Kinetics of Anion Transport

  • Philip A. Knauf
Part of the Contemporary Biomedicine book series (CB, volume 10)


This chapter will deal primarily with the question of what we can learn about the red-cell anion transport system from kinetic studies, that is, measurements of ion fluxes under different conditions and in the presence of various inhibitors. It is important to recognize, however, that one of the chief advantages of the red-cell anion transport system has been the availability of structural data on the transport protein as well as kinetic data. Largely for reasons of brevity, this chapter will focus on only a few subjects that, in my opinion, will be important in linking the kinetic information with structural studies (see Chapter 8) to develop a molecular model for the transport process. For a broader overview of the kinetics of transport, the reader is referred to several comprehensive reviews (Macara and Cantley, 1983; Knauf, 1979, 1986; Passow, 1986; Fröhlich and Gunn, 1986).


Anion Exchange Anion Transport Niflumic Acid Noncompetitive Inhibitor Flufenamic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennekou, P. (1985) Chloride net permeability of the human red cell—a comparison with the exchange permeability. Acta Physiol. Scand. 124 (Suppl. 542) 154.Google Scholar
  2. Brahm, J. (1977) Temperature-dependent changes of chloride transport kinetics in human red cells. J. Gen. Physiol. 70 283–306.PubMedCrossRefGoogle Scholar
  3. Brazy, P. C. and Gunn, R. B. (1976) Furosemide inhibition of chloride transport in human red blood cells. J. Gen. Physiol. 68 583–599.PubMedCrossRefGoogle Scholar
  4. Brock, C. J., Tanner, M. J. A., and Kempf, C. (1983) The human erythrocyte anion transport protein: Partial amino acid sequence, conformation and a possible molecular mechanism for anion exchange. Biochem. J. 213 577–586.PubMedGoogle Scholar
  5. Canfield, V. A. and Macey, R. I. (1984) Anion exchange in human erythrocytes has a large activation volume. Biochim. Biophys. Acta 778 379–384.PubMedCrossRefGoogle Scholar
  6. Cass, A. and Dalmark, M. (1973) Equilibrium dialysis of ions in nystatin-treated red cells. Nature New Biology 244 47–49.PubMedCrossRefGoogle Scholar
  7. Cleland, W. W. (1963) The kinetics of enzyme-catalysed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta 67 104–137.PubMedCrossRefGoogle Scholar
  8. Cousin, J. L. and Motais, R. (1979) Inhibition of anion permeability by am-phiphilic compounds in human red cell: Evidence for an interaction of niflumic acid with the band 3 protein. J. Membr. Biol. 47 125–153.Google Scholar
  9. Dalmark, M. (1975) Chloride transport in human red cells. J. Physiol. (Lond.) 250 39–64.Google Scholar
  10. Dalmark, M. (1976) Effects of halides and bicarbonate on chloride transport in human red blood cells. J. Gen. Physiol. 67 223–234.PubMedCrossRefGoogle Scholar
  11. Fairbanks, G. L., Steck, T. L., and Wallach, D. F. H. (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10 2606–2617.PubMedCrossRefGoogle Scholar
  12. Falke, J. J. and Chan, S. I. (1985) Evidence that anion transport by band 3 proceeds via a ping-pong mechanism involving a single transport site. J. Biol. Chem. 260 9537–9544.PubMedGoogle Scholar
  13. Falke, J. J. and Chan, S. I. (1986a) Molecular mechanisms of band 3 inhibitors. 1. Transport site inhibitors. Biochemistry 25 7888–7894.PubMedCrossRefGoogle Scholar
  14. Falke, J. J. and Chan, S. I. (1986b) Molecular mechanisms of band 3 inhibitors. 2. Channel blockers. Biochemistry 25 7895–7898.PubMedCrossRefGoogle Scholar
  15. Falke, J. J. and Chan, S.I. (1986c) Molecular mechanisms of band 3 inhibitors. 3. Translocation inhibitors. Biochemistry 25 7899–7906.PubMedCrossRefGoogle Scholar
  16. Falke, J. J., Kanes, K. J., and Chan, S. I. (1985) The kinetic equation for the chloride transport cycle of band 3. A35C1 and 37C1 NMR study. J. Biol. Chem. 260 9545–9551.PubMedGoogle Scholar
  17. Falke, J. J., Pace, R. J., and Chan, S. I. (1984a) Chloride binding to the anion transport binding sites of band 3. A35C1 NMR study. J. Biol. Chem. 259 6472–6480.PubMedGoogle Scholar
  18. Falke, J. J., Pace, R. J., and Chan, S. I. (1984b) Direct observation of the transmembrane recruitment of band 3 transport sites by competitive inhibitors. A35C1 NMR study. J. Biol. Chem. 259 6481–6491.PubMedGoogle Scholar
  19. Freedman, J. C. and Novak, T. S. (1987) Chloride conductance of human red blood cells at varied EK. Biophys. J. 51 565a.Google Scholar
  20. Fröhlich, O. (1982) The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride. J. Membr.Biol. 65 111–123.PubMedCrossRefGoogle Scholar
  21. Fröhlich, O. (1984) Relative contributions of the slippage and tunneling mechanisms to anion net efflux from human erythrocytes. J. Gen. Physiol. 84 877–893.PubMedCrossRefGoogle Scholar
  22. Fröhlich, O. and Gunn, R. B. (1986) Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system. Biochim. Biophys. Acta 864 169–194.PubMedGoogle Scholar
  23. Fröhlich, O. and King, P. A. (1987) Mechanisms of anion net transport in the human erythrocyte. J. Gen. Physiol. 90 6a.Google Scholar
  24. Fröhlich, O. and King, P. A. (1988) Mechanism of net anion transport in the human erythrocyte, in Cell Physiology of Blood (Gunn, R. B. and Parker, J. C, eds.), Rockefeller University Press, New York, pp. 181–192.Google Scholar
  25. Fröhlich, O., Bain ,D., and Weimer ,L. (1989) The effect of phloretin and DNDS on chloride net transport in erythrocytes. Submitted for publication.Google Scholar
  26. Fröhlich, O., Leibson, C, and Gunn, R. B. (1983) Chloride net efflux from intact erythrocytes under slippage conditions. Evidence for a positive charge on the anion binding/transport site. J. Gen. Physiol. 81 127–152.PubMedCrossRefGoogle Scholar
  27. Furuya, W., Tarshis, T., Law, F.-Y., and Knauf, P. A. (1984) Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein. J. Gen. Physiol. 83 657–681.PubMedCrossRefGoogle Scholar
  28. Ginsburg, H., O’Connor, S. E., and Grisham, C. M. (1981) Evidence from electron paramagnetic resonance for function-related conformation changes in the anion-transport protein of human erythrocytes. Eur. J. Biochem. 114 533–538.PubMedCrossRefGoogle Scholar
  29. Glasstone, S. and Lewis, D. (1960) Elements of Physical Chemistry, Second Edition (Van Nostrand, Princeton).Google Scholar
  30. Goldman, D. E. (1943) Potential, impedance and rectification in membranes. J. Gen. Physiol. 27 37–60.PubMedCrossRefGoogle Scholar
  31. Grinstein, S., McCulloch, L., and Rothstein, A. (1979) Transmembrane effects of irreversible inhibitors of anion transport in red blood cells. Evidence for mobile transport sites. J. Gen. Physiol. 73 493–514.PubMedCrossRefGoogle Scholar
  32. Grygorczyk, R., Schwarz, W., and Passow, H. (1987) Potential dependence of the “electrically silent” anion exchange across the plasma membrane of Xenopus oocytes mediated by the band-3 protein of mouse red blood cells. J. Membr. Biol. 99 127–136.PubMedCrossRefGoogle Scholar
  33. Guidotti, G. (1986) Membrane proteins: structure, arrangement, and disposition in the membrane, in Physiology of Membrane Disorders, Second Edition (Andreoli, T. E., Hoffman, J. F., Fanestil, D. D., and Schultz, S. G., eds.), Plenum, New York, pp. 45–55.Google Scholar
  34. Gunn, R. B. (1979) Transport of anions across red cell membranes, in Transport Across Biological Membranes, Vol. II (Giebisch, G., Tosteson, D., and Ussing, H. H., eds.), Springer-Verlag, Heidelberg, pp. 59–80.Google Scholar
  35. Gunn, R. B. and Fröhlich, O. (1979) Asymmetry in the mechanism for anion exchange in human red blood cell membranes: Evidence for reciprocating sites that react with one transported anion at a time. J. Gen. Physiol. 74 351–374.PubMedCrossRefGoogle Scholar
  36. Gunn, R. B., and Fröhlich, O. (1980) The kinetics of the titratable carrier for anion exchange in erythrocytes. Ann. N.Y. Acad. Sci. 341 384–393.PubMedCrossRefGoogle Scholar
  37. Gunn, R. B. and Fröhlich, O. (1982) Arguments in support of a single transport site on each anion transporter in human red cells, in Chloride Transport in Biological Membranes (Zadunaisky, J., ed.), Academic Press, New York, pp. 33–59.Google Scholar
  38. Gunn, R. B., Dalmark, M., Tosteson, D. C., and Wieth, J. O. (1973) Characteristics of chloride transport in human red blood cells. J Gen. Physiol. 61 185–206.PubMedCrossRefGoogle Scholar
  39. Gunn, R. B., Fröhlich, O., Macintyre, J. D., and Low, P. S. (1979) Calcium modification of the anion transport mechanism in red blood cells. Biophys. J. 25 106a.Google Scholar
  40. Hautmann, M. and Schnell, K. F. (1985) Concentration dependence of the chloride self exchange and homoexchange fluxes in human red cell ghosts. Pflügers Arch. 405 193–201.PubMedCrossRefGoogle Scholar
  41. Hoffman, J. F., and Laris, P. C. (1974) Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe. J. Physiol. (Lond.) 239 519–552.Google Scholar
  42. Hunter, M. J. (1971) A quantitative estimate of the non-exchange restricted chloride permeability of the human red cell. J. Physiol. (Lond.) 218 49P–50P.Google Scholar
  43. Jans, A. W. H., Krijnen, E. S., Luig, J., and Kinne, R. K. H. (1987) A 31P-NMR study on the recovery of intracellular pH in LLC-PK1/CI4 cells from intracellular alkalinization. Biochim. Biophys. Acta 931 326–334.PubMedCrossRefGoogle Scholar
  44. Jay, D. and Cantley, L. (1986) Structural aspects of the red cell anion exchange protein. Ann. Rev. Biochem. 55, 511–538.PubMedCrossRefGoogle Scholar
  45. Jennings, M. L. (1982) Stoichiometry of a half-turnover of band 3, the chloride-transport protein of human erythrocytes. J. Gen. Physiol. 79 169–185.PubMedCrossRefGoogle Scholar
  46. Jennings, M. L. (1987) Functional roles of carboxyl groups in human red blood cell band 3. J. Gen. Physiol. 90 5a.Google Scholar
  47. Jennings, M. L. and Adams, M. F. (1981) Modification by papain of the structure and function of band 3, the erythrocyte anion transport protein. Biochemistry 20 7118–7123.PubMedCrossRefGoogle Scholar
  48. Jennings, M. L. and A1-Rhaiyel, S. (1988) Modification of a carboxyl group that appears to cross the permeability barrier in the red blood cell anion transporter. J. Gen. Physiol. 92 161–178.PubMedCrossRefGoogle Scholar
  49. Jennings, M. L. and Anderson, M. P. (1987) Chemical modification and labeling of glutamate residues at the stilbenedisulfonate site of human red blood cell band 3 protein. J. Biol. Chem. 262 1691–1697.PubMedGoogle Scholar
  50. Jones, G. S. and Knauf, P. A. (1985) Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin. J. Gen. Physiol. 86 721–738.PubMedCrossRefGoogle Scholar
  51. Kaplan, J. H., Pring, M., and Passow, H. (1983) Band 3 protein-mediated anion conductance of the red cell membrane: Slippage versus ionic diffusion. FEBS Lett. 156 175–179.PubMedCrossRefGoogle Scholar
  52. Kaplan, J. H., Scorah, K., Fasold, H., and Passow, H. (1976) Sidedness of the inhibitory action of disulfonic acids on chloride equilibrium exchange and net transport across the human erythrocyte membrane. FEBS Lett. 62 182–185.PubMedCrossRefGoogle Scholar
  53. Knauf, P. A. (1979) Erythrocyte anion exchange and the band 3 protein: transport kinetics and molecular structure. Curr. Topics Membr. Trans. 12 249–363.Google Scholar
  54. Knauf, P. A. (1986) Anion transport in erythrocytes, in Membrane Transport Disorders, 2nd Edition (Andreoli, T. E., Schultz, S. G., Hoffman, J. F., and Fanestil, D. D., eds.), Plenum, New York, pp. 191–220.Google Scholar
  55. Knauf, P. A. and Brahm, J. (1986) Asymmetry of the human red blood cell anion transport system at 38°C. Biophys. J. 49 579a.CrossRefGoogle Scholar
  56. Knauf, P. A. and Brahm, J. (1989) Functional asymmetry of the anion exchange protein, capnophorin: Effects on substrate and inhibitor binding. Methods Enzymol. 173 432–453.PubMedCrossRefGoogle Scholar
  57. Knauf, P. A. and Mann, N. (1984) Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system. J. Gen. Physiol 83 703–725.PubMedCrossRefGoogle Scholar
  58. Knauf, P. A. and Mann, N. A. (1986) Location of the chloride self-inhibitory site of the human erythrocyte anion exchange system. Am. J. Physiol. 251 (Cell Physiol. 20), C1-C9.PubMedGoogle Scholar
  59. Knauf, P. A. and Spinelli, L. J. (1987) Asymmetry of the Cl-loaded forms of the human erythrocyte anion exchange protein, band 3. J. Gen. Physiol. 90 24a.Google Scholar
  60. Knauf, P. A. and Spinelli, L. J. (1988) Evidence that external NIP-taurine, NAP-taurine and iodide inhibit red blood cell anion exchange by binding to the same site on band 3. Biophys. J. 53 532a.Google Scholar
  61. Knauf, P. A., Fuhrmann, G. F., Rothstein, S., and Rothstein, A. (1977) The relationship between anion exchange and net anion flow across the human red blood cell membrane. J. Gen. Physiol. 69 363–386.PubMedCrossRefGoogle Scholar
  62. Knauf, P. A., Law, F.-Y., and Marchant, P. J. (1983a) Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism. J. Gen. Physiol. 81 95–126.PubMedCrossRefGoogle Scholar
  63. Knauf, P. A., Mann, N., and Kalwas, J. E. (1983b) Net chloride transport across the human erythrocyte membrane into low chloride media: Evidence against a slippage mechanism. Biophys. J. 41 164a.Google Scholar
  64. Knauf, P. A., Mann, N. A., and Penikas, J. (1985) Noncompetitive partial inhibition of human red cell chloride exchange by eosin (E) and eosin maleimide (EM). The Physiologist 28 294.Google Scholar
  65. Knauf, P. A., Law, F.-Y., Tarshis, T., and Furuya, W. (1984) Effects of the transport site conformation on the binding of external NAP-taurine to the human erythrocyte anion exchange system: Evidence for intrinsic asymmetry. J. Gen. Physiol. 83 683–701.PubMedCrossRefGoogle Scholar
  66. Knauf, P. A., Mann, N., Brahm, J., and Bjerrum, P. (1986a) Asymmetry in iodide affinities of external and internal-facing red cell anion transport sites. Fed. Proc. 45 1005.Google Scholar
  67. Knauf, P. A., Brahm, J., Bjerrum, P., and Mann, N. (1986b) Kinetic asymmetry of the human erythrocyte anion exchange system, in Proceedings 8th School on Biophysics of Membrane Transport Agricultural University of Wroclaw, Wroclaw, Poland (Kuczera, J. and Przestalski, S., eds.), vol. 1, pp. 157–169.Google Scholar
  68. Knauf, P. A., Mann, N. A., Kalwas, J. E., Spinelli, L. J., and Ramjeesingh, M. (1987a) Interactions of NIP-taurine, NAP-taurine, and Cl- with the human erythrocyte anion exchange system. Am. J. Physiol. 253 (Cell Physiol. 22), C652-C661.PubMedGoogle Scholar
  69. Knauf, P. A., Mann, N. A., and Spinelli, L. J. (1987b) Effects of transport site conformation and anion binding on the affinity of the human red blood cell anion transport protein for niflumic acid (NA). Biophys. J. 51 566a.Google Scholar
  70. Knauf, P. A., Spinelli, L. J., and Mann, N. A. (1987c) Affinities of flufenamic acid (FA) for different conformations of the human erythrocyte anion transport protein. Fed. Proc. 46 534.Google Scholar
  71. Knauf, P. A., Ship, S., Breuer, W., McCulloch, L., and Rothstein, A. (1978) Asymmetry of the red cell anion exchange system: different mechanisms of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) at the inside and outside of the membrane. J. Gen. Physiol. 72 607–630.PubMedCrossRefGoogle Scholar
  72. Läuger, P. (1987) Voltage dependence of sodium-calcium exchange: predictions from kinetic models. J. Membr. Biol. 99 1–11.PubMedCrossRefGoogle Scholar
  73. Läuger, P. and Jauch, P. (1986) Microscopic description of voltage effects on ion-driven cotransport systems. J. Membr. Biol. 91 275–284.PubMedCrossRefGoogle Scholar
  74. Low, P. S. (1978) Specific cation modulation of anion transport across the human erythrocyte membrane. Biochim. Biophys. Acta 514 264–273.PubMedCrossRefGoogle Scholar
  75. Macara, L G. and Cantley, L. C. (1983) The structure and function of band 3, in Cell Membranes: Methods and Reviews (Elson, E., Frazier, W., and Glaser, L., eds.), Plenum Press, New York, pp. 41–87.Google Scholar
  76. Macara, I. G., Kuo, S., and Cantley, L. C. (1983) Evidence that inhibitors of anion exchange induce a transmembrane conformational change in band 3. J. Biol. Chem. 258 1785–1792.PubMedGoogle Scholar
  77. Milanick, M. A. and Gunn, R. B. (1982) Proton-sulfate co-transport: Mechanism of H+ and sulfate addition to the chloride transporter of human red blood cells. J. Gen. Physiol. 79 87–113.PubMedCrossRefGoogle Scholar
  78. Milanick, M. A. and Gunn, R. B. (1986) Proton inhibition of chloride exchange: asynchrony of band 3 proton and anion transport sites? Am. J. Physiol. 250 (Cell Physiol. 19), C955-C969.PubMedGoogle Scholar
  79. Passow, H. (1986) Molecular aspects of the band 3 protein-mediated anion transport across the red blood cell membrane. Rev. Physiol. Biochem. Pharmacol. 103 61–203.PubMedGoogle Scholar
  80. Passow, H., Fasold, H., Gärtner, E. M., Legrum, B., Ruffing, W., and Zaki, L. (1980) Anion transport across the red blood cell membrane and the conformation of the protein in band 3. Ann. N.Y. Acad. Sci. 341 361–383.PubMedCrossRefGoogle Scholar
  81. Patlak, C. S. (1957) Contributions to the theory of active transport: II. The gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency, and measurement of energy expenditure. Bull. Math. Biophys. 19 209–235.CrossRefGoogle Scholar
  82. Rao, A., Martin, P., Reithmeier, R. A. F., and Cantley, L. C. (1979) Location of the stilbenedisulfonate binding site of the human erythrocyte anion-exchange system by resonance energy transfer. Biochemistry 18 4505–4516.PubMedCrossRefGoogle Scholar
  83. Restrepo, D., Kozody, D. J., and Knauf, P. A. (1988) pH homeostasis in promyelocytic leukemic HL60 cells. J. Gen. Physiol. 92 489–507.PubMedCrossRefGoogle Scholar
  84. Salhany, J. M. and Rauenbuehler, P. B. (1983) Kinetics and mechanism of erythrocyte anion exchange. J. Biol. Chem. 258 245–249.PubMedGoogle Scholar
  85. Schnell, K. F. and Besl, E. (1984) Concentration dependence of the unidirectional sulfate and phosphate flux in human red cell ghosts under selfex-change and under homoexchange conditions. Pflügers Arch. 402 197–206.PubMedCrossRefGoogle Scholar
  86. Schnell, K. F., Besl, E., and V. der Mosel, R. (1981) Phosphate transport in human RBC: Concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions. J. Membr. Biol.. 61 173–192.PubMedCrossRefGoogle Scholar
  87. Shami, Y., Carver, J., Ship, S., and Rothstein, A. (1977) Inhibition of Cl- binding to anion transport protein of the red blood cell by DIDS (4,4′-diisothiocyano-2,2′-stilbene disulfonic acid) measured by (35Cl)NMR. Biochim. Biophys. Res. Comm. 76 429–436.CrossRefGoogle Scholar
  88. Simchowitz, L. and Roos, A. (1985) Regulation of intracellular pH in human neutrophils. J. Gen. Physiol. 85 443–470.PubMedCrossRefGoogle Scholar
  89. Solomon, A. K. (1960) Red cell membrane structure and ion transport. J. Gen. Physiol. 43 (Suppl 2), 1–15.PubMedCrossRefGoogle Scholar
  90. Tanford, C. (1985) Simple model can explain self-inhibition of red cell anion exchange. Biophys. J. 47 15–20.PubMedCrossRefGoogle Scholar
  91. Wieth, J. O. and Bjerrum, P. J. (1983) Transport and modifier sites in cap-nophorin, the anion transport protein of the erythrocyte membrane, in Structure and Function of Membrane Proteins (Quagliariello, E., and Palmieri, F., eds.), Elsevier, Amsterdam, pp. 95–106.Google Scholar
  92. Wieth, J. O. and Bjerrum, P. J. (1982) Titration of transport and modifier sites in the red cell anion transport system. J. Gen. Physiol. 79 253–282.PubMedCrossRefGoogle Scholar
  93. Wieth, J. O. and Brahm, J. (1985) Cellular anion transport, in The Kidney: Physiology and Pathophysiology, Chapter 4 (Seldin, D. W. and Giebisch, G., eds.), Raven Press, New York, pp. 49–89.Google Scholar
  94. Wieth, J. O., Brahm, J., and Funder, J. (1980) Transport and interactions of anions and protons in the red blood cell membrane. Ann. N.Y. Acad. Sci. 341 394–418.PubMedCrossRefGoogle Scholar
  95. Wieth, J. O., Bjerrum, P. J., and Borders, Jr., C. L. (1982a) Irreversible inactivation of red cell chloride exchange with phenylglyoxal, an arginine-specific reagent. J. Gen. Physiol. 79 283–312.PubMedCrossRefGoogle Scholar
  96. Wieth, J. O., Bjerrum, P. J., Brahm, J., and Andersen, O. S. (1982b) The anion transport protein of the red cell membrane. A zipper mechanism of anion exchange. Tokai J. Exp. Clin. Med. 7 (Suppl), 91–101.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1989

Authors and Affiliations

  • Philip A. Knauf

There are no affiliations available

Personalised recommendations