Skip to main content

Adenosine in Central Nervous System Function

  • Chapter
Adenosine and Adenosine Receptors

Part of the book series: The Receptors ((REC))

Abstract

Brain adenosine receptors, like those in other tissues (Williams, 1989), can be delineated into two major subclasses, termed A1 and A2 (Hamprecht and Van Calker, 1985), and differentiated by pharmacological and functional activity as well as differences in regional distribution (Snyder, 1985; Williams, 1987; Jarvis, 1988). Adenosine receptors in brain tissue, like other receptors, occur in the greatest density in this organ as compared to their distribution in peripheral tissues. The precise physiological contribution of these receptors to central nervous system function remains unclear; however, the many documented inhibitory effects of adenosine on neurotransmitter release in mammalian tissue coupled with the psychomotor-stimulant effects of adenosine receptor antagonists (alkylxanthines) have led to the suggestion that adenosine mediates an “inhibitory tone” in the CNS (Harms et al., 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahiljanian, M. and Takemori, A. E. (1986) Changes in adenosine receptor sensitivity in morphine-tolerant and-dependent mice. J. Pharmacol. Exp. Ther. 236, 615–620.

    Google Scholar 

  • Albertson, T. E. (1986) Effects of aminophylline on amygdaloid-kindled postictal depression. Pharmacol. Biochem. Behay. 24,1599–1603.

    CAS  Google Scholar 

  • Albertson, T. E., Joy, R. M., and Stark, L. G. (1983) Caffeine modification of kin- dled amygdaloid seizures. Pharmacol. Biochem. Behay. 19, 339–343.

    CAS  Google Scholar 

  • Anderson, S. M., Leu, J. R., and Kant, G. J. (1987) Effects of stress on [3H]cyclohexyladenosine binding to rat brain membranes. Pharmacol. Biochem. Behay. 26, 829–833.

    CAS  Google Scholar 

  • Anderson, S. M., Leu, J. R., and Kant, G. J. (1988) Chronic stress increases the binding of the Al adenosine receptor agonist, [3H]cyclohexyladenosine, to rat hypothalamus. Pharmacol. Biochem. Behay. 30,169–175.

    Google Scholar 

  • Barraco, R. A., Aggarawai, A. K., Phillis, J. W., Moran, M. A., and Wu, P. H. (1984) Dissociation of locomotor and hypertensive effects of adenosine analogs in rat. Neurosci. Leu. 48,139–144.

    Google Scholar 

  • Barraco, R. A., Swanson, T. H., Phillis, J. W., and Berman, R. F. (1986) Anticonvulsant effects of adenosine analogs on amygdaloid-kindled seizures in the rat. Neurosci. Leu. 46, 317–322.

    Google Scholar 

  • Bennett, D. A. and Petrack, B. (1984) CGS 9896: A nonbenzodiazepine, non-sedating potential anxiolytic. Drug Dev. Res. 4,75–82.

    CAS  Google Scholar 

  • Berkowitz, B. A., Tarver, J. H., and Spector, S. (1970) Release of norepinepherine in the central nervous system by theophylline and caffeine. Eur. J. Pharmacol. 10, 64–71.

    PubMed  Google Scholar 

  • Bernard, P. D., Wilson, D., Pastor, G., Brown, W., and Glenn, T. W. (1983) Possible involvement of adenosine receptors in the electroshock anticonvulsant effects of carbamazepine, diphenylhydantoin, phenobarbital and diazepam. Pharmacologist 25,164.

    Google Scholar 

  • Berne, R. M. (1963) Cardiac nucleosides in hypoxia: Possible role in regulation of coronary flow. J. Physiol. (Lond.) 204, 317–322.

    CAS  Google Scholar 

  • Berne, R. M., Rubio, R., and Cornish, R. R. (1974) Release of adenosine from ischemic brain. Circ. Res. 32,262–271.

    Google Scholar 

  • Berne, R. M., Knabb, R. M., Ely, S. W., and Rubio, R. (1983) Adenosine in the local regulation of blood flow: A brief review. Fed. Proc. 42, 3136–3142.

    CAS  Google Scholar 

  • Bider, C. M. and Howard, B. D. (1986) Dopamine metabolism in hypoxanthine-guanine phosphoribosyltransferase-deficient variants of PC12 cells. J. Neurochem. 47, 107–112.

    Google Scholar 

  • Boulenger, J. P., Patel, J., Post, R. M., Parma, A. M., and Marangos, P. J. (1983) Chronic caffeine consumption increases the number of brain adenoisne receptors. Life Sci. 32,1135–1142.

    PubMed  CAS  Google Scholar 

  • Boyd, E. M., Dolman, M., Knight, L. M., and Sheppard, E. P. (1965) The chronic oral toxicity of caffeine. Can. J. Pharmacol. 43, 995–1007.

    CAS  Google Scholar 

  • Braas, K. M., Newby, A. C., Wilson, V. S., and Snyder, S. H. (1986) Adenosine containing neurons in the brain localized by immunocytochemistry. J. Neurosci. 6,1952–1961.

    PubMed  CAS  Google Scholar 

  • Browne, R. G. and Welch, W. M. (1982) Stereoselective antagonism of phencyclidine’s discriminative properties by adenosine receptor agonists. Science 217, 1157,1158.

    Google Scholar 

  • Browne, R. G., Welch, W. M., Kozlowski, M. R., andDuthu, G. (1983) Antagonism of POE discrimination by adenosine analogs, in Phencyclidine and Related Arylcyclohexylamines: Present and Future Applications (Kamenka, J. M., Domino, E. G., and Eneste, G., eds.), Brooks, Ann Arbor, pp. 639–666.

    Google Scholar 

  • Bruns, R. F., Daly, J. W., and Snyder, S. H. (1980) Adenosine receptors in brain membranes: Binding ofN6-cyclohexyl[3H]adenosine and 1,3-diethyl-8-[3H] phenylxanthine. Proc. Natl. Acad. Sci. USA 77, 5547–5551.

    PubMed  CAS  Google Scholar 

  • Bruns, R. F., Lu, G. H., and Pugsley, T. A. (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol. Pharmacol. 29, 331–346.

    PubMed  CAS  Google Scholar 

  • Bruns, R. F., Davis, R. E., Nineteman, F. W., Poschel, B. P., Wiley, J. N., and Heffner, T. G. (1988) Adenosine antagonists as pharmacological tools, in Adenosine and Adenine Nucleotides, Physiology and Pharmacology (Paton, D.M., ed.) Taylor and Francis, London, pp. 39–49.

    Google Scholar 

  • Bruns, R. F., Fergus, J. H., Badger, E. W., Bristol, J. A., Santay, L. A. Hartman, J. D. Hays, S. J. and Huang, C. C. (1987) Binding of the Al-selective adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine to rat brain membranes. Naunyn-Schmiedebergs Arch. Pharmacol. 335, 59–63.

    PubMed  CAS  Google Scholar 

  • Buckholtz, N. S. and Middaugh, L. D. (1987) Effects of caffeine and L-phenylisopropyladenosine on locomotor activity of mice. Pharmacol. Biochem. Behan. 28,179–185.

    CAS  Google Scholar 

  • Burnstock, G. (1985) Neurochemical control of blood vessels: Some future directions. J. Cardiovascul. Pharmacol. 7, S 137-S 146.

    CAS  Google Scholar 

  • Carney, J. M. (1982) Effects of caffeine, theophylline and theobromide on schedule controlled responding in rats. Br. J. Pharmacol. 75, 451–454.

    PubMed  CAS  Google Scholar 

  • Carney, J. M. and Christensen, H. D. (1980) Discriminative stimulus properties of caffeine: Studies using pure and natural products. Pharmacol. Biochem. Behan. 13, 313–318.

    Google Scholar 

  • Carney, J. M., Holloway, F. A., and Modrow, H. E. (1985a) Discriminative stimulus properties of methylxanthines and their metabolites in rats. Life Sci. 36, 913–920.

    CAS  Google Scholar 

  • Carney, J. M., Seale, T. W., Logan, L., and McMaster, S. B. (1985b) Sensitivity of inbred mice to methylxanthines is not determined by plasma xanthine concentration. Neurosci. Leu. 56, 27–31.

    CAS  Google Scholar 

  • Carney, J. M., Holloway, F. A., Williams, H. L., and Seale, T. W. (1985c) Behavioral pharmacology of caffeine in experimental subjects, in Behavioral Pharmacology: The Current Status (Balster, R. and Seiden, L., eds.), A. R. Liss, New York, pp. 281–293.

    Google Scholar 

  • Carney, J. M., Cao, W., Logan, L., Rennert, O. M., and Seale, T. W. (1986) Differential antagonism of the behavioral depressant and hypothermic effects of 5’ (N-ethylcarboxamide) adenosine by theobromine. Pharmacol. Biochem. Behay. 25,769–773.

    CAS  Google Scholar 

  • Charney, D. S., Heninger, G. R., and Jatlow, P. I. (1985) Increased anxiogenic effects of caffeine in panic disorders. Arch. Gen. Psychiat. 42,233–243.

    PubMed  CAS  Google Scholar 

  • Choca, J. L., Proudfit, H. K., and Green, R. D. (1987) Identification of Al and A2 adenosine receptors in the rat spinal cord. J. Pharmacol. Exp. Ther. 242, 905–910.

    PubMed  CAS  Google Scholar 

  • Choi, O. H., Shamim, M. T., Padgett, W. L., and Daly, J. W. (1988) Caffeine and theophylline analogues: Correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci. 43,387–398.

    PubMed  CAS  Google Scholar 

  • Chou, D. T., Kan, S., Forde, J., and Hirsh, K. R. (1985) Caffeine tolerance: Behavioral electrophysiological and neurochemical evidence. Life Sci. 36, 2347–2358.

    PubMed  CAS  Google Scholar 

  • Coffin, V. L. and Spealman, R. D. (1987) Behavioral and cardiovascular effects of analogs of adenosine in cynomolgus monkeys. J. Pharmacol. Exp. Ther. 241, 76–83.

    PubMed  CAS  Google Scholar 

  • Coffin, V. L., Taylor, J. A., Phillis, J. W., Altman, H. J., and Barraco, R. A. (1984) Behavioral interaction of adenosine and methylxanthines on central purinergic systems. Neurosci. Leu. 47,91–98.

    CAS  Google Scholar 

  • Collier, H. O. J., Cuthbert, N. J., and Francis, D. L. (1981) Character and meaning of quasimorphine withdrawal phenomena elicited by methylxanthines. Fed. Proc. 40,1513–1518.

    PubMed  CAS  Google Scholar 

  • Concannon, J. T., Braughler, M., and Schechter, M.D. (1983) Pre-and postnatal effects of caffeine on brain biogenic amines, cyclic nucleotides and behavior in developing rats. J. Pharmacol. Exp. Ther. 226, 673–679.

    PubMed  CAS  Google Scholar 

  • Criswell, H., Mueller, R. A., and Breese, G. R. (1988) Assessment of purine-dopamine interactions in 6-hydroxydopamine-lesioned rats: Evidence for pre-and postsynaptic influences by adenosine. J. Pharmacol. Exp. Ther. 244,493–500.

    PubMed  CAS  Google Scholar 

  • Cronstein, B. N., Kramer, S. B., Rosenstein, E. D., Weissmann, G., and Hirschhorn, R. (1983) Adenosine: A physiological modulator of superoxide anion generation by human neutrophils. J. Exp. Med. 158,1160–1177.

    PubMed  CAS  Google Scholar 

  • Daly J. W. (1982) Adenosine receptors: Target sites for drugs. J. Med. Chem. 25, 197–207.

    PubMed  CAS  Google Scholar 

  • Deckert, J. and Jorgensen, M. B. (1988) Evidence for pre-and postsynaptic localization of adenosine Al receptors in the CA1 region of rat hippocampus: A quantitative autoradiography study. Brain Res. 446, 161–164.

    PubMed  CAS  Google Scholar 

  • DeLander, G. E. and Hopkins, C. J. (1987) Involvement of A2 adenosine receptors in spinal mechanisms of nocioception. FASEB J. 2, A1132.

    Google Scholar 

  • DeLander, G. E. and Wahl, J. J. (1988) Behavior induced by putative nociceptive neurotransmitters is inhibited by adenosine or adenosine analogs coadministered intrathecally. J. Pharmacol. Exp. Ther. 246, 565–570.

    PubMed  CAS  Google Scholar 

  • Dolphin, A. C. and Prestwich, S. A. (1985) Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature 316,148–150.

    PubMed  CAS  Google Scholar 

  • Dragunow, M., Goddard, G. V., and Laverty, R. (1985) Is adenosine an endogenous anticonvulsant? Epilepsia 26,480–487.

    PubMed  CAS  Google Scholar 

  • Duncan, P. M., Jarvis, M. F., and Freeman, F. G. (1982) Phencyclidine raises kindled seizure thresholds. Pharmacol. Biochem. Behay. 16, 1009–1011.

    Google Scholar 

  • Dunwiddie, T. V. (1985) The physiological role of adenosine in the central nervous system. Int. Rev. Neurobiol. 27, 63–139.

    PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V. and Worth, T. (1982) Sedative and anticonvulsant effects of adenosine in mouse and rat. J. Pharmacol. Ther. 220,70–76.

    CAS  Google Scholar 

  • Erinoff, L. and Snodgrass, S. R. (1986) Effects of adult or neonatal treatment with 6-hydroxydopamine or 5,7-dihydroxytryptamine on locomotor activity, monoamine levels, and response to caffeine. Pharmacol. Biochem. Behay. 24,1039–1045.

    CAS  Google Scholar 

  • Evans, D. B., Schenden, J. A., and Bristol, J. A. (1982) Adenosine receptors mediating cardiac depression. Life Sci. 31, 2425–2432.

    PubMed  CAS  Google Scholar 

  • Evans, M. C., Swan, J. H., and Meldrum, B. S. (1987) An adenosine analog, 2chloroadenosine protects against long term development of ischemic cell loss in the rat hippocampus. Neurosci. Lett. 83, 287–292.

    PubMed  CAS  Google Scholar 

  • Fastbom, J., Pazos, A., and Palacios, J. M. (1987a) The distribution of adenosine Al receptors and 5’-nucleotidase in the brain of some commonly used experimental animals. Neuroscience 27,813–826.

    Google Scholar 

  • Fastbom, J., Pazos, A., Probst, A., and Palacios, J. M. (1987b) Adenosine Al receptors in human brain: A quantitative autoradiography study. Neuroscience 22, 827–839.

    CAS  Google Scholar 

  • Ferkany, J. W., Valentine, H. L., Stone, G. A., and Williams, M. (1986) Adenosine Al receptors in mammalian brain: Species differences in their interactions with agonists and antagonists. Drug Dev. Res. 9, 85–93.

    CAS  Google Scholar 

  • Ferrer, I., Costell, M., and Grisolia, S. (1982) Lesch-Nyhan syndrome-like behavior in rats from caffeine ingestion: Changes in HGPRTase activity, urea and some nitrogen metabolism enzymes. FEBS Lett. 141, 275–278.

    PubMed  CAS  Google Scholar 

  • File, S. A., Baldwin, H. A., Johnston, A. L., and Wilks, L. J. (1988) Behavioral effects of acute and chronic administration of caffeine in the rat. Pharmacol. Biochem. Behay. 30, 809–815.

    CAS  Google Scholar 

  • Finn, I. B. and Holtzman, S. G. (1987) Pharmacologic specificity of tolerance to caffeine-induced stimulation of locomotor activity. Psychopharmacology 93, 428–434.

    PubMed  CAS  Google Scholar 

  • Finn, I. B. and Holtzman, S. G. (1988) Tolerance and cross-tolerance to theophyl-line-induced stimulation of locomotor activity in rats. Life Sci. 42, 2475–2482.

    PubMed  CAS  Google Scholar 

  • Foster, A. C., Gill, R., Iversen, L. L, and Woodruff, G. N. (1987) Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. Br. J. Pharmacol. 90, 90.

    Google Scholar 

  • Fredholm, B. and Dunwiddie, T. V. (1988) How does adenosine inhibit transmitter release? Trends in Pharmacol. Sci. 9,130–134.

    CAS  Google Scholar 

  • Fredholm, B. B. and Hedqvist, P. (1980) Modulation of neurotransmission by purine nucleotides and nucleosides. Biochem. Pharmacol. 29,1635–1643.

    PubMed  CAS  Google Scholar 

  • Fredholm, B. B., Fuxe, K., and Agnati, L. (1976) Effects of some phosphodiesterase inhibitors on central dopamine mechanisms. Eur. J. Pharmacol. 38, 31–38.

    PubMed  Google Scholar 

  • Fredholm, B. B., Herrara-Marschits, A., Jonzon, B., Lindstrom, K., and Ungerstedt, U. (1983) On the mechanism by which methylxanthines enhance apomorphine induced rotational behavior in the rat. Pharmacol. Biochem. Behay. 19, 535–541.

    Google Scholar 

  • Fuxe, K. and Ungerstedt, U. (1974) Action of caffeine and theophylline on supersensitive dopamine receptors: Considerable enhancement of receptor responses to treatment with dopa and dopamine. Med. Biol. 52, 48–54.

    PubMed  CAS  Google Scholar 

  • Gasser, T., Reddington, M., and Schubert, P. (1988) Effect of carbamazepine on stimulus-evoked Cam fluxes in rat hippocampal slices and its interaction with Al-adenosine receptors. Neurosci. Lett. 91,189–193.

    PubMed  Google Scholar 

  • Geiger, J. D. (1986) Localization of [3H]cyclohexyladenosine and [3H]nitrobenzylthioinosine binding sites in rat striatum and superior colliculus. Brain Res. 363, 404–408.

    PubMed  CAS  Google Scholar 

  • Geiger, J. D. and Glavin, G. B. (1985) Adenosine receptor activiation in brain reduces stress-induced ulcer formation. Eur. J. Pharmacol. 115, 185–190.

    PubMed  CAS  Google Scholar 

  • Geiger, J. D. and Nagy, J. I. (1984) Heretogenous distribution of adenosine transport sites labelled by [3H]nitrobenzylthioinosine in rat brain: An autoradiographic and membrane binding study. Brain Res. 13, 657–666.

    Google Scholar 

  • Geiger, J. D. and Nagy, J. I. (1990) Adenosine deaminase and [3H] nitrobenzylthioinosine as markers of adenosine metabolism and transport in central purinergic systems, in Adenonine and Adenonine Receptors (Williams, M., ed.) Humana, Clifton, New Jersey, in press.

    Google Scholar 

  • Gilbert, R. M. (1981) Caffeine: Overview and anthology, in Nutrition and Behavior, (Miller, S. A. ed.), Franklin Inst., Philadelphia, pp. 145–166.

    Google Scholar 

  • Glowa, J. R. and Spealman, R. D. (1984) Behavioral effects of caffeine, N6-(Lphenylisopropyl)adenosine and their combination in the squirrel monkey. J. Pharmacol. Exp. Ther. 231, 665–670.

    PubMed  CAS  Google Scholar 

  • Glowa, J. R., Sobel, E., Malaspina, S., and Dews, P. B. (1985) Behavioral effects of caffeine, (-)N-((R)-1-methyl-2-phenylethyl)-adenosine (PIA) and their combination in the mouse. Psychopharmacology 87, 421–424.

    PubMed  Google Scholar 

  • Goldberg, M. P., Monyer, H., Weiss, J. H., and Choi, D. W. (1988) Adenosine reduces cortical neuronal injury induced by oxygen or glucose deprivation. Neurosci. Lett. 89, 323–327.

    PubMed  Google Scholar 

  • Goldberg, M. R., Curatolo, P. W., Tung, C. S., and Robertson, D. (1982) Caffeine down-regulates beta adrenoceptors in rat forebrain. Neurosci. Leu. 31, 47–52.

    CAS  Google Scholar 

  • Goldberg, S. R., Prada, J. A., and Katz, J. L. (1985) Stereoselective behavioral effects of Nm-phenylisopropyl-adenosine and antagonism by caffeine. Psychopharmacology 87, 272–277.

    PubMed  CAS  Google Scholar 

  • Goldstein, M., Kuga, S., Kusano, N., Meller, E., Dancis, J., and Schwarcz, R. (1986) Dopamine agonist induced self-mutilative biting behavior in monkeys with unilateral ventromedial tegmental lesions of the brainstem: Possible pharmacological model for Lesch-Nyhan syndrome. Brain Res. 367, 114–120.

    PubMed  CAS  Google Scholar 

  • Goodman, R. R. and Snyder, S. H. (1982) Autoradiographic localization of adenosine receptors in rat brain using [1H]cyclohexyladenosine. J. Neurosci. 2, 1230–1241.

    PubMed  CAS  Google Scholar 

  • Goodman, R. R., Kuhar, M. J., Hester, L., and Snyder, S. H. (1983) Adenosine receptors: Autoradiographic evidence for their location on axon terminals of excitatory neurons. Science 220,967–969.

    PubMed  CAS  Google Scholar 

  • Gourley, D. R. H. and Beckner, S. K. (1973) Antagonism of morphine analgesia by adenine, adenosine and adenine nucleotides. Proc. Soc. Exp. Biol. Med. 144, 774–780.

    PubMed  CAS  Google Scholar 

  • Grant, D. M., Tang, B. K., and Kalow, W. (1978) Variability of caffeine metabolism. Clin. Pharmacol. Ther. 33,591–602.

    Google Scholar 

  • Green, R. M. and Stiles, G. L. (1986) Chronic caffeine ingestion sensitizes the Al adenosine receptor-adenylate cyclase system in rat cerebral cortex. J. Clin. Invest. 77,222–227.

    PubMed  CAS  Google Scholar 

  • Green, R. M., Proudfit, H. K., and Yeung, S. H. (1982) Modulation of striatal dopaminergic function by local injection of 5 N-ethylcarboxamide adenosine. Science 218, 58–61.

    PubMed  CAS  Google Scholar 

  • Griffiths, R. R. and Woodson, P. P. (1988a) Reinforcing effects of caffeine in humans. J. Pharmacol. Exp. Ther. 246,21–29.

    CAS  Google Scholar 

  • Griffiths, R. R. and Woodson, P. P. (1988b) Caffeine physical dependence: A review of human and laboratory animal studies. Psychopharmacology 94, 437–451.

    CAS  Google Scholar 

  • Grome, J. J. and Stefanovich, V. (1986) Differential effects of methylxanthines on local cerebral blood flow and glucose utilization in the conscious rat. Naunyn-Schmiedebergs Arch. Pharmacol. 333,172–179.

    PubMed  CAS  Google Scholar 

  • Hagberg, H., Andersson, P., Lacarewicz, J., Jacobson, I., Butcher, S., and Sandberg, M. (1987) Extracellular adenosine, inosine, hypoxanthine and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J. Neurochem. 44, 227–231.

    Google Scholar 

  • Hamilton, H. W., Taylor, M. D., Steffen, R. P., Haleen, S. J., and Bruns, R. F. (1987) Correlation of adenosine receptor affmities and cardiovascular activity. Life Sci. 41, 2295–2302.

    PubMed  CAS  Google Scholar 

  • Hammond, J. R., Paterson, A. R. P., and Clanachan, A. S. (1981) Benzodiazepine inhibition of site-specific binding of nitrobenzylthioinosine, an inhibitor of adenosine transport. Life Sci. 29, 2207–2214.

    PubMed  CAS  Google Scholar 

  • Hamprecht, B. and Van Calker, D. (1985) Nomenclature of adenosine receptors. Trends in Pharmacol. Sci. 6,153,154.

    Google Scholar 

  • Hardebo, J. E., Kahrstrom, J., and Owman, C. (1987) P1- and P 2 purine receptors in brain circulation. Eur. J. Pharmacol. 144, 343–352.

    PubMed  CAS  Google Scholar 

  • Harms, H. H., Wardeh, G., and Mulder, A. H. (1978) Adenosine modulates depolarization-induced release of 3H-noradrenaline from slices of rat brain neocortex. Eur. J. Pharmacol. 49, 305–309.

    PubMed  CAS  Google Scholar 

  • Heffner, T. G., Downsa, D. A., Bristol, J. A., Bruns, R. F., Harrigan, S. E., Moos, W. H., Sledge, K. L., and Wiley, J. N. (1985) Antipsychotic-like effects of adenosine receptor agonists. The Pharmacologist 21, 293.

    Google Scholar 

  • Heffner, T. G., Wiley, J. N., Williams, A. E., Bruns, R. F., Coughenour, L. L., and Downs, D. A. (1989) Comparison of the behavioral effects of adenosine agonists and dopamine antagonists in mice. Psychopharmacology 98, 31–37.

    PubMed  CAS  Google Scholar 

  • Hindmarch, I. and Subhan, Z. (1985) A preliminary investigation of “Albert 285” HWA 2s85 on psychomotor performance, mood, and memory. Drug Dev. Res. 5, 379–386.

    Google Scholar 

  • Ho, I.K., Lo, H. H., and Way, E. L. (1973) Cyclic adenosine monophosphate antagonism of morphine analgesia. J. Pharmacol. Exp. Ther. 185, 334–346.

    Google Scholar 

  • Holloway, F. A., Michaelis, R. C., and Huerta, P. L. (1985a) Caffeine-phenylethylamine combinations mimic the amphetamine discriminative cue. Life Sci. 36, 723–730.

    CAS  Google Scholar 

  • Holloway, F. A., Modrow, H. E., and Michaelis, R. C. (1985b) Methylxanthine discrimination in the rat Possible benzodiazepine and adenosine mechanisms. Pharmacol. Biochem. Behay. 22, 815–824.

    CAS  Google Scholar 

  • Holmgren, M., Hedner, J., Mellstrand, T., Nordberg, G., and Hedner, T. (1986) Characterization of the antinociceptive effects of some adenosine analogues in the rat. Naunyn-Schmiedebergs Arch. Pharmacol. 334, 290–293.

    PubMed  CAS  Google Scholar 

  • Holtzman, S. G. (1986) Discriminative stimulus properties of caffeine in the rat Noradrenergic mediation. J. Pharmacol. Exp. Ther. 239, 706–714.

    PubMed  CAS  Google Scholar 

  • Holtzman, S. G. (1987) Discriminative stimulus effects of caffeine: Tolerance and cross-tolerance with methylphenidate. Life Sci. 40, 381–389.

    PubMed  CAS  Google Scholar 

  • Hughes, R. N. and Beveridge, I. J. (1986) Behavioral effects of prenatal exposure to caffeine in rats. Life Sci. 38, 861–868.

    PubMed  CAS  Google Scholar 

  • Hutchison, A. J., Webb, R. L., Oei, H. H., Ghai, G. R., Zimmerman, M. B., and Williams, M. (1989) CGS 21680, an A2 selective adenosine receptor agonist with preferential hypotensive activity. J.Pharmacol. Exp. Ther. 251, 47–55.

    PubMed  CAS  Google Scholar 

  • Jacobson, K. A., Kirk, L., Padgett, W. L., and Daly, J. W. (1985) Functionalized congeners of 1,3-dialkylxanthines: Preparation of analogs with high affinity for adenosine receptors. J. Med. Chem. 28,1334–1350.

    PubMed  CAS  Google Scholar 

  • Jacobson, K. A., Ukena, D., Kirk, K. L., and Daly, J. W. (1986) [3H]Xanthine amine congener of 1,3-dipropyl-8-phenylxanthine: An antagonsit radioligand for adenosine receptors. Proc. Natl. Acad. Sci. USA 83, 408–9092.

    Google Scholar 

  • Jarvis, M. F. (1988) Autoradiographic localization and characterization of brain adenosine receptor subtypes, in Receptor Localization: Ligand Autoradiography, (Leslie, F. and Altar, C. A., eds.), Alan R. Liss, New York, pp. 95–113.

    Google Scholar 

  • Jarvis, M. F. and Freeman, F. G. (1983) The effects of naloxone and interstimulation interval on postictal depression in kindled seizures. Brain Res. 288, 235–241.

    PubMed  CAS  Google Scholar 

  • Jarvis, M. F. and Williams, M. (1986) Intrastriatal administration of quinolinic acid but not 6-hydroxydopamine (6-OHDA) reduces adenosine receptor density. Neurosci. Abstr. 12, 223.6.

    Google Scholar 

  • Jarvis, M. F. and Williams, M. (1987) Adenosine and dopamine function in the CNS. Trends Pharmacol. Sci. 8, 330–332.

    CAS  Google Scholar 

  • Jarvis, M. F. and Williams, M. (1988) Differences in adenosine Al and A2 receptor density revealed by autoradiography in methylxanthine-sensitive and insensitive mice. Pharmacol. Biochem. Behay. 30, 707–714.

    CAS  Google Scholar 

  • Jarvis, M. F. and Williams, M. (1989) Direct autoradiographic localization of adenosine A2 receptor in the rat brain usine the A2-selective agonist [3H)CGS 21680. Eur. J. Pharmacol. 168, 243–246.

    PubMed  CAS  Google Scholar 

  • Jarvis, M. F., and Williams, M. (1989) Direct autoradiographic localization of Adenosine A2 receptors in the rat brain using the A2 = selective agonist, CGS 21680 (1989) Eur. J > Pharmacol. 168, 243–246.

    CAS  Google Scholar 

  • Jarvis, M. F., Jackson, R. H., and Williams, M. (1989) Autoradiographic characterization of high affinity adenosine A2 receptors in the rat brain. Brain Res. 484, 111–118.

    PubMed  CAS  Google Scholar 

  • Jarvis, M. F., Schulz, R., Auchison, A. J., Do, U. H., Sills, M. A., and Williams, M. (1989b) [3H1 CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J. Pharmacol. Exp. Ther. 251, in press.

    Google Scholar 

  • Jarvis, M. F., Jacobson, K. A., and Williams, M. (1987) Autoradiographic localization of adenosine Al receptors in the rat brain using [3H]XCC, a functionalized congener of 1,3-dipropylxanthine. Neurosci. Leu. 81, 69–74.

    CAS  Google Scholar 

  • Jarvis, M. F., Murphy, D. E., Williams, M., Gerhardt, S.C., and Boast, C. A. (1988a) The novel N-methyl-D-aspartate (NMDA) antagonist CGS 19755 prevents ischemia-induced reductions of adenosine A,, NMDA, and PCP receptors in gerbil brain. Synapse 2,577–584.

    CAS  Google Scholar 

  • Jarvis, M. F., Stone, G. A., Williams, M., and Sills, M. A. (1988b) Characterization of [3H]CGS 15943A binding to adenosine Al receptors in the rat cortex. The Pharmacologist A210.

    Google Scholar 

  • Katims, J. J., Annau, Z., and Snyder, S. H. (1983) Interactions in the behavioral effects of methylxanthines and adenosine dervatives. J. Pharmacol. Exp. Ther. 227,167–173.

    PubMed  CAS  Google Scholar 

  • Klawans, H. L., Moses, H., and Beaulieu, D. M. (1974) The influence of caffeine on D-amphetamine and apomorphine-induced stereotyped behavior. Life Sci. 14, 1493–1500.

    PubMed  CAS  Google Scholar 

  • Kleven, M. S. and Sparber, S. B. (1987) Attenuation of isobutylmethylxanthine-induced supression of operant behavior by pretreatment of rats with clonidine. Pharmacol. Biochem. Behay. 28, 235–241.

    CAS  Google Scholar 

  • Kopin, I. J. (1981) Neurotransmitters in Lesch-Nyhan syndrome. New Eng. J. Med. 305,1148–1150.

    Google Scholar 

  • Kuhar, M. J., De Souza, E. B., and Unnerstall, J. R. (1986) Neurotransmitter receptor mapping by autoradiography and other methods. Annu. Rev. Neurosci. 9, 27–59.

    PubMed  CAS  Google Scholar 

  • Kulkarni, S. K. and Mehta, A. K. (1985) Purine nucleoside-mediated immobility in mice: Reversal by antidepressants. Psychopharmacology 85, 460–463.

    PubMed  CAS  Google Scholar 

  • Laska, E. M., Sunshine, A., Mueller, F., Elvers, W. B., Siegel, C., and Rubin, A. (1984) Caffeine as an analgesic adjuvant. J. Am. Med. Assoc. 251, 1711–1718.

    Google Scholar 

  • Lee, K. S. and Reddington, M. (1986a) Autoradiographic evidence for multiple CNS binding sites for adenosine derivatives. Neuroscience 19, 535–549.

    CAS  Google Scholar 

  • Lee, K. S. and Reddington, M. (1986b) 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX) inhibition of [3H]N-ethylcarboxamidoadenosine (NECA) binding allows the visualization of putative non-A, adenosine receptors. Brain Res. 368, 394–398.

    CAS  Google Scholar 

  • Leid, M., Schimerlik, M. I., and Murray, T. F. (1988) Characterization of agonist radioligand interactions with porcine atrial Al adenosine receptors. Mol. Pharmacol. 34, 334–339.

    PubMed  Google Scholar 

  • Lewis, M. E., Patel, J., Edley, S. M., and Marangos, P. J. (1981) Autoradiographic visualization of rat brain adenosine receptors using M-cyclohexyl-[3H]adenosine. Eur. J. Pharmacol. 73, 109,110.

    Google Scholar 

  • Lloyd, H. G. E. and Stone, T. W. (1985) Cyclohexyladenosine binding in rat stiratum. Brain Res. 334, 385–388.

    PubMed  CAS  Google Scholar 

  • Lloyd, K. G., Hornykiewicz, O., Davidson, L., Shannak, K., Farley, I., Coldstein, M., Shibuya, M., Kelley, W. N., and Fox, I. H. (1981) Biochemical evidence of dysfunction of brain neurotransmitters in Lesch-Nyhan syndrome. N. Eng. J. Med. 305, 1106–1111.

    Google Scholar 

  • Logan, L. and Carney, J. M. (1984) Antagonism of the behavioral effects of L-phenylisopropyladenosine (L-PIA) by caffeine and its metabolites. Pharmacol. Biochem. Behay. 21, 375–379.

    CAS  Google Scholar 

  • Logan, L., Seale, T. W., and Carney, J. M. (1986) Inherent differences in sensitivity to methylxanthines among inbred mice. Pharmacol. Biochem. Behay. 24, 1281–1286.

    Google Scholar 

  • Lohse, M. J., Klotz, K. N., Jakobs, K. H., and Schwabe, U. (1985) Barbiturates are selective antagonists at A, adenosine receptors. J. Neurochem. 45, 1761–1770.

    PubMed  Google Scholar 

  • Lohse, M. J., Klotz, K., Lindenborn-Fotinos, J., Reddington, M., Schwabe, U., and Olson, R. (1987a) 8-Cyclo-1,3-dipropylxanthine (DPCPX)—A selective high affinity antagonist radioligand for A, receptors. Naunym-Schmiedebergs Arch. Pharmacol. 336, 204–210.

    Google Scholar 

  • Lohse, M. J., Boser, S., Klotz, K. N., and Schwabe, U. (1987b) Affinities of barbiturates for the GABA-receptor complex and Al adenosine receptors: A possible explanation of their effects. Naunyn-Schmiedebergs Arch. Pharmacol. 336, 211–217.

    Google Scholar 

  • Loke, W. H., Hinrichs, J. V., and Ghoneim, M. M. (1985) Caffeine and diazepam: Separate and combined effects on mood, memory, and psychomotor performance. Psychopharmacology 87, 344–350.

    PubMed  Google Scholar 

  • Londos, C. and Wolff, J. (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc. Natl. Acad. Sci. USA 74, 5482–5486.

    PubMed  CAS  Google Scholar 

  • Louie, G. L., Prokocimer, P. G., Nicholls, E. A., and Maze, M. (1986) Aminophylline shortens thiopental sleep time and enhances noradrenergic neurotransmission in rats. Brain Res. 383, 377–381.

    PubMed  Google Scholar 

  • Marangos, P. J. and Boulenger, J. P. (1985) Basic and clinical aspects of adrenergic neuromodulation. Neurosci. Biobehay. Rev. 9, 421–430.

    CAS  Google Scholar 

  • Marangos, P. J., Deckers, J., and Bisserbe, J. C. (1987) Central sites of adenosine action and their interaction with various drugs, in Topics and Perspectives in Adenosine Research, (Gerlach, E. and Becker, B. F., eds.), Springer-Verlag, Berlin, pp. 74–89.

    Google Scholar 

  • Marangos, P. J., Paul, S. M., Parma, A. M., and Skolnick, P. (1979) Purinergic inhibition of diazepam binding to rat brain in vitro. Life Sci. 72, 269–273.

    Google Scholar 

  • Marangos, P. J., Post, R. M., Patel, J. Zander, K., Parma, A., and Weiss, S. (1983) Specific and potent interactions of carbamazepine with brain adenosine receptors. Eur. J. Pharmacol. 93,175–182.

    PubMed  CAS  Google Scholar 

  • Michaelis, M. L., Michaelis, E. K., and Myers, S. L. (1979) Adenosine modulation of synaptosmal dopamine release. Life Sci. 24, 2083–2092.

    PubMed  CAS  Google Scholar 

  • Minana, M. D., Portoles, M., Jorda, G., and Grisolia, S. (1984) Lesch-Nyhan syndrome. Caffeine model: Increase of purine and pyrimidine enzymes in rat brain. J. Neurochem. 51, 642–647.

    Google Scholar 

  • Modrow, H. E., Holloway, F. A., and Carney, J. M. (1981) Caffeine discrimination in the rat. Pharmacol. Biochem. Behay. 14, 683–688.

    CAS  Google Scholar 

  • Mullane, K. and Williams, M. (1990) Adenosine and cardiovascular function, in Adenosine and Adenosine Receptors (Williams, M., et), Humana, Clifton, New Jersey, this volume.

    Google Scholar 

  • Muller, K. and Nyhan, W. (1982) Pharmacologic control of pemoline self injurious behavior in rats. Pharmacol. Biochem. Behay. 16, 957–963.

    Google Scholar 

  • Murphy, K. M. and Snyder, S. H. (1982) Heterogenity of adenosine Al receptor binding in brain tissue. Mol. Pharmacol. 22, 260–267.

    Google Scholar 

  • Murray, T. F. (1982) Upregulation of rat cortical adenosine receptors following chronic administration of theophylline. Eur. J. Pharmacol. 82, 113,114.

    Google Scholar 

  • Murray, T. F. and Cheney, D. L. (1982) Neuronal location ofN6-cyclohexyl [3H]adenosine binding sites in rat and guinea-pig brain. Neuropharmacol. 21, 575–580.

    CAS  Google Scholar 

  • Murray, T. F. and Szot, P. (1986) Al adenosine receptor mediated modulation of seizure susceptibility, in Neurotransmitters, Seizures, and Epilepsy III (Nistico, G., ed.), Raven, New York, pp. 341–353.

    Google Scholar 

  • Murray, T. F., Blaker, W. D., Cheney, D. L., and Costa, E. (1982) Inhibition of acetylcholine turnover rate in rat hippocampus and cortex by intraventricular injection of adenosine analogs. J. Pharmacol. Exp. Ther. 222, 550–554.

    PubMed  CAS  Google Scholar 

  • Murray, T. F., Sylvester, D., Schultz, C. S., and Szot, P. (1985) Purinergic modulation of the seizure threshold for pentylenetetrazol in the rat. Neuropharmacology 24, 761–766.

    PubMed  CAS  Google Scholar 

  • Myers, S. and Pugsley, T. A. (1986) Decrease in rat striatal dopamine synthesis and metabolism in vivo by metabolically stable adenosine receptor agonists. Brain Res. 375,193–197.

    PubMed  CAS  Google Scholar 

  • Neblig, A., Luicignani, G., Kadekaro, M., Pocono, L. J., and Sokoloff, L. (1984) Effects of acute administration of caffeine on local cerebral glucose utilization in the rat. Eur. J. Pharmacol. 82, 113,114.

    Google Scholar 

  • Newman, M. E., Zohar, J., Kahan, M., and Belmaker, R. F. (1984) The effects of chronic lithium and ECT on Al and A2 adenosine receptor systems in the rat brain. Brain Res. 291, 188–192.

    PubMed  CAS  Google Scholar 

  • Niglio, T., Popoli, P., Caporali, M. G., and de Carolis, S. (1988) Antiepileptic effects of N6-L-phenylisopropyladenosine (L-PIA) on penicillin-induced epilepto-genic focus in rabbits. Pharmacol. Res. Commun. 20, 561–572.

    PubMed  CAS  Google Scholar 

  • Nyhan, W. L. (1973) The Lesch-Nyhan syndrome. Annu. Rev. Med. 24, 41–61.

    PubMed  CAS  Google Scholar 

  • Oei, H. H., Ghai, G. R., Zoganas, H. C., Stone, G. A., Field, F. P., and Williams, M. (1989) Correlation between binding affinities for brain Al and A2 receptors of adenosine agonists and antagonists and their effects on heart rate and coronary vascular tone. J. Pharmacol. Ezp. Ther. 247, 882–888.

    Google Scholar 

  • Onodera, H. and Kogure, K. (1988) Differential localization of adenosine Al receptors in the rat hippocampus: Quantitative autoradiography study. Brain Res. 458, 212–217.

    PubMed  CAS  Google Scholar 

  • Onodera, H., Sato, K., and Kogure, K. (1986) Lesions of Schaeffer’s collaterals prevent ischemic death of CAl pyramidal cells. Neurosci. Leu. 24,169–174.

    Google Scholar 

  • Onodera, H., Sato, G., and Kogure, K. (1987) Quantitative autoradiographic analysis of muscrinic cholinergic and adenosine Al binding sites after transient forebrain ischemia in the gerbil. Brain Res. 415, 309–322.

    PubMed  CAS  Google Scholar 

  • Patel, A., Craig, R. H., Daluge, S. M., and Linden, J. (1988) 125I-BW-A844U, an antagonist radioligand with high affinity and selectivity for adenosine A1 receptors, and 12I-azido-BW-A844U, a photoaffinity label. Mol. Pharmacol. 33, 585–591.

    PubMed  CAS  Google Scholar 

  • Patel, J., Marangos, P. J., Skolnick, P., Paul, S. M., and Martino, A. M. (1982) Benzodiazepines are weak inhibitors of [H]nitrobenylthioinosine binding to adenosine uptake sites in brain. Neurosci. Lett. 29, 79–82.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W. (1979) Diazepam potentiation of purinergic depression of central neurons. Can. J. Physiol. Pharmacol. 57, 432–435.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W. and DeLong, R. (1986) The role of adenosine in cerebral vascular regulation during reduction in perfusion pressure. J. Pharm. Pharmacol. 38, 460–462.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W. and O’Regan, M. H. (1988a) Benzodiazepine interaction with adenosine systems explains some anomalies in GABA hypothesis. TrendsPharmacol. Sci. 9, 153,154.

    Google Scholar 

  • Phillis, J. W. and O’Regan, M. H. (1988b) The role of adenosine in the central actions of the benzodiazepines. Prog. Neuropsychopharmacol. Biol. Psychiat. 12, 389–404.

    CAS  Google Scholar 

  • Phillis, J. W. and Stair, R. E. (1987) Ro 15–1788 both antagonizes and potentiates adenosine-evoked depression of cerebral cortical neurons. Eur. J. Pharmacol. 136,151–156.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W. and Wu, P. H. (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog. Neurobiol. 16, 187–193.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W. and Wu, P. H. (1982) Adenosine in benzodiazepine action, in The Pharmacology of Benzodiazepines (Usdin, E., Skolnick, P., Tallman, J., Greenblatt, D., and Paul, S., eds.), Macmillian, London, pp. 497–507.

    Google Scholar 

  • Phillis, J. W., Barraco, R. A., DeLong, R. E., and Washington, D. O. (1986) Behavioral characteriztic of centrally administered adenosine analogs. Pharmacol. Biochem. Behay. 24, 263–270.

    Google Scholar 

  • Popoli, P., Benedetti, M., and de Carolis, A. (1988) Anticonvulsant activity of carbamazepine and 1V6-L-phenylisopropyladenosine in rabbits. Relationship to adenosine receptors in central nervous system. Pharmacol. Biochem. Behay. 29, 533–539.

    Google Scholar 

  • Porsolt, R. D., Le Pichon, M., and Jalfre, M. (1977) Depression: A new animal model sensitive to antidepressant treatments. Nature 226, 730–732.

    Google Scholar 

  • Ramkumar, V., Pierson, G., and Stiles, G. L. (1988) Adenosine receptors: Clinical implications and biochemical mechanisms. Prog. Drug Res. 32,195–247.

    PubMed  CAS  Google Scholar 

  • Ricaurte, G. A., Guillery, R. W., Seiden, L. S., Schuster, C. R., and Moore, R. Y. (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res. 235, 93–103.

    PubMed  Google Scholar 

  • Roca, D. J., Schiller, G. D., and Farb, D.H. (1988) Chronic caffeine or theophylline exposure reduces GABA/benzodiazepine receptor interactions. Mol. Pharmacol. 30, 481–485.

    Google Scholar 

  • Rosen, J. B. and Berman, R. F. (1985) Prolonged postictal depression in amygdalakindled rats by the adenosine analog, L-phenylisopropyladenosine. Exp. Neurol. 90, 549–557.

    PubMed  CAS  Google Scholar 

  • Sanders, R. C. and Murray, T. F. (1988) Chronic theophylline exposure increases agonist and antagonist binding to Al adenosine receptors in rat brain. Neuropharmacology 27, 757–760.

    PubMed  CAS  Google Scholar 

  • Sawynok, J. and Reid, A. (1988) Role of G-proteins and adenylate cyclase in amino-ciception produced by intrathecal purines. Eur. J. Pharmacol. 156, 25–34.

    PubMed  CAS  Google Scholar 

  • Schechter, M. D. (1977) Caffeine potentiation of amphetamine: Implications for hyperkinetic therapy. Pharmacol. Biochem. Behay. 6, 359–361.

    CAS  Google Scholar 

  • Schechter, M. D. (1980) Caffeine potentiation of apomorphine discrimination. Pharmacol. Biochem. Behay. 13, 307–309.

    CAS  Google Scholar 

  • Seale, T. W., Johnson, P., Carney, J. M., and Rennert, O. M. (1984) Interstrain variation in acute toxic responses to caffeine among inbred mice. Pharmacol. Biochem. Behay. 20, 567–573.

    Google Scholar 

  • Seale, T. W., Johnson, P., Roderick, T. H., and Carney, J. M. (1985) A single gene difference determines relative susceptibility to caffeine-induced lethality in SWR and CBA inbred mice. Pharmacol. Biochem. Behay. 23, 275–278.

    Google Scholar 

  • Seale, T. W., Abla, K. A., Shamin, M. T., Carney, J. M. and Daly, J. W. (1988) 3,7- dimethyl- 1 -propargylxanthine: A potent and selective in vivo antagonist of adenosine analogs. Life Sci. 43,1671–1684.

    PubMed  Google Scholar 

  • Seale, T. W., Roderick, T. H., Johnson, P., Logan, L., Rennen, O. M., and Carney, J. M. (1986) Complex genetic determinants of susceptibitily to methylxanthine-induced locomotor activity changes. Pharmacol. Biochem. Behay. 24, 1333–1341.

    Google Scholar 

  • Skerritt, J. H., Davies, L. P., and Johnson, G. A. R. (1982) A purinergic component in the anticonvulsant action of carbamazepine. Eur. J. Pharmacol. 82,195–197.

    PubMed  Google Scholar 

  • Skerritt, J. H., Davies, L. P., and Johnson, G. A. R. (1983a) Interactions of the anti-convulsant carbamazepine with adenosine receptors. Epilepsia 24,634–642.

    CAS  Google Scholar 

  • Skerritt, J. H., Johnson, G. A. R., and Chow, S. C. (1983b) Interactions of the anti-convulsant carbamazepine with adenosine receptors 2. Epilepsia 24, 643–652.

    CAS  Google Scholar 

  • Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S. (1984) Blockade of NMDA receptors may protect against ischemic brain damage in the brain. Science 226, 850–852.

    PubMed  CAS  Google Scholar 

  • Snowhill, E. W. and Williams, M. (1986) [1H]Cyclohexyladenosine binding in rat brain: A pharmacological analysis using quantitative autoradiography. Neurosci. Lett. 68, 41–46.

    PubMed  CAS  Google Scholar 

  • Snyder, S. H. (1985) Adenosine as a neuromodulator. Annu. Rev. Neurosci. 8,103–124.

    PubMed  CAS  Google Scholar 

  • Snyder, S. H., Katims, J. J., Annau, Z., Bruns, R. F., and Daly, J. W. (1981) Adenosine receptors and behavioral actions of methylxanthines. Proc. Natl. Acad. Sci. USA 78, 3260–3264.

    PubMed  CAS  Google Scholar 

  • Sollevi, A. (1986) Cardiovascular effects of adenosine in man, possible clinical implications. Prog. Neurobiol. 227, 319–349.

    Google Scholar 

  • Spealman, R. D. (1988) Psychomotor stimulant effects of methylxanthines in squirrel monkeys: Relation to adenosine antagonism. Psychopharmacology 95, 19–24.

    PubMed  CAS  Google Scholar 

  • Spealman, R. D. and Coffin, V. L. (1988) Discriminative-stimulus effects of adenosine analogs: Mediation by adenosine A2 receptors. J. Pharmacol. Exp. Ther. 246, 610–617.

    PubMed  CAS  Google Scholar 

  • Stewart, S.F. and Pugsley, T. A. (1985) Increase of rat serum prolactin by adenosine analogs and their blockade by the methylxanthine aminophylline. NaunynSchmiedebergs Arch. Pharmacol. 331, 140–145.

    CAS  Google Scholar 

  • Stiles, G. L. (1986) Al adenosine receptor-G protein coupling in bovine brain membranes: Effects of guanine nucleotides, salt, and solubilization. J. Neurochem. 51,1592–1598.

    Google Scholar 

  • Stone, G. A., Jarvis, M. F., Sills, M. A., Weeks, B., Snowhill, E. W., and Williams, M. (1988) Species differences in high-affinity adenosine A2 binding sites in striatal membranes from mammalian brain. Drug Dey. Res. 15, 31–46.

    CAS  Google Scholar 

  • Stone, T. W. (1981) Physiological roles for adenosine and adenosine 5’-triphosphate in the nervous system. Neuroscience 6, 523–545.

    PubMed  CAS  Google Scholar 

  • Stone, T. W. (1983) Interactions of adenosine with other agents, in Regulatory Function of Adenosine, (Berne, R. M., Rall, T. W., and Rubio, R., eds.), Nijhoff, Boston, pp. 467–477.

    Google Scholar 

  • Sweeney, M., White, T., and Sawynok, J. (1988) 5-Hydroxytryptamine releases adenosine from primary afferent nerve terminals in the spinal cord. Brain Res. 462, 346–349.

    PubMed  CAS  Google Scholar 

  • Szot, P., Sanders, R. C., and Murray, T. F. (1987) Theophylline-induced upregulation of A1-adenosine receptors associated with reduced sensitivity to convulsants. Neuropharmacology 26,1173–1180.

    PubMed  CAS  Google Scholar 

  • Thithapandha, A., Maling, H. M., and Gillette, G. R. (1972) Effects of caffeine and theophylline on activity of rats in relation to brain xanthine concentrations. Proc. Soc. Exp. Biol. Med. 139, 582–586.

    PubMed  CAS  Google Scholar 

  • Ukena, D., Olsson, R. A., and Daly, J. W. (1987) Definition of subclasses of adenosine receptors associated with adenylate cyclases: Interaction of adenosine with inhibitory Al receptors and stimulatory A2 receptors. Can. J. Physiol. 65, 365–377.

    CAS  Google Scholar 

  • Ukena, D., Jacobson, K. A., Kirk, K. L., and Daly, J. W. (1986) A [1H]amine congener of 1,3-dipropyl-8-phenyl-xanthine: A new radioligand for A2 receptors in human platelets. FEBS Leu. 199, 269–274.

    CAS  Google Scholar 

  • Unnerstall, J. R., Niehoff, D., Kuhar, M. J., and Palacios, J. M. (1982) Quantitative receptor autoradiography using [1H]Ultrofilm: Application to multiple benzodiazepine receptors. J. Neurosci. Methods 6, 59–73.

    PubMed  CAS  Google Scholar 

  • Vapaatalo, H., Onken, D., Neuvonen, P. J., and Westermann, E. (1975) Stereospecificity in some central and circulatory effects of phenylisopropyladenosine (PIA). Arzeneimittelforsch 25, 407–410.

    CAS  Google Scholar 

  • Venault, P., Chapouthier, G., Prado de Carvalho, L., Siminad, J., Morre, R., Dodd, H., and Rossier, J. (1986) Benzodiazepines impair and beta-carboline enhances performance in learning and memory tasks. Nature 321, 864–866.

    PubMed  CAS  Google Scholar 

  • von Lubitz, D. K. J. E., Dambrosia, J. M., Kempski, O., and Redmond, D. J. (1988) Cyclohexyladenosine protects against neuronal death following ischemia in the CA-1 region of gerbil hippocampus. Stroke 19,1133–1139.

    Google Scholar 

  • Wagner, G. C., Lucot, J. B., Schuster, C. R., and Seiden, L. S. (1983) Alpha-methyltryosine attenuates and reserpine increases methamphetamine-induced neuronal changes. Brain Res. 270, 285–288.

    PubMed  CAS  Google Scholar 

  • Waldeck, B. (1975) Effect of caffeine on locomotor activity and central catechola-mine mechanisms: A study with special reference to drug interaction. Acta Pharmacol. Toxicol. 36, Supp 4, 1–23.

    Google Scholar 

  • Watanabe, H. and Uramoto, H. (1986) Caffeine mimics dopamine receptor agonists without stimulation of dopamine receptors. Neuropharmacology 25, 577–581.

    PubMed  CAS  Google Scholar 

  • Watanabe, H., Ikeda, M., and Watanabe, K. (1981) Properties of rotational behavior produced by methylxanthine derivatives in mice with unilateral striatal 6-hydroxydopamine-induced lesions. J. Pharm. Dyn. 4, 301–307.

    CAS  Google Scholar 

  • Watkins, J. C. (1981) Pharmacology of excitatory amino acid receptors, in Glutamate: Transmitter in the Central Nervous System, (Roberts, P. J., Strom-Mathisen, J., and Johnston, G. A. R., eds.), Wiley, New York, pp. 1–24.

    Google Scholar 

  • Weber, R. G., Jones, C. R., Palacios, J. M., and Lohse, M. J. (1988) Autoradiographic visualization of Al-adenosine receptors in brain and peripheral tissues of rat and guinea-pig using125I-HPIA. Neurosci. Lett. 87, 215–220.

    PubMed  CAS  Google Scholar 

  • Weir, R. L., Padgett, W., Daly, J. W., and Anderson, S. M. (1984) Interaction of anti-convulsant drugs with adenosine receptors in the central nervous system. Epilepsia 25, 492–498.

    PubMed  CAS  Google Scholar 

  • Westerberg, V. S. and Geiger, J. D. (1987) Central effects of adenosine analogs on stress-induced gastric ulcer formation. Life Sci. 41, 2201–2205.

    PubMed  CAS  Google Scholar 

  • White, B.C. and Keller, G.E. (1984) Caffeine pretreatment Enhancement and at-tenuation of D-amphetamine-induced activity. Pharmacol. Biochem. Behay. 20, 383–386.

    CAS  Google Scholar 

  • White, B.C., Simpson, C. C., Adams, J. E., and Harkins, D. (1978) Monoamine synthesis and caffeine-induced locomotor activity. Neuropharmacology 17, 511–513.

    Google Scholar 

  • White, B.C., Haswell, K. L., Kassab, C. D., Harkins, D., and Crumbie, P. M. (1984) Caffeine reduces amphetamine-induced activity in asymmetrical interaction. Pharmacol. Biochem. Behay. 20, 387–389.

    Google Scholar 

  • Williams, M. (1984) Mammalian central adenosine receptors, in Handbook of Neurochemistry, (Lajtha, A. ed.), Plenum, New York, vol 6, pp. 1–26.

    Google Scholar 

  • Williams, M. (1987) Purine receptors in mammalian tissues: Pharmacology and physiological significance. Annu. Rev. Pharmacol. Toxicol. 27, 315–345.

    PubMed  CAS  Google Scholar 

  • Williams, M. (1989) Adenosine: The prototypic neuromodulator. Neurochem. Int. 14, 249–264.

    PubMed  CAS  Google Scholar 

  • Williams, M. (1990) Adenosine: A historical overview, in Adenosine and Adenosine Receptors, (Williams, M., ed.), Humana, Clifton, New Jersey, this volume.

    Google Scholar 

  • Williams, M. and Jarvis, M. F. (1988) Adenosine antagonists as potential therapeutic agents. Pharmacol. Biochem. Behay. 29, 433–441.

    CAS  Google Scholar 

  • Williams, M. and Olsen, R. A. (1988) Benzodiazepine receptors and tissue function, in Receptor Pharmacology and Function (Williams, M., Glennon, R.A., and Timmermans, P.B.M.W.M., eds.), Marcel Dekker, New York, pp. 385–413.

    Google Scholar 

  • Williams, M., Risley, E. A., and Huff, J. R. (1981) Interaction of putative anxiolytic agents with central adenosine receptors. Can. J. Physiol. Pharmacol. 59, 897–900.

    PubMed  Google Scholar 

  • Williams, M., Risley, E. A., and Robinson, J. R. (1983) Chronic in vivo treatment with desmethylimipramine and mianserin does not alter adenosine A, radioligand binding in rat cortex. Neurosci. Leu. 35, 47–51.

    Google Scholar 

  • Williams, M., Abreu, M. E., Jarvis, M. F., and Noronha-Blob, C. (1987a) Characterization of adenosine receptors in the PC12 pheochromocytoma cell line using radioligand binding-evidence for A2 selectivity. J. Neurochem. 48, 498–502.

    Google Scholar 

  • Williams, M., Jarvis, M. F., Sills, M. A., Ferkany, J. W., and Braunwalder, A. F. (1987b) Biochemical characterization of the antagonist actions of the xanthines, PACPX (1,3-dipropyl-8(2-amino-4-chloro)phenylxanthine) and 8-PT (8-phenyltheophylline) at adenosine A, and A2 receptors in rat brain tissue. Biochem: Pharmacol. 36, 4024–4027.

    Google Scholar 

  • Winn, R. H., Rubio, G. R., and Berne, R. M. (1981) The role of adenosine in the regulation of cerebral blood flow. J. Cerebr. Blood Flow Metab. 1, 239–247.

    Google Scholar 

  • Winsky, L. and Harvey, J. A. (1987) Effects of N6-(L-phenylisopropyl)adenosine, caffeine, theophylline and rolipram on acquisition of conditioned responses in the rabbit. J. Pharmacol. Exp. Ther. 241, 223–229.

    PubMed  CAS  Google Scholar 

  • Wojcik, W. J. and Neff, N. H. (1983) Differential location of adenosine A, and A2 receptors in rat striatum. Neurosci. Leu. 41, 55–60.

    CAS  Google Scholar 

  • Yarbrough, G. G. and McGuffin-Clineschmidt, J. C. (1981) In vivo behavioral as-sessment of central nervous system purinergic receptors. Eur. J. Pharmacol. 76,137–144.

    PubMed  CAS  Google Scholar 

  • Yeung, S. H. and Green, R. D. (1984) (1H) 5’ N-ethylcarboxamide adenosine binds to both Ra and Ri adenosine receptors in rat striatum. Naunyn-Schmiedebergs Arch. Pharmacol. 325, 218–225.

    PubMed  CAS  Google Scholar 

  • Zielke, H. R. and Zielke, C. L. (1986) Lack of a sustained effect on catecholamines or indoles in mouse brain after long term subcutaneous administration of caffeine or theophylline. Life Sci. 39,565–572.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc.

About this chapter

Cite this chapter

Jarvis, M.F., Williams, M. (1990). Adenosine in Central Nervous System Function. In: Williams, M. (eds) Adenosine and Adenosine Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4504-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4504-9_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8850-3

  • Online ISBN: 978-1-4612-4504-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics