Adenosine in Central Nervous System Function

  • Michael F. Jarvis
  • Michael Williams
Part of the The Receptors book series (REC)

Abstract

Brain adenosine receptors, like those in other tissues (Williams, 1989), can be delineated into two major subclasses, termed A1 and A2 (Hamprecht and Van Calker, 1985), and differentiated by pharmacological and functional activity as well as differences in regional distribution (Snyder, 1985; Williams, 1987; Jarvis, 1988). Adenosine receptors in brain tissue, like other receptors, occur in the greatest density in this organ as compared to their distribution in peripheral tissues. The precise physiological contribution of these receptors to central nervous system function remains unclear; however, the many documented inhibitory effects of adenosine on neurotransmitter release in mammalian tissue coupled with the psychomotor-stimulant effects of adenosine receptor antagonists (alkylxanthines) have led to the suggestion that adenosine mediates an “inhibitory tone” in the CNS (Harms et al., 1978).

Keywords

NMDA Haloperidol Phosphodiesterase Prazosin Reserpine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahiljanian, M. and Takemori, A. E. (1986) Changes in adenosine receptor sensitivity in morphine-tolerant and-dependent mice. J. Pharmacol. Exp. Ther. 236, 615–620.Google Scholar
  2. Albertson, T. E. (1986) Effects of aminophylline on amygdaloid-kindled postictal depression. Pharmacol. Biochem. Behay. 24,1599–1603.Google Scholar
  3. Albertson, T. E., Joy, R. M., and Stark, L. G. (1983) Caffeine modification of kin- dled amygdaloid seizures. Pharmacol. Biochem. Behay. 19, 339–343.Google Scholar
  4. Anderson, S. M., Leu, J. R., and Kant, G. J. (1987) Effects of stress on [3H]cyclohexyladenosine binding to rat brain membranes. Pharmacol. Biochem. Behay. 26, 829–833.Google Scholar
  5. Anderson, S. M., Leu, J. R., and Kant, G. J. (1988) Chronic stress increases the binding of the Al adenosine receptor agonist, [3H]cyclohexyladenosine, to rat hypothalamus. Pharmacol. Biochem. Behay. 30,169–175.Google Scholar
  6. Barraco, R. A., Aggarawai, A. K., Phillis, J. W., Moran, M. A., and Wu, P. H. (1984) Dissociation of locomotor and hypertensive effects of adenosine analogs in rat. Neurosci. Leu. 48,139–144.Google Scholar
  7. Barraco, R. A., Swanson, T. H., Phillis, J. W., and Berman, R. F. (1986) Anticonvulsant effects of adenosine analogs on amygdaloid-kindled seizures in the rat. Neurosci. Leu. 46, 317–322.Google Scholar
  8. Bennett, D. A. and Petrack, B. (1984) CGS 9896: A nonbenzodiazepine, non-sedating potential anxiolytic. Drug Dev. Res. 4,75–82.Google Scholar
  9. Berkowitz, B. A., Tarver, J. H., and Spector, S. (1970) Release of norepinepherine in the central nervous system by theophylline and caffeine. Eur. J. Pharmacol. 10, 64–71.PubMedGoogle Scholar
  10. Bernard, P. D., Wilson, D., Pastor, G., Brown, W., and Glenn, T. W. (1983) Possible involvement of adenosine receptors in the electroshock anticonvulsant effects of carbamazepine, diphenylhydantoin, phenobarbital and diazepam. Pharmacologist 25,164.Google Scholar
  11. Berne, R. M. (1963) Cardiac nucleosides in hypoxia: Possible role in regulation of coronary flow. J. Physiol. (Lond.) 204, 317–322.Google Scholar
  12. Berne, R. M., Rubio, R., and Cornish, R. R. (1974) Release of adenosine from ischemic brain. Circ. Res. 32,262–271.Google Scholar
  13. Berne, R. M., Knabb, R. M., Ely, S. W., and Rubio, R. (1983) Adenosine in the local regulation of blood flow: A brief review. Fed. Proc. 42, 3136–3142.Google Scholar
  14. Bider, C. M. and Howard, B. D. (1986) Dopamine metabolism in hypoxanthine-guanine phosphoribosyltransferase-deficient variants of PC12 cells. J. Neurochem. 47, 107–112.Google Scholar
  15. Boulenger, J. P., Patel, J., Post, R. M., Parma, A. M., and Marangos, P. J. (1983) Chronic caffeine consumption increases the number of brain adenoisne receptors. Life Sci. 32,1135–1142.PubMedGoogle Scholar
  16. Boyd, E. M., Dolman, M., Knight, L. M., and Sheppard, E. P. (1965) The chronic oral toxicity of caffeine. Can. J. Pharmacol. 43, 995–1007.Google Scholar
  17. Braas, K. M., Newby, A. C., Wilson, V. S., and Snyder, S. H. (1986) Adenosine containing neurons in the brain localized by immunocytochemistry. J. Neurosci. 6,1952–1961.PubMedGoogle Scholar
  18. Browne, R. G. and Welch, W. M. (1982) Stereoselective antagonism of phencyclidine’s discriminative properties by adenosine receptor agonists. Science 217, 1157,1158.Google Scholar
  19. Browne, R. G., Welch, W. M., Kozlowski, M. R., andDuthu, G. (1983) Antagonism of POE discrimination by adenosine analogs, in Phencyclidine and Related Arylcyclohexylamines: Present and Future Applications (Kamenka, J. M., Domino, E. G., and Eneste, G., eds.), Brooks, Ann Arbor, pp. 639–666.Google Scholar
  20. Bruns, R. F., Daly, J. W., and Snyder, S. H. (1980) Adenosine receptors in brain membranes: Binding ofN6-cyclohexyl[3H]adenosine and 1,3-diethyl-8-[3H] phenylxanthine. Proc. Natl. Acad. Sci. USA 77, 5547–5551.PubMedGoogle Scholar
  21. Bruns, R. F., Lu, G. H., and Pugsley, T. A. (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol. Pharmacol. 29, 331–346.PubMedGoogle Scholar
  22. Bruns, R. F., Davis, R. E., Nineteman, F. W., Poschel, B. P., Wiley, J. N., and Heffner, T. G. (1988) Adenosine antagonists as pharmacological tools, in Adenosine and Adenine Nucleotides, Physiology and Pharmacology (Paton, D.M., ed.) Taylor and Francis, London, pp. 39–49.Google Scholar
  23. Bruns, R. F., Fergus, J. H., Badger, E. W., Bristol, J. A., Santay, L. A. Hartman, J. D. Hays, S. J. and Huang, C. C. (1987) Binding of the Al-selective adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine to rat brain membranes. Naunyn-Schmiedebergs Arch. Pharmacol. 335, 59–63.PubMedGoogle Scholar
  24. Buckholtz, N. S. and Middaugh, L. D. (1987) Effects of caffeine and L-phenylisopropyladenosine on locomotor activity of mice. Pharmacol. Biochem. Behan. 28,179–185.Google Scholar
  25. Burnstock, G. (1985) Neurochemical control of blood vessels: Some future directions. J. Cardiovascul. Pharmacol. 7, S 137-S 146.Google Scholar
  26. Carney, J. M. (1982) Effects of caffeine, theophylline and theobromide on schedule controlled responding in rats. Br. J. Pharmacol. 75, 451–454.PubMedGoogle Scholar
  27. Carney, J. M. and Christensen, H. D. (1980) Discriminative stimulus properties of caffeine: Studies using pure and natural products. Pharmacol. Biochem. Behan. 13, 313–318.Google Scholar
  28. Carney, J. M., Holloway, F. A., and Modrow, H. E. (1985a) Discriminative stimulus properties of methylxanthines and their metabolites in rats. Life Sci. 36, 913–920.Google Scholar
  29. Carney, J. M., Seale, T. W., Logan, L., and McMaster, S. B. (1985b) Sensitivity of inbred mice to methylxanthines is not determined by plasma xanthine concentration. Neurosci. Leu. 56, 27–31.Google Scholar
  30. Carney, J. M., Holloway, F. A., Williams, H. L., and Seale, T. W. (1985c) Behavioral pharmacology of caffeine in experimental subjects, in Behavioral Pharmacology: The Current Status (Balster, R. and Seiden, L., eds.), A. R. Liss, New York, pp. 281–293.Google Scholar
  31. Carney, J. M., Cao, W., Logan, L., Rennert, O. M., and Seale, T. W. (1986) Differential antagonism of the behavioral depressant and hypothermic effects of 5’ (N-ethylcarboxamide) adenosine by theobromine. Pharmacol. Biochem. Behay. 25,769–773.Google Scholar
  32. Charney, D. S., Heninger, G. R., and Jatlow, P. I. (1985) Increased anxiogenic effects of caffeine in panic disorders. Arch. Gen. Psychiat. 42,233–243.PubMedGoogle Scholar
  33. Choca, J. L., Proudfit, H. K., and Green, R. D. (1987) Identification of Al and A2 adenosine receptors in the rat spinal cord. J. Pharmacol. Exp. Ther. 242, 905–910.PubMedGoogle Scholar
  34. Choi, O. H., Shamim, M. T., Padgett, W. L., and Daly, J. W. (1988) Caffeine and theophylline analogues: Correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci. 43,387–398.PubMedGoogle Scholar
  35. Chou, D. T., Kan, S., Forde, J., and Hirsh, K. R. (1985) Caffeine tolerance: Behavioral electrophysiological and neurochemical evidence. Life Sci. 36, 2347–2358.PubMedGoogle Scholar
  36. Coffin, V. L. and Spealman, R. D. (1987) Behavioral and cardiovascular effects of analogs of adenosine in cynomolgus monkeys. J. Pharmacol. Exp. Ther. 241, 76–83.PubMedGoogle Scholar
  37. Coffin, V. L., Taylor, J. A., Phillis, J. W., Altman, H. J., and Barraco, R. A. (1984) Behavioral interaction of adenosine and methylxanthines on central purinergic systems. Neurosci. Leu. 47,91–98.Google Scholar
  38. Collier, H. O. J., Cuthbert, N. J., and Francis, D. L. (1981) Character and meaning of quasimorphine withdrawal phenomena elicited by methylxanthines. Fed. Proc. 40,1513–1518.PubMedGoogle Scholar
  39. Concannon, J. T., Braughler, M., and Schechter, M.D. (1983) Pre-and postnatal effects of caffeine on brain biogenic amines, cyclic nucleotides and behavior in developing rats. J. Pharmacol. Exp. Ther. 226, 673–679.PubMedGoogle Scholar
  40. Criswell, H., Mueller, R. A., and Breese, G. R. (1988) Assessment of purine-dopamine interactions in 6-hydroxydopamine-lesioned rats: Evidence for pre-and postsynaptic influences by adenosine. J. Pharmacol. Exp. Ther. 244,493–500.PubMedGoogle Scholar
  41. Cronstein, B. N., Kramer, S. B., Rosenstein, E. D., Weissmann, G., and Hirschhorn, R. (1983) Adenosine: A physiological modulator of superoxide anion generation by human neutrophils. J. Exp. Med. 158,1160–1177.PubMedGoogle Scholar
  42. Daly J. W. (1982) Adenosine receptors: Target sites for drugs. J. Med. Chem. 25, 197–207.PubMedGoogle Scholar
  43. Deckert, J. and Jorgensen, M. B. (1988) Evidence for pre-and postsynaptic localization of adenosine Al receptors in the CA1 region of rat hippocampus: A quantitative autoradiography study. Brain Res. 446, 161–164.PubMedGoogle Scholar
  44. DeLander, G. E. and Hopkins, C. J. (1987) Involvement of A2 adenosine receptors in spinal mechanisms of nocioception. FASEB J. 2, A1132.Google Scholar
  45. DeLander, G. E. and Wahl, J. J. (1988) Behavior induced by putative nociceptive neurotransmitters is inhibited by adenosine or adenosine analogs coadministered intrathecally. J. Pharmacol. Exp. Ther. 246, 565–570.PubMedGoogle Scholar
  46. Dolphin, A. C. and Prestwich, S. A. (1985) Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature 316,148–150.PubMedGoogle Scholar
  47. Dragunow, M., Goddard, G. V., and Laverty, R. (1985) Is adenosine an endogenous anticonvulsant? Epilepsia 26,480–487.PubMedGoogle Scholar
  48. Duncan, P. M., Jarvis, M. F., and Freeman, F. G. (1982) Phencyclidine raises kindled seizure thresholds. Pharmacol. Biochem. Behay. 16, 1009–1011.Google Scholar
  49. Dunwiddie, T. V. (1985) The physiological role of adenosine in the central nervous system. Int. Rev. Neurobiol. 27, 63–139.PubMedGoogle Scholar
  50. Dunwiddie, T. V. and Worth, T. (1982) Sedative and anticonvulsant effects of adenosine in mouse and rat. J. Pharmacol. Ther. 220,70–76.Google Scholar
  51. Erinoff, L. and Snodgrass, S. R. (1986) Effects of adult or neonatal treatment with 6-hydroxydopamine or 5,7-dihydroxytryptamine on locomotor activity, monoamine levels, and response to caffeine. Pharmacol. Biochem. Behay. 24,1039–1045.Google Scholar
  52. Evans, D. B., Schenden, J. A., and Bristol, J. A. (1982) Adenosine receptors mediating cardiac depression. Life Sci. 31, 2425–2432.PubMedGoogle Scholar
  53. Evans, M. C., Swan, J. H., and Meldrum, B. S. (1987) An adenosine analog, 2chloroadenosine protects against long term development of ischemic cell loss in the rat hippocampus. Neurosci. Lett. 83, 287–292.PubMedGoogle Scholar
  54. Fastbom, J., Pazos, A., and Palacios, J. M. (1987a) The distribution of adenosine Al receptors and 5’-nucleotidase in the brain of some commonly used experimental animals. Neuroscience 27,813–826.Google Scholar
  55. Fastbom, J., Pazos, A., Probst, A., and Palacios, J. M. (1987b) Adenosine Al receptors in human brain: A quantitative autoradiography study. Neuroscience 22, 827–839.Google Scholar
  56. Ferkany, J. W., Valentine, H. L., Stone, G. A., and Williams, M. (1986) Adenosine Al receptors in mammalian brain: Species differences in their interactions with agonists and antagonists. Drug Dev. Res. 9, 85–93.Google Scholar
  57. Ferrer, I., Costell, M., and Grisolia, S. (1982) Lesch-Nyhan syndrome-like behavior in rats from caffeine ingestion: Changes in HGPRTase activity, urea and some nitrogen metabolism enzymes. FEBS Lett. 141, 275–278.PubMedGoogle Scholar
  58. File, S. A., Baldwin, H. A., Johnston, A. L., and Wilks, L. J. (1988) Behavioral effects of acute and chronic administration of caffeine in the rat. Pharmacol. Biochem. Behay. 30, 809–815.Google Scholar
  59. Finn, I. B. and Holtzman, S. G. (1987) Pharmacologic specificity of tolerance to caffeine-induced stimulation of locomotor activity. Psychopharmacology 93, 428–434.PubMedGoogle Scholar
  60. Finn, I. B. and Holtzman, S. G. (1988) Tolerance and cross-tolerance to theophyl-line-induced stimulation of locomotor activity in rats. Life Sci. 42, 2475–2482.PubMedGoogle Scholar
  61. Foster, A. C., Gill, R., Iversen, L. L, and Woodruff, G. N. (1987) Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. Br. J. Pharmacol. 90, 90.Google Scholar
  62. Fredholm, B. and Dunwiddie, T. V. (1988) How does adenosine inhibit transmitter release? Trends in Pharmacol. Sci. 9,130–134.Google Scholar
  63. Fredholm, B. B. and Hedqvist, P. (1980) Modulation of neurotransmission by purine nucleotides and nucleosides. Biochem. Pharmacol. 29,1635–1643.PubMedGoogle Scholar
  64. Fredholm, B. B., Fuxe, K., and Agnati, L. (1976) Effects of some phosphodiesterase inhibitors on central dopamine mechanisms. Eur. J. Pharmacol. 38, 31–38.PubMedGoogle Scholar
  65. Fredholm, B. B., Herrara-Marschits, A., Jonzon, B., Lindstrom, K., and Ungerstedt, U. (1983) On the mechanism by which methylxanthines enhance apomorphine induced rotational behavior in the rat. Pharmacol. Biochem. Behay. 19, 535–541.Google Scholar
  66. Fuxe, K. and Ungerstedt, U. (1974) Action of caffeine and theophylline on supersensitive dopamine receptors: Considerable enhancement of receptor responses to treatment with dopa and dopamine. Med. Biol. 52, 48–54.PubMedGoogle Scholar
  67. Gasser, T., Reddington, M., and Schubert, P. (1988) Effect of carbamazepine on stimulus-evoked Cam fluxes in rat hippocampal slices and its interaction with Al-adenosine receptors. Neurosci. Lett. 91,189–193.PubMedGoogle Scholar
  68. Geiger, J. D. (1986) Localization of [3H]cyclohexyladenosine and [3H]nitrobenzylthioinosine binding sites in rat striatum and superior colliculus. Brain Res. 363, 404–408.PubMedGoogle Scholar
  69. Geiger, J. D. and Glavin, G. B. (1985) Adenosine receptor activiation in brain reduces stress-induced ulcer formation. Eur. J. Pharmacol. 115, 185–190.PubMedGoogle Scholar
  70. Geiger, J. D. and Nagy, J. I. (1984) Heretogenous distribution of adenosine transport sites labelled by [3H]nitrobenzylthioinosine in rat brain: An autoradiographic and membrane binding study. Brain Res. 13, 657–666.Google Scholar
  71. Geiger, J. D. and Nagy, J. I. (1990) Adenosine deaminase and [3H] nitrobenzylthioinosine as markers of adenosine metabolism and transport in central purinergic systems, in Adenonine and Adenonine Receptors (Williams, M., ed.) Humana, Clifton, New Jersey, in press.Google Scholar
  72. Gilbert, R. M. (1981) Caffeine: Overview and anthology, in Nutrition and Behavior, (Miller, S. A. ed.), Franklin Inst., Philadelphia, pp. 145–166.Google Scholar
  73. Glowa, J. R. and Spealman, R. D. (1984) Behavioral effects of caffeine, N6-(Lphenylisopropyl)adenosine and their combination in the squirrel monkey. J. Pharmacol. Exp. Ther. 231, 665–670.PubMedGoogle Scholar
  74. Glowa, J. R., Sobel, E., Malaspina, S., and Dews, P. B. (1985) Behavioral effects of caffeine, (-)N-((R)-1-methyl-2-phenylethyl)-adenosine (PIA) and their combination in the mouse. Psychopharmacology 87, 421–424.PubMedGoogle Scholar
  75. Goldberg, M. P., Monyer, H., Weiss, J. H., and Choi, D. W. (1988) Adenosine reduces cortical neuronal injury induced by oxygen or glucose deprivation. Neurosci. Lett. 89, 323–327.PubMedGoogle Scholar
  76. Goldberg, M. R., Curatolo, P. W., Tung, C. S., and Robertson, D. (1982) Caffeine down-regulates beta adrenoceptors in rat forebrain. Neurosci. Leu. 31, 47–52.Google Scholar
  77. Goldberg, S. R., Prada, J. A., and Katz, J. L. (1985) Stereoselective behavioral effects of Nm-phenylisopropyl-adenosine and antagonism by caffeine. Psychopharmacology 87, 272–277.PubMedGoogle Scholar
  78. Goldstein, M., Kuga, S., Kusano, N., Meller, E., Dancis, J., and Schwarcz, R. (1986) Dopamine agonist induced self-mutilative biting behavior in monkeys with unilateral ventromedial tegmental lesions of the brainstem: Possible pharmacological model for Lesch-Nyhan syndrome. Brain Res. 367, 114–120.PubMedGoogle Scholar
  79. Goodman, R. R. and Snyder, S. H. (1982) Autoradiographic localization of adenosine receptors in rat brain using [1H]cyclohexyladenosine. J. Neurosci. 2, 1230–1241.PubMedGoogle Scholar
  80. Goodman, R. R., Kuhar, M. J., Hester, L., and Snyder, S. H. (1983) Adenosine receptors: Autoradiographic evidence for their location on axon terminals of excitatory neurons. Science 220,967–969.PubMedGoogle Scholar
  81. Gourley, D. R. H. and Beckner, S. K. (1973) Antagonism of morphine analgesia by adenine, adenosine and adenine nucleotides. Proc. Soc. Exp. Biol. Med. 144, 774–780.PubMedGoogle Scholar
  82. Grant, D. M., Tang, B. K., and Kalow, W. (1978) Variability of caffeine metabolism. Clin. Pharmacol. Ther. 33,591–602.Google Scholar
  83. Green, R. M. and Stiles, G. L. (1986) Chronic caffeine ingestion sensitizes the Al adenosine receptor-adenylate cyclase system in rat cerebral cortex. J. Clin. Invest. 77,222–227.PubMedGoogle Scholar
  84. Green, R. M., Proudfit, H. K., and Yeung, S. H. (1982) Modulation of striatal dopaminergic function by local injection of 5 N-ethylcarboxamide adenosine. Science 218, 58–61.PubMedGoogle Scholar
  85. Griffiths, R. R. and Woodson, P. P. (1988a) Reinforcing effects of caffeine in humans. J. Pharmacol. Exp. Ther. 246,21–29.Google Scholar
  86. Griffiths, R. R. and Woodson, P. P. (1988b) Caffeine physical dependence: A review of human and laboratory animal studies. Psychopharmacology 94, 437–451.Google Scholar
  87. Grome, J. J. and Stefanovich, V. (1986) Differential effects of methylxanthines on local cerebral blood flow and glucose utilization in the conscious rat. Naunyn-Schmiedebergs Arch. Pharmacol. 333,172–179.PubMedGoogle Scholar
  88. Hagberg, H., Andersson, P., Lacarewicz, J., Jacobson, I., Butcher, S., and Sandberg, M. (1987) Extracellular adenosine, inosine, hypoxanthine and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J. Neurochem. 44, 227–231.Google Scholar
  89. Hamilton, H. W., Taylor, M. D., Steffen, R. P., Haleen, S. J., and Bruns, R. F. (1987) Correlation of adenosine receptor affmities and cardiovascular activity. Life Sci. 41, 2295–2302.PubMedGoogle Scholar
  90. Hammond, J. R., Paterson, A. R. P., and Clanachan, A. S. (1981) Benzodiazepine inhibition of site-specific binding of nitrobenzylthioinosine, an inhibitor of adenosine transport. Life Sci. 29, 2207–2214.PubMedGoogle Scholar
  91. Hamprecht, B. and Van Calker, D. (1985) Nomenclature of adenosine receptors. Trends in Pharmacol. Sci. 6,153,154.Google Scholar
  92. Hardebo, J. E., Kahrstrom, J., and Owman, C. (1987) P1- and P 2 purine receptors in brain circulation. Eur. J. Pharmacol. 144, 343–352.PubMedGoogle Scholar
  93. Harms, H. H., Wardeh, G., and Mulder, A. H. (1978) Adenosine modulates depolarization-induced release of 3H-noradrenaline from slices of rat brain neocortex. Eur. J. Pharmacol. 49, 305–309.PubMedGoogle Scholar
  94. Heffner, T. G., Downsa, D. A., Bristol, J. A., Bruns, R. F., Harrigan, S. E., Moos, W. H., Sledge, K. L., and Wiley, J. N. (1985) Antipsychotic-like effects of adenosine receptor agonists. The Pharmacologist 21, 293.Google Scholar
  95. Heffner, T. G., Wiley, J. N., Williams, A. E., Bruns, R. F., Coughenour, L. L., and Downs, D. A. (1989) Comparison of the behavioral effects of adenosine agonists and dopamine antagonists in mice. Psychopharmacology 98, 31–37.PubMedGoogle Scholar
  96. Hindmarch, I. and Subhan, Z. (1985) A preliminary investigation of “Albert 285” HWA 2s85 on psychomotor performance, mood, and memory. Drug Dev. Res. 5, 379–386.Google Scholar
  97. Ho, I.K., Lo, H. H., and Way, E. L. (1973) Cyclic adenosine monophosphate antagonism of morphine analgesia. J. Pharmacol. Exp. Ther. 185, 334–346.Google Scholar
  98. Holloway, F. A., Michaelis, R. C., and Huerta, P. L. (1985a) Caffeine-phenylethylamine combinations mimic the amphetamine discriminative cue. Life Sci. 36, 723–730.Google Scholar
  99. Holloway, F. A., Modrow, H. E., and Michaelis, R. C. (1985b) Methylxanthine discrimination in the rat Possible benzodiazepine and adenosine mechanisms. Pharmacol. Biochem. Behay. 22, 815–824.Google Scholar
  100. Holmgren, M., Hedner, J., Mellstrand, T., Nordberg, G., and Hedner, T. (1986) Characterization of the antinociceptive effects of some adenosine analogues in the rat. Naunyn-Schmiedebergs Arch. Pharmacol. 334, 290–293.PubMedGoogle Scholar
  101. Holtzman, S. G. (1986) Discriminative stimulus properties of caffeine in the rat Noradrenergic mediation. J. Pharmacol. Exp. Ther. 239, 706–714.PubMedGoogle Scholar
  102. Holtzman, S. G. (1987) Discriminative stimulus effects of caffeine: Tolerance and cross-tolerance with methylphenidate. Life Sci. 40, 381–389.PubMedGoogle Scholar
  103. Hughes, R. N. and Beveridge, I. J. (1986) Behavioral effects of prenatal exposure to caffeine in rats. Life Sci. 38, 861–868.PubMedGoogle Scholar
  104. Hutchison, A. J., Webb, R. L., Oei, H. H., Ghai, G. R., Zimmerman, M. B., and Williams, M. (1989) CGS 21680, an A2 selective adenosine receptor agonist with preferential hypotensive activity. J.Pharmacol. Exp. Ther. 251, 47–55.PubMedGoogle Scholar
  105. Jacobson, K. A., Kirk, L., Padgett, W. L., and Daly, J. W. (1985) Functionalized congeners of 1,3-dialkylxanthines: Preparation of analogs with high affinity for adenosine receptors. J. Med. Chem. 28,1334–1350.PubMedGoogle Scholar
  106. Jacobson, K. A., Ukena, D., Kirk, K. L., and Daly, J. W. (1986) [3H]Xanthine amine congener of 1,3-dipropyl-8-phenylxanthine: An antagonsit radioligand for adenosine receptors. Proc. Natl. Acad. Sci. USA 83, 408–9092.Google Scholar
  107. Jarvis, M. F. (1988) Autoradiographic localization and characterization of brain adenosine receptor subtypes, in Receptor Localization: Ligand Autoradiography, (Leslie, F. and Altar, C. A., eds.), Alan R. Liss, New York, pp. 95–113.Google Scholar
  108. Jarvis, M. F. and Freeman, F. G. (1983) The effects of naloxone and interstimulation interval on postictal depression in kindled seizures. Brain Res. 288, 235–241.PubMedGoogle Scholar
  109. Jarvis, M. F. and Williams, M. (1986) Intrastriatal administration of quinolinic acid but not 6-hydroxydopamine (6-OHDA) reduces adenosine receptor density. Neurosci. Abstr. 12, 223.6.Google Scholar
  110. Jarvis, M. F. and Williams, M. (1987) Adenosine and dopamine function in the CNS. Trends Pharmacol. Sci. 8, 330–332.Google Scholar
  111. Jarvis, M. F. and Williams, M. (1988) Differences in adenosine Al and A2 receptor density revealed by autoradiography in methylxanthine-sensitive and insensitive mice. Pharmacol. Biochem. Behay. 30, 707–714.Google Scholar
  112. Jarvis, M. F. and Williams, M. (1989) Direct autoradiographic localization of adenosine A2 receptor in the rat brain usine the A2-selective agonist [3H)CGS 21680. Eur. J. Pharmacol. 168, 243–246.PubMedGoogle Scholar
  113. Jarvis, M. F., and Williams, M. (1989) Direct autoradiographic localization of Adenosine A2 receptors in the rat brain using the A2 = selective agonist, CGS 21680 (1989) Eur. J > Pharmacol. 168, 243–246.Google Scholar
  114. Jarvis, M. F., Jackson, R. H., and Williams, M. (1989) Autoradiographic characterization of high affinity adenosine A2 receptors in the rat brain. Brain Res. 484, 111–118.PubMedGoogle Scholar
  115. Jarvis, M. F., Schulz, R., Auchison, A. J., Do, U. H., Sills, M. A., and Williams, M. (1989b) [3H1 CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J. Pharmacol. Exp. Ther. 251, in press.Google Scholar
  116. Jarvis, M. F., Jacobson, K. A., and Williams, M. (1987) Autoradiographic localization of adenosine Al receptors in the rat brain using [3H]XCC, a functionalized congener of 1,3-dipropylxanthine. Neurosci. Leu. 81, 69–74.Google Scholar
  117. Jarvis, M. F., Murphy, D. E., Williams, M., Gerhardt, S.C., and Boast, C. A. (1988a) The novel N-methyl-D-aspartate (NMDA) antagonist CGS 19755 prevents ischemia-induced reductions of adenosine A,, NMDA, and PCP receptors in gerbil brain. Synapse 2,577–584.Google Scholar
  118. Jarvis, M. F., Stone, G. A., Williams, M., and Sills, M. A. (1988b) Characterization of [3H]CGS 15943A binding to adenosine Al receptors in the rat cortex. The Pharmacologist A210.Google Scholar
  119. Katims, J. J., Annau, Z., and Snyder, S. H. (1983) Interactions in the behavioral effects of methylxanthines and adenosine dervatives. J. Pharmacol. Exp. Ther. 227,167–173.PubMedGoogle Scholar
  120. Klawans, H. L., Moses, H., and Beaulieu, D. M. (1974) The influence of caffeine on D-amphetamine and apomorphine-induced stereotyped behavior. Life Sci. 14, 1493–1500.PubMedGoogle Scholar
  121. Kleven, M. S. and Sparber, S. B. (1987) Attenuation of isobutylmethylxanthine-induced supression of operant behavior by pretreatment of rats with clonidine. Pharmacol. Biochem. Behay. 28, 235–241.Google Scholar
  122. Kopin, I. J. (1981) Neurotransmitters in Lesch-Nyhan syndrome. New Eng. J. Med. 305,1148–1150.Google Scholar
  123. Kuhar, M. J., De Souza, E. B., and Unnerstall, J. R. (1986) Neurotransmitter receptor mapping by autoradiography and other methods. Annu. Rev. Neurosci. 9, 27–59.PubMedGoogle Scholar
  124. Kulkarni, S. K. and Mehta, A. K. (1985) Purine nucleoside-mediated immobility in mice: Reversal by antidepressants. Psychopharmacology 85, 460–463.PubMedGoogle Scholar
  125. Laska, E. M., Sunshine, A., Mueller, F., Elvers, W. B., Siegel, C., and Rubin, A. (1984) Caffeine as an analgesic adjuvant. J. Am. Med. Assoc. 251, 1711–1718.Google Scholar
  126. Lee, K. S. and Reddington, M. (1986a) Autoradiographic evidence for multiple CNS binding sites for adenosine derivatives. Neuroscience 19, 535–549.Google Scholar
  127. Lee, K. S. and Reddington, M. (1986b) 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX) inhibition of [3H]N-ethylcarboxamidoadenosine (NECA) binding allows the visualization of putative non-A, adenosine receptors. Brain Res. 368, 394–398.Google Scholar
  128. Leid, M., Schimerlik, M. I., and Murray, T. F. (1988) Characterization of agonist radioligand interactions with porcine atrial Al adenosine receptors. Mol. Pharmacol. 34, 334–339.PubMedGoogle Scholar
  129. Lewis, M. E., Patel, J., Edley, S. M., and Marangos, P. J. (1981) Autoradiographic visualization of rat brain adenosine receptors using M-cyclohexyl-[3H]adenosine. Eur. J. Pharmacol. 73, 109,110.Google Scholar
  130. Lloyd, H. G. E. and Stone, T. W. (1985) Cyclohexyladenosine binding in rat stiratum. Brain Res. 334, 385–388.PubMedGoogle Scholar
  131. Lloyd, K. G., Hornykiewicz, O., Davidson, L., Shannak, K., Farley, I., Coldstein, M., Shibuya, M., Kelley, W. N., and Fox, I. H. (1981) Biochemical evidence of dysfunction of brain neurotransmitters in Lesch-Nyhan syndrome. N. Eng. J. Med. 305, 1106–1111.Google Scholar
  132. Logan, L. and Carney, J. M. (1984) Antagonism of the behavioral effects of L-phenylisopropyladenosine (L-PIA) by caffeine and its metabolites. Pharmacol. Biochem. Behay. 21, 375–379.Google Scholar
  133. Logan, L., Seale, T. W., and Carney, J. M. (1986) Inherent differences in sensitivity to methylxanthines among inbred mice. Pharmacol. Biochem. Behay. 24, 1281–1286.Google Scholar
  134. Lohse, M. J., Klotz, K. N., Jakobs, K. H., and Schwabe, U. (1985) Barbiturates are selective antagonists at A, adenosine receptors. J. Neurochem. 45, 1761–1770.PubMedGoogle Scholar
  135. Lohse, M. J., Klotz, K., Lindenborn-Fotinos, J., Reddington, M., Schwabe, U., and Olson, R. (1987a) 8-Cyclo-1,3-dipropylxanthine (DPCPX)—A selective high affinity antagonist radioligand for A, receptors. Naunym-Schmiedebergs Arch. Pharmacol. 336, 204–210.Google Scholar
  136. Lohse, M. J., Boser, S., Klotz, K. N., and Schwabe, U. (1987b) Affinities of barbiturates for the GABA-receptor complex and Al adenosine receptors: A possible explanation of their effects. Naunyn-Schmiedebergs Arch. Pharmacol. 336, 211–217.Google Scholar
  137. Loke, W. H., Hinrichs, J. V., and Ghoneim, M. M. (1985) Caffeine and diazepam: Separate and combined effects on mood, memory, and psychomotor performance. Psychopharmacology 87, 344–350.PubMedGoogle Scholar
  138. Londos, C. and Wolff, J. (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc. Natl. Acad. Sci. USA 74, 5482–5486.PubMedGoogle Scholar
  139. Louie, G. L., Prokocimer, P. G., Nicholls, E. A., and Maze, M. (1986) Aminophylline shortens thiopental sleep time and enhances noradrenergic neurotransmission in rats. Brain Res. 383, 377–381.PubMedGoogle Scholar
  140. Marangos, P. J. and Boulenger, J. P. (1985) Basic and clinical aspects of adrenergic neuromodulation. Neurosci. Biobehay. Rev. 9, 421–430.Google Scholar
  141. Marangos, P. J., Deckers, J., and Bisserbe, J. C. (1987) Central sites of adenosine action and their interaction with various drugs, in Topics and Perspectives in Adenosine Research, (Gerlach, E. and Becker, B. F., eds.), Springer-Verlag, Berlin, pp. 74–89.Google Scholar
  142. Marangos, P. J., Paul, S. M., Parma, A. M., and Skolnick, P. (1979) Purinergic inhibition of diazepam binding to rat brain in vitro. Life Sci. 72, 269–273.Google Scholar
  143. Marangos, P. J., Post, R. M., Patel, J. Zander, K., Parma, A., and Weiss, S. (1983) Specific and potent interactions of carbamazepine with brain adenosine receptors. Eur. J. Pharmacol. 93,175–182.PubMedGoogle Scholar
  144. Michaelis, M. L., Michaelis, E. K., and Myers, S. L. (1979) Adenosine modulation of synaptosmal dopamine release. Life Sci. 24, 2083–2092.PubMedGoogle Scholar
  145. Minana, M. D., Portoles, M., Jorda, G., and Grisolia, S. (1984) Lesch-Nyhan syndrome. Caffeine model: Increase of purine and pyrimidine enzymes in rat brain. J. Neurochem. 51, 642–647.Google Scholar
  146. Modrow, H. E., Holloway, F. A., and Carney, J. M. (1981) Caffeine discrimination in the rat. Pharmacol. Biochem. Behay. 14, 683–688.Google Scholar
  147. Mullane, K. and Williams, M. (1990) Adenosine and cardiovascular function, in Adenosine and Adenosine Receptors (Williams, M., et), Humana, Clifton, New Jersey, this volume.Google Scholar
  148. Muller, K. and Nyhan, W. (1982) Pharmacologic control of pemoline self injurious behavior in rats. Pharmacol. Biochem. Behay. 16, 957–963.Google Scholar
  149. Murphy, K. M. and Snyder, S. H. (1982) Heterogenity of adenosine Al receptor binding in brain tissue. Mol. Pharmacol. 22, 260–267.Google Scholar
  150. Murray, T. F. (1982) Upregulation of rat cortical adenosine receptors following chronic administration of theophylline. Eur. J. Pharmacol. 82, 113,114.Google Scholar
  151. Murray, T. F. and Cheney, D. L. (1982) Neuronal location ofN6-cyclohexyl [3H]adenosine binding sites in rat and guinea-pig brain. Neuropharmacol. 21, 575–580.Google Scholar
  152. Murray, T. F. and Szot, P. (1986) Al adenosine receptor mediated modulation of seizure susceptibility, in Neurotransmitters, Seizures, and Epilepsy III (Nistico, G., ed.), Raven, New York, pp. 341–353.Google Scholar
  153. Murray, T. F., Blaker, W. D., Cheney, D. L., and Costa, E. (1982) Inhibition of acetylcholine turnover rate in rat hippocampus and cortex by intraventricular injection of adenosine analogs. J. Pharmacol. Exp. Ther. 222, 550–554.PubMedGoogle Scholar
  154. Murray, T. F., Sylvester, D., Schultz, C. S., and Szot, P. (1985) Purinergic modulation of the seizure threshold for pentylenetetrazol in the rat. Neuropharmacology 24, 761–766.PubMedGoogle Scholar
  155. Myers, S. and Pugsley, T. A. (1986) Decrease in rat striatal dopamine synthesis and metabolism in vivo by metabolically stable adenosine receptor agonists. Brain Res. 375,193–197.PubMedGoogle Scholar
  156. Neblig, A., Luicignani, G., Kadekaro, M., Pocono, L. J., and Sokoloff, L. (1984) Effects of acute administration of caffeine on local cerebral glucose utilization in the rat. Eur. J. Pharmacol. 82, 113,114.Google Scholar
  157. Newman, M. E., Zohar, J., Kahan, M., and Belmaker, R. F. (1984) The effects of chronic lithium and ECT on Al and A2 adenosine receptor systems in the rat brain. Brain Res. 291, 188–192.PubMedGoogle Scholar
  158. Niglio, T., Popoli, P., Caporali, M. G., and de Carolis, S. (1988) Antiepileptic effects of N6-L-phenylisopropyladenosine (L-PIA) on penicillin-induced epilepto-genic focus in rabbits. Pharmacol. Res. Commun. 20, 561–572.PubMedGoogle Scholar
  159. Nyhan, W. L. (1973) The Lesch-Nyhan syndrome. Annu. Rev. Med. 24, 41–61.PubMedGoogle Scholar
  160. Oei, H. H., Ghai, G. R., Zoganas, H. C., Stone, G. A., Field, F. P., and Williams, M. (1989) Correlation between binding affinities for brain Al and A2 receptors of adenosine agonists and antagonists and their effects on heart rate and coronary vascular tone. J. Pharmacol. Ezp. Ther. 247, 882–888.Google Scholar
  161. Onodera, H. and Kogure, K. (1988) Differential localization of adenosine Al receptors in the rat hippocampus: Quantitative autoradiography study. Brain Res. 458, 212–217.PubMedGoogle Scholar
  162. Onodera, H., Sato, K., and Kogure, K. (1986) Lesions of Schaeffer’s collaterals prevent ischemic death of CAl pyramidal cells. Neurosci. Leu. 24,169–174.Google Scholar
  163. Onodera, H., Sato, G., and Kogure, K. (1987) Quantitative autoradiographic analysis of muscrinic cholinergic and adenosine Al binding sites after transient forebrain ischemia in the gerbil. Brain Res. 415, 309–322.PubMedGoogle Scholar
  164. Patel, A., Craig, R. H., Daluge, S. M., and Linden, J. (1988) 125I-BW-A844U, an antagonist radioligand with high affinity and selectivity for adenosine A1 receptors, and 12I-azido-BW-A844U, a photoaffinity label. Mol. Pharmacol. 33, 585–591.PubMedGoogle Scholar
  165. Patel, J., Marangos, P. J., Skolnick, P., Paul, S. M., and Martino, A. M. (1982) Benzodiazepines are weak inhibitors of [H]nitrobenylthioinosine binding to adenosine uptake sites in brain. Neurosci. Lett. 29, 79–82.PubMedGoogle Scholar
  166. Phillis, J. W. (1979) Diazepam potentiation of purinergic depression of central neurons. Can. J. Physiol. Pharmacol. 57, 432–435.PubMedGoogle Scholar
  167. Phillis, J. W. and DeLong, R. (1986) The role of adenosine in cerebral vascular regulation during reduction in perfusion pressure. J. Pharm. Pharmacol. 38, 460–462.PubMedGoogle Scholar
  168. Phillis, J. W. and O’Regan, M. H. (1988a) Benzodiazepine interaction with adenosine systems explains some anomalies in GABA hypothesis. TrendsPharmacol. Sci. 9, 153,154.Google Scholar
  169. Phillis, J. W. and O’Regan, M. H. (1988b) The role of adenosine in the central actions of the benzodiazepines. Prog. Neuropsychopharmacol. Biol. Psychiat. 12, 389–404.Google Scholar
  170. Phillis, J. W. and Stair, R. E. (1987) Ro 15–1788 both antagonizes and potentiates adenosine-evoked depression of cerebral cortical neurons. Eur. J. Pharmacol. 136,151–156.PubMedGoogle Scholar
  171. Phillis, J. W. and Wu, P. H. (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog. Neurobiol. 16, 187–193.PubMedGoogle Scholar
  172. Phillis, J. W. and Wu, P. H. (1982) Adenosine in benzodiazepine action, in The Pharmacology of Benzodiazepines (Usdin, E., Skolnick, P., Tallman, J., Greenblatt, D., and Paul, S., eds.), Macmillian, London, pp. 497–507.Google Scholar
  173. Phillis, J. W., Barraco, R. A., DeLong, R. E., and Washington, D. O. (1986) Behavioral characteriztic of centrally administered adenosine analogs. Pharmacol. Biochem. Behay. 24, 263–270.Google Scholar
  174. Popoli, P., Benedetti, M., and de Carolis, A. (1988) Anticonvulsant activity of carbamazepine and 1V6-L-phenylisopropyladenosine in rabbits. Relationship to adenosine receptors in central nervous system. Pharmacol. Biochem. Behay. 29, 533–539.Google Scholar
  175. Porsolt, R. D., Le Pichon, M., and Jalfre, M. (1977) Depression: A new animal model sensitive to antidepressant treatments. Nature 226, 730–732.Google Scholar
  176. Ramkumar, V., Pierson, G., and Stiles, G. L. (1988) Adenosine receptors: Clinical implications and biochemical mechanisms. Prog. Drug Res. 32,195–247.PubMedGoogle Scholar
  177. Ricaurte, G. A., Guillery, R. W., Seiden, L. S., Schuster, C. R., and Moore, R. Y. (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res. 235, 93–103.PubMedGoogle Scholar
  178. Roca, D. J., Schiller, G. D., and Farb, D.H. (1988) Chronic caffeine or theophylline exposure reduces GABA/benzodiazepine receptor interactions. Mol. Pharmacol. 30, 481–485.Google Scholar
  179. Rosen, J. B. and Berman, R. F. (1985) Prolonged postictal depression in amygdalakindled rats by the adenosine analog, L-phenylisopropyladenosine. Exp. Neurol. 90, 549–557.PubMedGoogle Scholar
  180. Sanders, R. C. and Murray, T. F. (1988) Chronic theophylline exposure increases agonist and antagonist binding to Al adenosine receptors in rat brain. Neuropharmacology 27, 757–760.PubMedGoogle Scholar
  181. Sawynok, J. and Reid, A. (1988) Role of G-proteins and adenylate cyclase in amino-ciception produced by intrathecal purines. Eur. J. Pharmacol. 156, 25–34.PubMedGoogle Scholar
  182. Schechter, M. D. (1977) Caffeine potentiation of amphetamine: Implications for hyperkinetic therapy. Pharmacol. Biochem. Behay. 6, 359–361.Google Scholar
  183. Schechter, M. D. (1980) Caffeine potentiation of apomorphine discrimination. Pharmacol. Biochem. Behay. 13, 307–309.Google Scholar
  184. Seale, T. W., Johnson, P., Carney, J. M., and Rennert, O. M. (1984) Interstrain variation in acute toxic responses to caffeine among inbred mice. Pharmacol. Biochem. Behay. 20, 567–573.Google Scholar
  185. Seale, T. W., Johnson, P., Roderick, T. H., and Carney, J. M. (1985) A single gene difference determines relative susceptibility to caffeine-induced lethality in SWR and CBA inbred mice. Pharmacol. Biochem. Behay. 23, 275–278.Google Scholar
  186. Seale, T. W., Abla, K. A., Shamin, M. T., Carney, J. M. and Daly, J. W. (1988) 3,7- dimethyl- 1 -propargylxanthine: A potent and selective in vivo antagonist of adenosine analogs. Life Sci. 43,1671–1684.PubMedGoogle Scholar
  187. Seale, T. W., Roderick, T. H., Johnson, P., Logan, L., Rennen, O. M., and Carney, J. M. (1986) Complex genetic determinants of susceptibitily to methylxanthine-induced locomotor activity changes. Pharmacol. Biochem. Behay. 24, 1333–1341.Google Scholar
  188. Skerritt, J. H., Davies, L. P., and Johnson, G. A. R. (1982) A purinergic component in the anticonvulsant action of carbamazepine. Eur. J. Pharmacol. 82,195–197.PubMedGoogle Scholar
  189. Skerritt, J. H., Davies, L. P., and Johnson, G. A. R. (1983a) Interactions of the anti-convulsant carbamazepine with adenosine receptors. Epilepsia 24,634–642.Google Scholar
  190. Skerritt, J. H., Johnson, G. A. R., and Chow, S. C. (1983b) Interactions of the anti-convulsant carbamazepine with adenosine receptors 2. Epilepsia 24, 643–652.Google Scholar
  191. Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S. (1984) Blockade of NMDA receptors may protect against ischemic brain damage in the brain. Science 226, 850–852.PubMedGoogle Scholar
  192. Snowhill, E. W. and Williams, M. (1986) [1H]Cyclohexyladenosine binding in rat brain: A pharmacological analysis using quantitative autoradiography. Neurosci. Lett. 68, 41–46.PubMedGoogle Scholar
  193. Snyder, S. H. (1985) Adenosine as a neuromodulator. Annu. Rev. Neurosci. 8,103–124.PubMedGoogle Scholar
  194. Snyder, S. H., Katims, J. J., Annau, Z., Bruns, R. F., and Daly, J. W. (1981) Adenosine receptors and behavioral actions of methylxanthines. Proc. Natl. Acad. Sci. USA 78, 3260–3264.PubMedGoogle Scholar
  195. Sollevi, A. (1986) Cardiovascular effects of adenosine in man, possible clinical implications. Prog. Neurobiol. 227, 319–349.Google Scholar
  196. Spealman, R. D. (1988) Psychomotor stimulant effects of methylxanthines in squirrel monkeys: Relation to adenosine antagonism. Psychopharmacology 95, 19–24.PubMedGoogle Scholar
  197. Spealman, R. D. and Coffin, V. L. (1988) Discriminative-stimulus effects of adenosine analogs: Mediation by adenosine A2 receptors. J. Pharmacol. Exp. Ther. 246, 610–617.PubMedGoogle Scholar
  198. Stewart, S.F. and Pugsley, T. A. (1985) Increase of rat serum prolactin by adenosine analogs and their blockade by the methylxanthine aminophylline. NaunynSchmiedebergs Arch. Pharmacol. 331, 140–145.Google Scholar
  199. Stiles, G. L. (1986) Al adenosine receptor-G protein coupling in bovine brain membranes: Effects of guanine nucleotides, salt, and solubilization. J. Neurochem. 51,1592–1598.Google Scholar
  200. Stone, G. A., Jarvis, M. F., Sills, M. A., Weeks, B., Snowhill, E. W., and Williams, M. (1988) Species differences in high-affinity adenosine A2 binding sites in striatal membranes from mammalian brain. Drug Dey. Res. 15, 31–46.Google Scholar
  201. Stone, T. W. (1981) Physiological roles for adenosine and adenosine 5’-triphosphate in the nervous system. Neuroscience 6, 523–545.PubMedGoogle Scholar
  202. Stone, T. W. (1983) Interactions of adenosine with other agents, in Regulatory Function of Adenosine, (Berne, R. M., Rall, T. W., and Rubio, R., eds.), Nijhoff, Boston, pp. 467–477.Google Scholar
  203. Sweeney, M., White, T., and Sawynok, J. (1988) 5-Hydroxytryptamine releases adenosine from primary afferent nerve terminals in the spinal cord. Brain Res. 462, 346–349.PubMedGoogle Scholar
  204. Szot, P., Sanders, R. C., and Murray, T. F. (1987) Theophylline-induced upregulation of A1-adenosine receptors associated with reduced sensitivity to convulsants. Neuropharmacology 26,1173–1180.PubMedGoogle Scholar
  205. Thithapandha, A., Maling, H. M., and Gillette, G. R. (1972) Effects of caffeine and theophylline on activity of rats in relation to brain xanthine concentrations. Proc. Soc. Exp. Biol. Med. 139, 582–586.PubMedGoogle Scholar
  206. Ukena, D., Olsson, R. A., and Daly, J. W. (1987) Definition of subclasses of adenosine receptors associated with adenylate cyclases: Interaction of adenosine with inhibitory Al receptors and stimulatory A2 receptors. Can. J. Physiol. 65, 365–377.Google Scholar
  207. Ukena, D., Jacobson, K. A., Kirk, K. L., and Daly, J. W. (1986) A [1H]amine congener of 1,3-dipropyl-8-phenyl-xanthine: A new radioligand for A2 receptors in human platelets. FEBS Leu. 199, 269–274.Google Scholar
  208. Unnerstall, J. R., Niehoff, D., Kuhar, M. J., and Palacios, J. M. (1982) Quantitative receptor autoradiography using [1H]Ultrofilm: Application to multiple benzodiazepine receptors. J. Neurosci. Methods 6, 59–73.PubMedGoogle Scholar
  209. Vapaatalo, H., Onken, D., Neuvonen, P. J., and Westermann, E. (1975) Stereospecificity in some central and circulatory effects of phenylisopropyladenosine (PIA). Arzeneimittelforsch 25, 407–410.Google Scholar
  210. Venault, P., Chapouthier, G., Prado de Carvalho, L., Siminad, J., Morre, R., Dodd, H., and Rossier, J. (1986) Benzodiazepines impair and beta-carboline enhances performance in learning and memory tasks. Nature 321, 864–866.PubMedGoogle Scholar
  211. von Lubitz, D. K. J. E., Dambrosia, J. M., Kempski, O., and Redmond, D. J. (1988) Cyclohexyladenosine protects against neuronal death following ischemia in the CA-1 region of gerbil hippocampus. Stroke 19,1133–1139.Google Scholar
  212. Wagner, G. C., Lucot, J. B., Schuster, C. R., and Seiden, L. S. (1983) Alpha-methyltryosine attenuates and reserpine increases methamphetamine-induced neuronal changes. Brain Res. 270, 285–288.PubMedGoogle Scholar
  213. Waldeck, B. (1975) Effect of caffeine on locomotor activity and central catechola-mine mechanisms: A study with special reference to drug interaction. Acta Pharmacol. Toxicol. 36, Supp 4, 1–23.Google Scholar
  214. Watanabe, H. and Uramoto, H. (1986) Caffeine mimics dopamine receptor agonists without stimulation of dopamine receptors. Neuropharmacology 25, 577–581.PubMedGoogle Scholar
  215. Watanabe, H., Ikeda, M., and Watanabe, K. (1981) Properties of rotational behavior produced by methylxanthine derivatives in mice with unilateral striatal 6-hydroxydopamine-induced lesions. J. Pharm. Dyn. 4, 301–307.Google Scholar
  216. Watkins, J. C. (1981) Pharmacology of excitatory amino acid receptors, in Glutamate: Transmitter in the Central Nervous System, (Roberts, P. J., Strom-Mathisen, J., and Johnston, G. A. R., eds.), Wiley, New York, pp. 1–24.Google Scholar
  217. Weber, R. G., Jones, C. R., Palacios, J. M., and Lohse, M. J. (1988) Autoradiographic visualization of Al-adenosine receptors in brain and peripheral tissues of rat and guinea-pig using125I-HPIA. Neurosci. Lett. 87, 215–220.PubMedGoogle Scholar
  218. Weir, R. L., Padgett, W., Daly, J. W., and Anderson, S. M. (1984) Interaction of anti-convulsant drugs with adenosine receptors in the central nervous system. Epilepsia 25, 492–498.PubMedGoogle Scholar
  219. Westerberg, V. S. and Geiger, J. D. (1987) Central effects of adenosine analogs on stress-induced gastric ulcer formation. Life Sci. 41, 2201–2205.PubMedGoogle Scholar
  220. White, B.C. and Keller, G.E. (1984) Caffeine pretreatment Enhancement and at-tenuation of D-amphetamine-induced activity. Pharmacol. Biochem. Behay. 20, 383–386.Google Scholar
  221. White, B.C., Simpson, C. C., Adams, J. E., and Harkins, D. (1978) Monoamine synthesis and caffeine-induced locomotor activity. Neuropharmacology 17, 511–513.Google Scholar
  222. White, B.C., Haswell, K. L., Kassab, C. D., Harkins, D., and Crumbie, P. M. (1984) Caffeine reduces amphetamine-induced activity in asymmetrical interaction. Pharmacol. Biochem. Behay. 20, 387–389.Google Scholar
  223. Williams, M. (1984) Mammalian central adenosine receptors, in Handbook of Neurochemistry, (Lajtha, A. ed.), Plenum, New York, vol 6, pp. 1–26.Google Scholar
  224. Williams, M. (1987) Purine receptors in mammalian tissues: Pharmacology and physiological significance. Annu. Rev. Pharmacol. Toxicol. 27, 315–345.PubMedGoogle Scholar
  225. Williams, M. (1989) Adenosine: The prototypic neuromodulator. Neurochem. Int. 14, 249–264.PubMedGoogle Scholar
  226. Williams, M. (1990) Adenosine: A historical overview, in Adenosine and Adenosine Receptors, (Williams, M., ed.), Humana, Clifton, New Jersey, this volume.Google Scholar
  227. Williams, M. and Jarvis, M. F. (1988) Adenosine antagonists as potential therapeutic agents. Pharmacol. Biochem. Behay. 29, 433–441.Google Scholar
  228. Williams, M. and Olsen, R. A. (1988) Benzodiazepine receptors and tissue function, in Receptor Pharmacology and Function (Williams, M., Glennon, R.A., and Timmermans, P.B.M.W.M., eds.), Marcel Dekker, New York, pp. 385–413.Google Scholar
  229. Williams, M., Risley, E. A., and Huff, J. R. (1981) Interaction of putative anxiolytic agents with central adenosine receptors. Can. J. Physiol. Pharmacol. 59, 897–900.PubMedGoogle Scholar
  230. Williams, M., Risley, E. A., and Robinson, J. R. (1983) Chronic in vivo treatment with desmethylimipramine and mianserin does not alter adenosine A, radioligand binding in rat cortex. Neurosci. Leu. 35, 47–51.Google Scholar
  231. Williams, M., Abreu, M. E., Jarvis, M. F., and Noronha-Blob, C. (1987a) Characterization of adenosine receptors in the PC12 pheochromocytoma cell line using radioligand binding-evidence for A2 selectivity. J. Neurochem. 48, 498–502.Google Scholar
  232. Williams, M., Jarvis, M. F., Sills, M. A., Ferkany, J. W., and Braunwalder, A. F. (1987b) Biochemical characterization of the antagonist actions of the xanthines, PACPX (1,3-dipropyl-8(2-amino-4-chloro)phenylxanthine) and 8-PT (8-phenyltheophylline) at adenosine A, and A2 receptors in rat brain tissue. Biochem: Pharmacol. 36, 4024–4027.Google Scholar
  233. Winn, R. H., Rubio, G. R., and Berne, R. M. (1981) The role of adenosine in the regulation of cerebral blood flow. J. Cerebr. Blood Flow Metab. 1, 239–247.Google Scholar
  234. Winsky, L. and Harvey, J. A. (1987) Effects of N6-(L-phenylisopropyl)adenosine, caffeine, theophylline and rolipram on acquisition of conditioned responses in the rabbit. J. Pharmacol. Exp. Ther. 241, 223–229.PubMedGoogle Scholar
  235. Wojcik, W. J. and Neff, N. H. (1983) Differential location of adenosine A, and A2 receptors in rat striatum. Neurosci. Leu. 41, 55–60.Google Scholar
  236. Yarbrough, G. G. and McGuffin-Clineschmidt, J. C. (1981) In vivo behavioral as-sessment of central nervous system purinergic receptors. Eur. J. Pharmacol. 76,137–144.PubMedGoogle Scholar
  237. Yeung, S. H. and Green, R. D. (1984) (1H) 5’ N-ethylcarboxamide adenosine binds to both Ra and Ri adenosine receptors in rat striatum. Naunyn-Schmiedebergs Arch. Pharmacol. 325, 218–225.PubMedGoogle Scholar
  238. Zielke, H. R. and Zielke, C. L. (1986) Lack of a sustained effect on catecholamines or indoles in mouse brain after long term subcutaneous administration of caffeine or theophylline. Life Sci. 39,565–572.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1990

Authors and Affiliations

  • Michael F. Jarvis
  • Michael Williams

There are no affiliations available

Personalised recommendations