosci. 2, 695–714.

    CAS  Google Scholar 

  • Zimmerman, H., Dowdall, M. J., and Lane, D. A. (1979) Purine salvage at the cholinergic nerve endings of the Torpedo electric organ: the central role of adenosine. Neurosci. 4, 979–994.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc.

About this chapter

Cite this chapter

Stone, T.W., Newby, A.C., Lloyd, H.G.E. (1990). Adenosine Release. In: Williams, M. (eds) Adenosine and Adenosine Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4504-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4504-9_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8850-3

  • Online ISBN: 978-1-4612-4504-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics