Skip to main content

Need and Applications of Integrated Red Cell Models

  • Chapter
The Red Cell Membrane

Part of the book series: Contemporary Biomedicine ((CB,volume 10))

  • 56 Accesses

Abstract

The behavior of a cell within a tissue, organ, or organism is the result of direct or indirect interactions among diverse, functional molecular units. The methodological advances of the last few decades have provided much information on the identity and function of a large variety of cell components, and on the chemical structure and operation of isolated, purified, or reconstituted molecular entities. If the understanding of a cell, organ, and organismal physiology is ever to be derived from the integration of elemental functions into progressively higher order mathematical representations, a general approach to integrated modeling must first be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adair, G. S. (1929) Thermodynamic analysis of the observed osmotic pressures of protein salts in solutions of finite concentration. Proc. R. Soc. London A 126 16–24.

    Article  CAS  Google Scholar 

  • Bookchin, R. M., Lew, D. J., Balazs, T., Ueda, Y., and Lew, V. L. (1984) Dehydration and delayed proton equilibria of red cells suspended in isosmo-tic buffers. Implications for studies of sickle cells. J. Lab. Clin. Med. 104 855–866.

    PubMed  CAS  Google Scholar 

  • Brugnara, C. and Tosteson, D. C. (1987) Cell volume, K transport, and cell density in human erythrocytes. Am. J. Physiol. 252 C269–C276.

    PubMed  CAS  Google Scholar 

  • Brugnara, C., Kopin, A. S., Bunn, H. F., and Tosteson, D. C. (1984) Electrolyte composition and equilibrium in hemoglobin CC red blood cells. Trans. Assoc. Am. Phys. 97 104–112.

    PubMed  CAS  Google Scholar 

  • Brugnara, C, Kopin, A. S., Bunn, H. F., and Tosteson, D. C. (1985) Regulation of cation content and cell volume in erythrocytes from patients with homozygous hemoglobin C disease, J. Clin. Invest. 75 1608–1617.

    Article  PubMed  CAS  Google Scholar 

  • Cala, P. M. (1980) Volume regulation by Amphiuma red blood cells: The membrane potential and its implications regarding the nature of the ion-flux pathways. J. Gen. Physiol. 76 683–708.

    Article  PubMed  CAS  Google Scholar 

  • Cala, P. M. (1983a) Volume regulation by red blood cells: Mechanisms of ion transport. Mol. Physiol. 4 33–52.

    CAS  Google Scholar 

  • Cala, P. M. (1983b) Cell volume regulation by Amphiuma red blood cells. J. Gen. Physiol. 82 761–784.

    Article  PubMed  CAS  Google Scholar 

  • Canessa, M., Spalvins, A., and Nagel R. L. (1986) Volume-dependent and NEM-stimulated K+,Cl- transport is elevated in oxygenated SS, SC and CC human red cells. FEBS Lett. 200 197–202.

    Article  PubMed  CAS  Google Scholar 

  • Canessa, M., Fabry, M. E., Blumenfeld, N., and Nagel, R. L. (1987) Volume-stimulated, Cl- -dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J. Membr. Biol. 97 97–105.

    Article  PubMed  CAS  Google Scholar 

  • Cass, A. and Dalmark, M. (1973) Equilibrium dialysis of ions in nystatin-treated cells. Nature New Biol 244 47–49.

    Article  PubMed  CAS  Google Scholar 

  • Civan, M. M. and Bookman, R. J. (1982) Transepithelial Na+ transport and the intracellular fluids: A computer study. J. Membr. Biol. 65 63–80.

    Article  PubMed  CAS  Google Scholar 

  • Clark, M. R., Ungar, R. C., and Shohet, S. B. (1978) Monovalent cation composition and ATP and lipid content of irreversibly sickled cells. Blood 51 1169–1178.

    PubMed  CAS  Google Scholar 

  • Clarkson, D. R. and Moore, E. M. (1976) Reticulocyte size in nutritional anemias. Blood 48 669–677.

    PubMed  CAS  Google Scholar 

  • Dalmark, M. (1975) Chloride and water distribution in human red cells. J. Physiol. 250 65–84.

    PubMed  CAS  Google Scholar 

  • Deuticke, B., Duhm, J., and Dierkesmann, R. (1971) Maximal elevation of 2,3-diphosphoglycerate concentrations in human erythrocytes: Influence on glycolytic metabolism and intracellular pH. Pflugers Arch. 326 15–34.

    Article  PubMed  CAS  Google Scholar 

  • Dick, D. A. T. (1959) Osmotic properties of living cells. Int. Rev. Cytol. 8 387–448.

    Article  PubMed  CAS  Google Scholar 

  • Duhm, J. (1976) Influence of 2,3-diphosphoglycerate on the buffering properties of human blood. Role of the red cell membrane. Pflugers Arch. 363 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Dunham, P. B. and Ellory, J. C. (1981) Passive potassium transport in low potassium sheep red cells: Dependence upon cell volume and chloride. J. Physiol. 318 511–530.

    PubMed  CAS  Google Scholar 

  • Dunham, P. B., Stewart, G. W., and Ellory, J. C. (1980) Chloride-activated passive potassium transport in human erythrocytes. Proc. Nat. Acad. Sci. USA 77 1711–1715.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons, E. J. and Sendroy, J., Jr. (1961) Distribution of electrolytes in human blood. J. Biol. Chem. 236 1595–1601.

    CAS  Google Scholar 

  • Fortes, P. A. G. (1977) Anion movements in red cells. Membrane Transport in Red Cells (Ellory, J. C. and Lew, V. L., eds.), Academic, New York, pp. 175–195.

    Google Scholar 

  • Freedman, J. C. and Hoffman, J. F. (1979) Ionic and osmotic equilibria of human red blood cells treated with nystatin. J. Gen. Physiol. 74 157–185.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, C. J., Bookchin, R. M., Ortiz, O. E., and Lew, V. L. (1987) K-permeabilized human red cells lose an alkaline, hypertonic fluid containing an excess K over diffusible anions. J. Membr. Biol. 96 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Funder, J. and Wieth, J. O. (1966) Chloride and hydrogen ion distribution between human red cells and plasma. Acta Physiol. Scand. 68 234–235.

    Article  CAS  Google Scholar 

  • Gardos, G. (1958) The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta 30 653–654.

    Article  PubMed  CAS  Google Scholar 

  • Glader, B. E., Fortier, N., Albala, M. M., and Nathan, D. G. (1974) Congenital hemolytic anemia associated with dehydrated erythrocytes and increased potassium loss. N. Eng. J. Med. 291 491–496.

    Article  CAS  Google Scholar 

  • Glader, B. E., Lux, S. E., Muller-Soyano, A., Platt, O. S., Propper, R. D., and Nathan, D. G. (1978) Energy reserve and cation composition of irreversibly sickled cells in vivo. Br. J. Haematol. 40 527–532.

    Article  PubMed  CAS  Google Scholar 

  • Glynn, I. M., and Warner, A. E. (1972) Nature of the calcium dependent potassium leak induced by (+)-propranolol, and its possible relevance to the drug’s antiarrhythmic effect. Br. J. Pharmacol. 44 271–278.

    PubMed  CAS  Google Scholar 

  • Haas, M., Schmidt, W. F., III, and McManus, T. J. (1982) Catecholamine- stimulated ion transport in duck red cells. J. Gen. Physiol. 80 125–147.

    Article  PubMed  CAS  Google Scholar 

  • Hall, A. C. and Ellory, J. C. (1986) Evidence for the presence of volume-sensitive KCl transport in “young” human red cells. Biochim. Biophys. Acta 858 317–320.

    Article  PubMed  CAS  Google Scholar 

  • Harris, E. J. and Maizels, M. (1952) Distribution of ions in suspensions of human erythrocytes. J. Physiol. 118 40–53.

    PubMed  CAS  Google Scholar 

  • Hill, A. V. (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curve. J. Physiol. 40 iv.

    Google Scholar 

  • Hladky, S. B. and Rink, T. J. (1977) pH equilibrium across the red cell membrane. Membrane Transport in Red Cells (Ellory, J. C. and Lew, V. L., eds.), Academic, London, pp. 115–135.

    Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F. (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loglio. J. Physiol. 116 449–472.

    PubMed  CAS  Google Scholar 

  • Hunter, M. J. (1977) Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J. Physiol. 268 35–49.

    PubMed  CAS  Google Scholar 

  • Jacobs, M. H. and Stewart, D. R. (1942) The role of carbonic anhydrase in certain ionic exchanges involving the erythrocyte. J. Gen. Physiol. 25 539–552.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, M. H. and Stewart, D. R. (1947) Osmotic properties of the erythrocyte. XII. Eonic and osmotic equilibria with a complex external solution. J. Cell. Comp. Physiol. 30 79–103.

    Article  CAS  Google Scholar 

  • Kaperonis, A. A., Bertles, J. F., and Chien, S. (1979) Variability of intracellular pH within individual populations of SS and AA erythrocytes. Br. J. Haemal. 43 391–400.

    Article  CAS  Google Scholar 

  • Killman, S -A. (1964) On the size of normal human reticulocytes. Acta Med. Scand. 176 529–533.

    Article  Google Scholar 

  • Larsen, E. H. and Rasmussen, B. E. (1985) A mathematical model of amphibian skin epithelium with two types of transporting cellular units. Pflugers Arch. 405(Suppl 1) S50–S58.

    Article  PubMed  Google Scholar 

  • Lauf, P. K. (1983) Thiol-dependent passive K/Cl transport in sheep red cells: II. Loss of Cl- and N-ethylmaleimide sensitivity in maturing high K+ cells. J. Membr. Biol. 73 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Lauf, P. K. (1985a) K+:Cl- cotransport: Sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell. J. Membr. Biol. 88 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Lauf, P. K. (1985b) Passive K+ -Cl- fluxes in low-K+ sheep erythrocytes: modulation by A23187 and bivalent cations. Am. J. Physiol. 249 C271–C278.

    PubMed  CAS  Google Scholar 

  • Lauf, P. K. and Bauer, J. (1987) Direct evidence for chloride-dependent volume reduction in macrocytic sheep reticulocytes. Biochem. Biophys. Res. Comm. 144 849–855.

    Article  PubMed  CAS  Google Scholar 

  • Lauf, P. K. and Theg, B. E. (1980) A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes. Biochem. Biophys. Res. Comm. 92 1422–1428.

    Article  PubMed  CAS  Google Scholar 

  • Lauf, P. K., Adragna, N. C., and Garay, R. P. (1984) Activation by N-eth- ylmaleimide of a latent K+ -Cl- flux in human red blood cells. Am. J. Physiol. 246 C385–C390.

    PubMed  CAS  Google Scholar 

  • Lew, V. L., and Beauge, L. A. (1979) Passive cation fluxes in the red cell membranes. Transport across Biological Membranes, vol. II., (Giebisch, G., Tosteson, D. C, and Ussing, H. H., eds.), Springer-Verlag, Berlin, pp. 85–115.

    Google Scholar 

  • Lew, V. L. and Bookchin, R. M. (1986) Volume, pH and ion content regulation in human red cells: analysis of transient behavior with an intregated model. J. Membr. Biol. 92 57–74.

    Article  PubMed  CAS  Google Scholar 

  • Lew, V. L. and Garcia-Sancho, J. (1985) Use of the ionophore A23187 to measure and control cytoplasmic Ca2+ levels in intact red cells. Cell Calcium 6 15–23.

    Article  PubMed  CAS  Google Scholar 

  • Lew, V. L., Ferreira, H. G., and Moura, T. (1979) The behavior of transporting epithelial cells. I. Computer analysis of a basic model. Proc. R. Soc. London B 206 53–83.

    Article  CAS  Google Scholar 

  • Maizels, M. and Paterson, J. L. H. (1937) CCVII. Base binding in erythrocytes. Biochem. J. 31 1642–1656.

    PubMed  CAS  Google Scholar 

  • McConaghey, P. D. and Maizels, M. (1961) The osmotic coefficients of haemoglobin in red cells under varying conditions. J. Physiol. 155 28–45.

    PubMed  CAS  Google Scholar 

  • Rapoport, S. M. (1986) The Reticulocyte CRC Press, Boca Raton, p. 35.

    Google Scholar 

  • Solomon, A. K., Toon, M. R., and Dix, J. A. (1986) Osmotic properties of human red cells. J. Membr. Biol. 91 259–273.

    Article  PubMed  CAS  Google Scholar 

  • Tosteson, D. C. (1964) Regulation of cell volume by sodium and potassium transport. The Cellular Functions of Membrane Transport (Hoffman, J. F., ed.), Prentice Hall, Englewood Cliffs, pp. 3–22.

    Google Scholar 

  • Tosteson, D. C. and Hoffman, J. F. (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44 169–194.

    Article  PubMed  CAS  Google Scholar 

  • Van Slyke, D. D., Wu, H., and McLean, F. C. (1923) Studies of gas and electrolyte equilibria in the blood. V. Factors controlling the electrolyte and water distribution in the blood. J. Biol. Chem. 56 765–849.

    Google Scholar 

  • Warburg, E. J. (1922) XXII. Studies on carbonic acid compounds and hydrogen ion activities in blood and salt solutions. A contribution to the theory of the equation of Lawrence J. Henderson and K. A. Hasselbalch. Biochem. J. 16 153–340.

    CAS  Google Scholar 

  • Werner, A. and Heinrich, R. (1985) A kinetic model for the interaction of energy metabolism and osmotic states of human erythrocytes. Analysis of the stationary “in vivo” state and time dependent variations under blood preservation conditions. Biomed. Biochim. Acta 44 185–212.

    PubMed  CAS  Google Scholar 

  • Wiley, J. S. and Shaller, C. C. (1977) Selective loss of calcium permeability on maturation of reticulocytes. J. Clin. Invest. 59 1113–1119.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc.

About this chapter

Cite this chapter

Lew, V.L., Freeman, C.J., Ortiz, O.E., Bookchin, R.M. (1989). Need and Applications of Integrated Red Cell Models. In: Raess, B.U., Tunnicliff, G. (eds) The Red Cell Membrane. Contemporary Biomedicine, vol 10. Humana Press. https://doi.org/10.1007/978-1-4612-4500-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4500-1_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8848-0

  • Online ISBN: 978-1-4612-4500-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics