Skip to main content

Electrophysiological Aspects of Adenosine Receptor Function

  • Chapter

Part of the book series: The Receptors ((REC))

Abstract

Within the past decade, the importance of adenosine as a regulator of cellular activity in a variety of physiological systems has become increasingly apparent. Although some of adenosine’s actions were recognized over 50 years ago (Drury and Szent-Györgyi, 1929), it has only been relatively recently that the nature of these actions, the receptors that are involved, and the mechanisms by which receptor occupation is translated into physiological responses have been explicitly described. Although adenosine receptors have now been found in many different tissues, much of the early interest in this area focused around the central nervous system (CNS), in part because of the high concentrations of adenosine receptors in the brain, and because of the profound physiological actions of purines on the activity of the CNS. Historically, the observation by Sattin and Rall (1970) that adenosine stimulated the formation of cyclic adenosine 3′, 5′-monophosphate in brain slices, and that methylxanthines, such as theophylline and caffeine, were competitive pharmacological antagonists of this response, was instrumental in stimulating much of the recent interest in adenosine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasu, T., Shinnick-Gallagher, P., and Gallagher, J. P. (1984) Adenosine mediates a slow hyperpolarizing synaptic potential in autonomic neurones. Nature 311, 62–65.

    Article  PubMed  CAS  Google Scholar 

  • Andrade, R., Malenka, R. C., and Nicoll, R. A. (1986) A GTP binding protein may directly couple 5-HTIa and GABA-B receptors to potassium (K) channels in rat hippocampal pyramidal cells. Society for Neuroscience Abstracts 12, 15.

    Google Scholar 

  • Barr, E., Daniell, L. C., and Leslie, S. W. (1985) Synaptosomal calcium uptake unaltered by adenosine and 2-chloroadenosine. Biochem. Pharmacol. 34, 713–715.

    Article  PubMed  CAS  Google Scholar 

  • Benishin, C. G., Pearce, L. B., and Cooper, J. R. (1986) Isolation of a factor (substance B) that antagonizes presynaptic modulation: Pharmacological properties. J. Pharmacol. Exp. Ther. 239, 185–191.

    PubMed  CAS  Google Scholar 

  • Berne, R. M., Rall, T. W., and Rubio, R. (eds.) (1983) Regulatory Function of Adenosine( Martinus Nijhoff Publishers, Boston, The Hague ).

    Google Scholar 

  • Bohm, M., Bruckner, R., Neumann, J., Schmitz, W., Scholz, H., and Starbatty, J. (1986) Role of guanine nucleotide-binding protein in the regulation by adenosine of cardiac potassium conductance and force of contraction. Evaluation with pertussis toxin. Naunyn-Schmiedebergs Arch. Pharmacol. 332(4), 403–405.

    Article  PubMed  CAS  Google Scholar 

  • Burke, S. P. and Nadler, J. V. (1988) Regulation of glutamate and aspartate release from slices of the hippocampal CA2 area: Effects of adenosine and baclofen. J. Neurochem. 51, 1541–1551.

    Article  PubMed  CAS  Google Scholar 

  • Clanachan, A. S., Johns, A., and Paton, D. M. (1977) Presynaptic inhibitory actions of adenine nucleotides and adenosine on neurotransmission in the rat vas deferens. Neuroscience 2, 597–602.

    Article  PubMed  CAS  Google Scholar 

  • Daly, J. W. (1982) Adenosine receptors: Targets for future drugs. J. Med. Chem. 25, 197–207.

    Article  PubMed  CAS  Google Scholar 

  • Dascal, N., Lotan, I., Gillo, B., Lester, H. A., and Lass, Y. (1985) Acetylcholine and phorbol esters inhibit potassium currents evoked by adenosine and cAMP in Xenopus oocytes. Proc. Natl. Acad. Sci. (USA) 82, 6001–6075.

    Article  CAS  Google Scholar 

  • Dolphin, A. C. (1983) The adenosine agonist 2-chloroadenosine inhibits the induction of long-term potentiation of the perforant path. Neurosci. Lett. 39, 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin, A. C. and Archer, E. R. (1983) An adenosine agonist inhibits and a cyclic AMP analogue enhances the release of glutamate but not GABA from slices of rat dentate gyrus. Neurosci. Lett. 43, 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin, A. C. and Prestwich, S. A. (1985) Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature 316, 148–150.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin, A. C., Fonla, S. R., and Scott, R. H. (1986) Calcium-dependent currents in cultured rat dorsal root ganglion neurons are inhibited by an adenosine analogue. J. Physiol. 373, 47–61.

    PubMed  CAS  Google Scholar 

  • Drury, A. N. and Szent-Györgyi, A. (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J. Physiol. 68, 213 - 237.

    PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V. (1980) Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21, 541–548.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V. (1984) Interactions between the effects of adenosine and calcium on synaptic responses in rat hippocampus in vitro. J. Physiol. 350, 545–559.

    PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V. (1985) Physiological role of adenosine in the nervous system. Int. Rev. Neurobiol. 27, 63–139.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V. and Fredholm, B. B. (1984) Adenosine receptors mediating inhibitory electrophysiological responses in rat hippocampus are different from receptors mediating cyclic AMP accumulation. Naunyn-Schmiedebergs Arch. Pharmacol. 326, 294–301.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V. and Fredholm, B. B. (1985) Adenosine modulation of synaptic responses in rat hippocampus: Possible role of inhibition or activation of adenylate cyclase, in Advances in Cyclic Nucleotide and Protein Phosphorylation Research (Cooper, D. M. F. and Seamon, K. B., eds.), vol 19, pp. 259–272.

    Google Scholar 

  • Dunwiddie, T. V. and Fredholm, B. B. (1989) Adenosine Al receptors inhibit adenylate cyclase activity and neurotransmitter release and hyperpolarize pyramidal neurons in rat hippocampus. J. Pharmacol. Exp. Ther. 249, 31–37.

    PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V. and Hoffer, B. J. (1980) Adenine nucleotides and synaptic trans- mission in the in vitro rat hippocampus. Br. J. Pharmacol. 69, 59–68.

    PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V. and Hoffer, B. J. (1982) The role of cyclic nucleotides in the nervous system, in Handbook of Experimental Pharmacology(Kebabian, J. W. and Nathanson, J. A., eds.), vol 58, pp. 389–463.

    Google Scholar 

  • Dunwiddie, T. V. and Proctor, W. R. (1987) Mechanisms underlying physiological responses to adenosine in the central nervous system, in Topics and Perspectives in Adenosine Research(Gerlach, E. and Becker, B. F., eds.), Springer-Verlag, Berlin, pp. 499–508.

    Google Scholar 

  • Dunwiddie, T. V., Worth, T. S., and Olsson, R. A. (1986) Adenosine analogs mediating depressant effects on synaptic transmission in rat hippocampus: Structure-activity relationships for the N6 Subregion. Naunyn-Schmiedebergs Arch. Pharmacol. 334, 77–85.

    Article  PubMed  CAS  Google Scholar 

  • Ebstein, R. P. and Daly, J. W. (1982) Release of norepinephrine and dopamine from brain vesicular preparations: Effects of adenosine analogues. Cell. Mol. Neurobiol. 2, 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Edstrom, J. P. and Phillis, J. W. (1976) The effects of AMP on the potential of rat cerebral cortical neurons. Can. J. Physiol. Pharmacol. 54, 787–790.

    Article  PubMed  CAS  Google Scholar 

  • Fredholm, B. B. (1976) Release of adenosine-like material from isolated prefused dog adipose tissue following sympathetic nerve stimulation and its inhibition by adrenergic alpha-receptor blockade. Acta Physiol. Scand. 96, 422–430.

    Article  CAS  Google Scholar 

  • Fredholm, B. B. and Hedqvist, P. (1980) Modulation of neurotransmission by purine nucleosides and nucleotides. Biochem. Pharmacol. 25, 1583–1588.

    Article  Google Scholar 

  • Fredholm, B. B. (1982) Adenosine receptors. Med. Biol. 60, 289–293.

    PubMed  CAS  Google Scholar 

  • Fredholm, B. B., Gustafsson, L., Hedqvist, P., and Sollevi, A. (1983a) Adenosine in the regulation of neurotransmitter release in the peripheral nervous system, in Regulatory Function of Adenosine( Berne, R., Rall, T., and Rubio, R., eds.), Martinus Nijhoff, The Hague, pp. 479–495.

    Google Scholar 

  • Fredholm, B. B., Jonzon, B., and Lindgren, E. (1983b) Inhibition of noradrenaline release from hippocampal slices by a stable adenosine analogue. Acta. Physiol. Scand. SuppL 515, 7–10.

    CAS  Google Scholar 

  • Fredholm, B. B. and Dunwiddie, T. V. (1988) How does adenosine inhibit transmitter release? Trends in Pharmacological Sciences, 9, 130–134.

    Article  PubMed  CAS  Google Scholar 

  • Fredholm, B. B. and Dunwiddie, T. V. (1988) How does adenosine inhibit transmitter release? Trends in Pharmacological Sciences, 9, 130–134.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach, E. and Becker, B. F. (1987) Topics and Perspectives in Adenosine Research( Springer-Verlag, Berlin).

    Google Scholar 

  • Ginsborg, B. L. and Hirst, G. D. S. (1972) The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J. Physiol. (London) 224, 629–645.

    CAS  Google Scholar 

  • Greene, R. W. and Haas, H. L. (1985) Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices. J. Physiol. 366, 119–127.

    PubMed  CAS  Google Scholar 

  • Haas, H. L. and Greene, R. W. (1984) Adenosine enhances aftethyperpolarization and accommodation in hippocampal pyramidal cells. Pflugers Arch. 402, 244–247.

    Article  PubMed  CAS  Google Scholar 

  • Haas, H. L. and Greene, R. W. (1988) Endogenous adenosine inhibits hippocampal CA 1 neurones: Further evidence from extra-and intracellular recording. Naunyn-Schmiedebergs Arch. Pharmacol. 337, 561–565.

    PubMed  CAS  Google Scholar 

  • Haas, H. L., Jeffreys, J. G., Slater, N. T., and Carpenter, D. O. (1984) Modulation of low calcium induced field bursts in the hippocampus by monoamines and cholinomimetics. Pflugers Arch. 400, 28–33.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, J. V. and Scholfield, C. N. (1984) Somatically recorded Ca-currents in guinea pig hippocampal and olfactory cortex neurones are resistant to adenosine action. Neurosci. Leu. 50, 13–18.

    Article  CAS  Google Scholar 

  • Harms, H. H., Wardeh, G., and Mulder, A. H. (1978) Adenosine modulates depolarization-induced release of 3H-noradrenaline from slices of rat brain neocortex. Eur. J. Pharmacol. 49, 305–308.

    Article  PubMed  CAS  Google Scholar 

  • Harms, H. H., Wardeh, G., and Mulder, A. H. (1979) Effect of adenosine on depolarization-induced release of various radiolabeled neurotransmitters from slices of rat corpus striatum. Neuropharmacol. 18, 577–580.

    Article  CAS  Google Scholar 

  • Hartzell, H. C. (1979) Adenosine receptors in frog sinus venosus: Slow inhibitory potentials produced by adenine compounds and acetylcholine. J. Physiol. 293, 23–49.

    PubMed  CAS  Google Scholar 

  • Henon, B. K. and McAfee, D. A. (1983a) The ionic basis of adenosine receptor actions on post-ganglionic neurones in the rat. J. Physiol. 336, 607–620.

    CAS  Google Scholar 

  • Henon, B. K. and McAfee, D. A. (1983b) Modulation of calcium currents by adenosine receptors on mammalian sympathetic neurons, in Regulatory Function of Adenosine(Berne, R., Rall, T., and Rubio, R., eds.), Martins Nijhoff, The Hague, pp. 455–466.

    Google Scholar 

  • Hollins, C. and Stone, T. W. (1980) Adenosine inhibition of gamma-aminobutyric acid release from slices of rat cerebral cortex. Br. J. Pharmacol. 69, 107–112.

    PubMed  CAS  Google Scholar 

  • Hurter, O. F. and Rankin, A. C. (1984) Ionic basis of the hyperpolarizing action of adenyl compounds on sinus venosus of the tortoise heart. J. Physiol. 353, 111–125.

    Google Scholar 

  • Isenberg, G. and Belardinelli, L. (1984) Ionic basis for the antagonism between adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ. Res. 55, 309–425.

    PubMed  CAS  Google Scholar 

  • Jhamandas, K. and Sawynok, J. (1976) Methylxanthine antagonism of opiate and purine effects on the release of acetylcholine, in Opiates and Endogenous Opioid Peptides(Kosterlitz, H. W., ed.), North-Holland Publishing Co., Amsterdam, pp. 161–168.

    Google Scholar 

  • Kocsis, J. D., Eng, D. L., and Bhisitkul, R. B. (1984) Adenosine selectively blocks parallel-fiber-mediated synaptic potentials in rat cerebellar cortex. Proc. Nad. Acad. Sci. (USA) 81, 6531–6534.

    Article  CAS  Google Scholar 

  • Kostopoulos, G. K. and Phillis, J. W. (1977) Purinergic depression of neurons in different areas of the rat brain. Exp. Neurol. 55, 719–724.

    Article  PubMed  CAS  Google Scholar 

  • Kuba, K., Kato, E., Kumamoto, E., Koketsu, K., and Hirai, K. (1981) Sustained potentiation of transmitter release by adrenaline and dibutyryl cyclic AMP in sympathetic ganglia. Nature 291, 654–656.

    Article  PubMed  CAS  Google Scholar 

  • Kurachi, Y., Nakajima, T., and Sugimoto, T. (1986) On the mechanism of activation of muscarinic K; channels by adenosine in isolated atrial cells: Involvement of GTP-binding proteins. Pflugers Arch. 407, 264–274.

    Article  PubMed  CAS  Google Scholar 

  • Kuroda, Y., Saito, M., and Kobayashi, K. (1976) High concentrations of calcium prevent the inhibition of postsynaptic potentials and the accumulation of cyclic AMP induced by adenosine in brain slices. Proc. Japan Acad. 52, 86–89.

    CAS  Google Scholar 

  • Lee, K. S., Reddington, M., Schubert, P., and Kreutzberg, G. (1983) Regulation of the strength of adenosine modulation in the hippocampus by a differential distribution of the density of Al receptors. Brain Res. 260, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. S., Schubert, P., and Heinemann, U. (1984) The anticonvulsive action of adenosine: A postsynaptic, dendritic action by a possible endogenous anti-convulsant. Brain Res. 321, 160–164.

    Article  PubMed  CAS  Google Scholar 

  • Lotan, I., Dascal, N., Cohen, S., and Lass, Y. (1982) Adenosine-induced slow ionic currents in the Xenopus oocyte. Nature 298, 564–572.

    Article  Google Scholar 

  • Lotan, I., Dascal, N., Oron, Y., Cohen, S., and Lass, Y. (1985) Adenosine-induced K* current in Xenopus oocyte and the role of adenosine 3’, 5’-monophosphate. Mol. Pharmacol. 28, 170–177.

    PubMed  CAS  Google Scholar 

  • Macdonald, R. L., Skerritt, J. H., and Werz, M. A. (1986) Adenosine agonists reduce voltage-dependent calcium conductance of mouse sensory neurones in cell culture. J. Physiol. 370, 75–90.

    PubMed  CAS  Google Scholar 

  • Madison, D. V. and Nicoll, R. A. (1986) Cyclic adenosine 3’, 5’-monophosphate mediates beta-receptor actions of noradrenaline in rat hippocampal pyramidal cells. J. Physiol. 372, 245–259.

    PubMed  CAS  Google Scholar 

  • Madison, D. V., Fox, A. P., and Tsien, R. W. (1987) Adenosine reduces an inactivating component of calcium current in hippocampal CA3 Neurons. Proc. Biophys. Soc. 51, 30.

    Google Scholar 

  • McCabe, J. and Scholfield, C. N. (1985) Adenosine-induced depression of synaptic transmission in the isolated olfactory cortex: Receptor identification. Pflug-ers Arch. 403, 141–145.

    Google Scholar 

  • Michaelis, M. L., Johe, K. K., Moghadam, B., and Adams, R. N. (1988) Studies on the ionic mechanism for the neuromodulatory actions of adenosine in the brain. Brain Res. 473, 249–260.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis, M. L. and Michaelis, E. K. (1981) Effects of 2-chloroadenosine on electrical potentials in brain synaptic membrane vesicles. Biochim. Biophys. Acta 648, 55–62.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis, M. L., Michaelis, E. K., and Myers, S. L. (1979) Adenosine modulation of synaptosomal dopamine release. Life Sci. 24, 2083–2092.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. J. (1987) Multiple calcium channels and neuronal function. Science 235, 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Mullane, K. M. and Williams, M. (1990), this volume. Murray, T. F. (1982) Up-regulation of rat cortical adenosine receptors following chronic administration of theophylline. Euro. J. Pharmacol. 82, 113–114.

    Article  Google Scholar 

  • Murray, T. F., Blaker, W. D., Cheney, D. L., and Costa, E. (1982) Inhibition of acetylcholine turnover rate in rat hippocampus and cortex by intraventricular injection of adenosine analogs. J. Pharmacol. Exp. Ther. 222, 550–554.

    PubMed  CAS  Google Scholar 

  • North, R. A. and Williams, J. T. (1983) Opiate activation of potassium conductance inhibits calcium action potentials in rat locus coeruleus neurones. Br. J. Pharmacol. 80, 225–228.

    PubMed  CAS  Google Scholar 

  • Nowycky, M. C., Fox, A. P., and Tsien, R. W. (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316, 440–443.

    Article  PubMed  CAS  Google Scholar 

  • Okada, Y. and Kuroda, Y. (1975) Inhibitory action of adenosine and adenine nucleotides on the postsynaptic potential of olfactory slices of the guinea pig. Proc. Jap. Acad. 51, 491–494.

    CAS  Google Scholar 

  • Okada, Y. and Kuroda, Y. (1980) Inhibitory action of adenosine and adenosine analogs on neurotransmission in the olfactory cortex slice of guinea pigstructure-activity relationships. Euro. J. Pharmacol. 61, 137–146.

    Article  CAS  Google Scholar 

  • Okada, Y. and Ozawa, S. (1980) Inhibitory action of adenosine on synaptic transmission in the hippocampus of the guinea pig in vitro. Euro. J. Pharmacol. 68, 483–492.

    Article  CAS  Google Scholar 

  • Okada, Y. and Saito, M. (1979) Inhibitory action of adenosine, 5-HT (serotonin), and GABA (gamma-amino butyric acid) on the postsynaptic potential (PSP) of slices from olfactory cortex and superior colliculus in correlation to the level of cyclic AMP. Brain Res. 160, 368–371.

    Article  PubMed  CAS  Google Scholar 

  • Paton, D. M., Olsson, R. A., and Thompson, R. T. (1986) Nature of the N6 region of the adenosine receptor in guinea pig ileum and rat vas deferens. NaunynSchmiedebergs Arch. Pharmacol. 333, 313–422.

    Article  CAS  Google Scholar 

  • Pearce, L. B., Benishin, C. G., and Cooper, J. R. (1986) Substance B: An endogenous brain factor that reverses presynaptic inhibition of acetylcholine release. Proc. Natl. Acad. Sci. (USA) 83, 7979–7983.

    Article  CAS  Google Scholar 

  • Pedata, F., Antonelli, T., Lambertini, L., Beani, L., and Pepeu, G. (1983) Effect of adenosine, adenosine triphosphate, adenosine deaminase, dipyridamole, and aminophylline on acetylcholine release from electrically-stimulated brain slices. Neuropharmacol. 22, 609–614.

    Article  CAS  Google Scholar 

  • Perkins, M. N. and Stone, T. W. (1980) 4-aminopyridine blockade of neuronal depressant responses to adenosine triphosphate. Br. J. Pharmacol. 70, 425–428.

    PubMed  CAS  Google Scholar 

  • Pemey, T. M., Hinting, L. D., Leeman, S. E., and Miller, R. J. (1986) Multiple calcium channels mediate neurotransmitter release from peripheral neurons. Proc. Natl. Acad. Sci. (USA) 83, 6656–6659.

    Article  Google Scholar 

  • Phillis, J. W., Kostopoulos, G. K., and Limacher, J. J. (1974) Depression of corticospinal cells by various purines and pyrimidines. Can. J. Physiol. Pharmacol. 52, 1226–1299.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W. and Kostopoulos, G. K. (1975) Adenosine as a putative transmitter in the cerebral cortex. Studies with potentiators and inhibitors. Life Sci. 17, 1085–1094.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W., Edstrom, J. P., Kostopoulos, G. K., and Kirkpatrick, J. R. (1979) Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex. Can. J. Physiol. Pharmacol. 57, 1289–1312.

    Article  PubMed  CAS  Google Scholar 

  • Proctor, W. R. and Dunwiddie, T. V. (1983) Adenosine inhibits calcium spikes inhippocampal pyramidal neurons in vitro. Neurosci. Lett. 35, 197–201.

    Article  PubMed  CAS  Google Scholar 

  • Reddington, M., Lee, K. S., and Schubert, P. (1982) An Al-adenosine receptor, characterized by [3H] cyclohexyladenosine binding, mediates the depression of evoked potentials in a rat hippocampal slice preparation. Neurosci. Lett. 28, 275–279.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro, J. A., Sa-Almeida, A. M., and Namorado, J. M. (1979) Adenosine and adenosine triphosphate decrease 45Ca uptake by synaptosomes stimulated by potassium. Biochem. Pharmacol. 28, 1297 - 1300.

    Article  PubMed  CAS  Google Scholar 

  • Sattin, A. and Rall, T. W. (1970) The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’, 5’-monophosphate content of guinea pig cerebral cortex slices. Mol. Pharmacol. 6, 13–23.

    PubMed  CAS  Google Scholar 

  • Scholfield, C. N. (1978) Depression of evoked potentials in brain slices by adenosine compounds. Brit. J. Pharmacol. 63, 239–244.

    CAS  Google Scholar 

  • Scholfield, C. N. and Steel, L. (1988) Presynaptic K-channel blockade counteracts the depressant effect of adenosine in olfactory cortex. Neuroscience 24, 81–91.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, P. and Lee, K. S. (1986) Non-synaptic modulation of repetitive firing by adenosine is antagonized by 4-aminopyridine in a rat hippocampal slice. Neurosci. Lett. 67, 334–338.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, P. and Mitzdorf, U. (1979) Analysis and quantitative evaluation of the depressant effect of adenosine on evoked potentials in hippocampal slices. Brain Res. 172, 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M. (1982) Intracellular analysis of a postsynaptic action of adenosine in the rat hippocampus. Eur. J. Pharmacol. 79, 193–199.

    Article  PubMed  CAS  Google Scholar 

  • Shefner, S. A. and Chiu, T. H. (1986) Adenosine inhibits locus coeruleus neurons: an intracellular study in a rat brain slice preparation. BrainRes. 366, 364–368.

    CAS  Google Scholar 

  • Siggins, G. R. and Schubert, P. (1981) Adenosine depression of hippocampal neurons in vitro: An intracellular study of dose-dependent actions on synaptic and membrane potentials. Neurosci. Lett. 23, 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Silinsky, E. M. (1984) On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings. J. Physiol. 346, 243–256.

    PubMed  CAS  Google Scholar 

  • Silinsky, E. M. (1986) Inhibition of transmitter release by adenosine: are Ca’* currents depressed or are the intracellular effects of Ca“ impaired? Trends in Pharmacol. Sci. 7, 180–185.

    Article  CAS  Google Scholar 

  • Silinsky, E. M., Hirsh, J. K., and Vogel, S. M. (1987) Intracellular calcium mediating the actions of adenosine at neuromuscular junctions, in Topics and Perspectives in Adenosine( Berlach, E. and Becker, B. F., eds.), Springer-Verlag, Berlin, pp. 537–548.

    Google Scholar 

  • Stefanovich, V., Rudolphi, K., and Schubert, P. (eds.) (1985) Adenosine: Receptors and Modulation of Cell Function(IRL Press, Oxford).

    Google Scholar 

  • Stinnakre, J. and Van Renterghem, C. (1986) Cyclic adenosine monophosphate, calcium, acetylcholine and the current induced by adenosine in the Xenopus oocyte. J. Physiol. 374, 551–569.

    PubMed  CAS  Google Scholar 

  • Stone, T. W. (1981a) Physiological role of adenosine and adenosine 5’-triphosphate in the nervous system. Neurosci. 6, 391–398.

    Google Scholar 

  • Stone, T. W. (1981b) The effects of 4-aminopyridine on the isolated vas deferens and its effects on the inhibitory properties of adenosine, morphine, nor-adrenaline, and gamma-aminobutyric acid. Br. J. Pharmacol. 73, 791–796.

    CAS  Google Scholar 

  • Stone, T. W. (ed.) (1985) Purines: Pharmacology and Physiological Roles( VCH Publishers, Weinheim, Germany ).

    Google Scholar 

  • Su, C. (1983) Purinergic neurotransmission and neuromodulation. Ann. Rev. Pharmacol. Toxicol. 23, 397–411.

    Article  CAS  Google Scholar 

  • Tomita, T. and Watanabe, H. (1973) A comparison of the effects of adenosine triphosphate with noradrenaline and with the inhibitory potential of the guinea pig taenia coli. J. Physiol. 231, 167–177.

    PubMed  CAS  Google Scholar 

  • Trussell, L. O. and Jackson, M. B. (1985) Adenosine-activated potassium conductance in cultured striatal neurons. Proc. Natl. Acad. Sci. (USA) 82, 4857–4861

    Article  CAS  Google Scholar 

  • Trussell, L. O. and Jackson, M. B. (1987) Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons. J. Neurosci. 7, 3306–3316.

    PubMed  CAS  Google Scholar 

  • Verhaege, R. H., Vanhoutte, P. M., and Shepherd, J. T. (1977) Inhibition of sympathetic neurotransmission in canine blood vessels by adenosine and adenine nucleotides. Circ. Res. 40, 208–215.

    Google Scholar 

  • Vizi, E. S. and Knoll, J. (1976) The inhibitory effect of adenosine and related nu-cleotides on the release of acetylcholine. Neurosci. 1, 391–398.

    Article  CAS  Google Scholar 

  • West, G. A. and Belardinelli, L. (1985) Sinus slowing and pacemaker shift caused by adenosine in rabbit SA node. Pflugers Arch. 403, 66–74.

    Article  PubMed  CAS  Google Scholar 

  • Williams, M. (1987) Purinergic Receptors and CNS Function in Psychopharmacology: The Third Generation of Progress(Meltzer, H., ed.), Raven, New York, pp. 289–301.

    Google Scholar 

  • Williams, M. and Jacobson, K. A. (1990), this volume.

    Google Scholar 

  • Wu, P. H., Phillis, J. W., and Thierry, D. L. (1982) Adenosine receptor agonists inhibit K#-evoked Ca+* uptake by rat brain cortical synaptosomes. J. Neurochem. 39, 700 - 708.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc.

About this chapter

Cite this chapter

Dunwiddie, T.V. (1990). Electrophysiological Aspects of Adenosine Receptor Function. In: Williams, M. (eds) Adenosine and Adenosine Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4504-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4504-9_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8850-3

  • Online ISBN: 978-1-4612-4504-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics