Skip to main content

Pharmacological Modification of the Red Cell Ca2+-Pump

  • Chapter
Book cover The Red Cell Membrane

Part of the book series: Contemporary Biomedicine ((CB,volume 10))

Abstract

When studying drugs that affect Ca2+ homeostasis, either directly or indirectly, it is important to consider all factors in the equation determining a precisely controlled level of intracellular Ca2+ activity. One such factor in this equation is the highly regulated, intricately controlled plasma membrane (Ca2++Mg2+)-ATPase and Ca2+ extrusion mechanism henceforth referred to as the Ca2+-pump. Because of its prominent position in the plasma membrane of all mammalian and perhaps all eukaryotic cells, it is legitimate to assume that this transport mechanism is a potential target for all kinds of drugs and certainly for those that are known to alter the calcium message on the inside of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamczyk-Engelmann, P. and Gietzen, K. (1984) Histamine release and calmodulin antagonism are two distinct properties of compound 48/80. Cell Calcium 5 311.

    Article  Google Scholar 

  • Agre, P., Virshup, D., and Bennett, V. (1984) Bepridil and cetiedil. Vasodilators which inhibit Ca2+-dependent calmodulin interactions with erythrocyte membranes. J. Clin. Invest. 74 812–820.

    Article  PubMed  CAS  Google Scholar 

  • Al-Jobore, A. and Roufogalis, B. D. (1981) Phospholipid and calmodulin activation of solubilized calcium-transport ATPase from human erythrocytes: regulation by magnesium. Can. J. Biochem. 59 880–888.

    Article  PubMed  CAS  Google Scholar 

  • Allen, B. G., Katz, S., and Roufogalis, B. D. (1987) Effects of Ca2+, Mg2+ and calmodulin on the formation and decomposition of the phosphorylated intermediate of the erythrocyte Ca2+-stimulated ATPase. Biochem. J. 244 617–623.

    PubMed  CAS  Google Scholar 

  • Argaman, A. and Shoshan-Barmatz, V. (1988) Dicyclohexylcarbodiimide interaction with sarcoplasmic reticulum. Inhibition of Ca2+ efflux. J. Biol. Chem. 263 6315–6321.

    PubMed  CAS  Google Scholar 

  • Au, K. S. (1987) Activation of erythrocyte membrane Ca2+-ATPase by calpain. Biochim. Biophys. Acta 905 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Barrabin, H., Garrahan, P. J., and Rega, A. (1980) Vanadate inhibition of the Ca2+-ATPase from human red cell membranes. Biochim. Biophys. Acta 600 796–804.

    Article  PubMed  CAS  Google Scholar 

  • Bjerrum, P. J. (1979) Hemoglobin depleted human erythrocyte ghosts. J. Membr. Biol. 48 43–67.

    Article  PubMed  CAS  Google Scholar 

  • Bond, G. H. and Clough, D. L. (1973) A soluble protein activator of (Ca2+ + Mg2+)-dependent ATPase in human red cell membranes. Biochim. Biophys. Acta 323 592–599.

    Article  PubMed  CAS  Google Scholar 

  • Bond, G. H. and Hudgins, P. (1980) Inhibition of the red cell Ca2+ATPase by vanadate. Biochim. Biophys. Acta 600 781–790.

    Article  PubMed  CAS  Google Scholar 

  • Carafoli, E., Zurini, M, Niggli, V., and Krebs, J. (1982) The calcium-transporting ATPase of erythrocytes. Ann. N.Y. Acad. Sci. 402 304–328.

    Article  PubMed  CAS  Google Scholar 

  • Caride, A. J., Rega, A. F., and Garrahan, P. J. (1986) The reaction of Mg2+ with the Ca2+-ATPase from human red cell membranes and its modification by Ca2+. Biochim. Biophys. Acta 863 165–177.

    Article  PubMed  CAS  Google Scholar 

  • Constante, G., Sand, G., Connart, D., and Glinoer, D. (1986) In vitro effects of thyroid hormones on red blood cell Ca++-dependent ATPase activity. J. Endocrinol. Invest. 9 15–20.

    Google Scholar 

  • Cox, J. A. (1986) Calcium-calmodulin interaction and cellular function. J. Cardiovasc. Pharmacol. 8 S48-S51.

    Article  PubMed  Google Scholar 

  • Cox, J. A., Comte, M., Fitton, J. F., and DeGrado, W. F. (1985) The interaction of calmodulin with amphiphilic peptides. J. Biol. Chem. 260 2527–2537.

    PubMed  CAS  Google Scholar 

  • Csaky, T. Z. (1965) Transport through biological membranes. Ann. Rev. Physiol. 27 415–450.

    Article  CAS  Google Scholar 

  • Davis, P. J. and Blas, S. D. (1981) In vitro stimulation of human red blood cell Ca2+-ATPase by thyroid hormone. Biochem. Biophys. Res. Commun. 99 1073–1080.

    Article  PubMed  CAS  Google Scholar 

  • Davis, P. W. and Vincenzi, F. F. (1971) Ca-ATPase activation and NaK-ATPase inhibition as a function of calcium concentration in human red cell membranes. Life Sci. 10 401–406.

    Article  CAS  Google Scholar 

  • Davis, F. B., Davis, P. J., and Blas, S. D. (1983) Role of calmodulin in thyroid hormone stimulation in vitro of human erythrocyte Ca2+-ATPase activity. J. Clin. Invest. 71 579–586.

    Article  PubMed  CAS  Google Scholar 

  • Davis, F. B., Kite, J. H., Davis, P. J., and Blas, S. D. (1982) Thyroid hormone stimulation in vitro of red blood cell Ca2+-ATPase activity: interspecies variation. Endocrinology 110 297–302.

    Article  PubMed  CAS  Google Scholar 

  • DiJulio, D. and Vincenzi, F. F. (1986) Evaluation of trifluoperazine and compound 48/80 as selective antagonists of calmodulin activation of the Ca2+-pump ATPase. Proc. West. Pharmacol. Soc. 29 445–446.

    CAS  Google Scholar 

  • Dodge, J. T., Mitchell, C, and Hanahan, D. J. (1963) The preparation and chemical characteristics of hemolysate-free ghosts of human erythrocytes. Arch. Biochem. Biophys. 100 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Dube, M. P., Davis, F. B., Davis, P. J., and Blas, S. D. (1987) Bepridil and cetiedil reversibly inhibit thyroid hormone stimulation in vitro of human red cell Ca2+-ATPase activity. Mol. Endocrinol. 1 168–171.

    Article  PubMed  CAS  Google Scholar 

  • Enyedi, A., Flura, M., Sarkadi, B., Gardos, G., and Carafoli, E. (1987) The maximal velocity and the calcium affinity of the red cell calcium pump may be regulated independently. J. Biol. Chem. 262 6425–6430.

    PubMed  CAS  Google Scholar 

  • Farrance, M. L. and Vincenzi, F. F. (1977a) Enhancement of (Ca2+ + Mg2+)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer. I. General properties of variously perpared membranes and the mechanism of the isosmotic imidazole effect. Biochim. Biophys. Acta 471 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Farrance, M. L. and Vincenzi, F. F. (1977b) Enhancement of (Ca2+ + Mg2+)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer. II. Dependence on calcium and a cytoplasmic activator. Biochim. Biophys. Acta 471 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Filoteo, A. G., Gorski, J. P., and Penniston, J. T. (1987) The ATP-binding site of the erythrocyte membrane Ca2+ pump. Amino acid sequence of the fluorescein isothiocyanate-reactive region. J. Biol. Chem. 262 6526–6530.

    PubMed  CAS  Google Scholar 

  • Gárdos, G., Szász, I., and Sarkadi, B. (1977) Effect of intracellular calcium on the cation transport processes in human red cells. Acta Biol. Med. Germ. 36 823–829.

    PubMed  Google Scholar 

  • Garrahan, P. J. (1986) Inhibitors of the Ca2+ pump, in The Ca 2+ Pump of Plasma Membranes (Rega, A. F. and Garrahan, P. J., eds.), CRC Press, Boca Raton, pp. 153–164.

    Google Scholar 

  • Gietzen, K., Mansard, A., and Bader, H. (1980) Inhibition of human erythrocyte Ca++-transport ATPase by phenothiazines and butyrophenones. Biochem. Biophys. Res. Commun. 94 674–681.

    Article  PubMed  CAS  Google Scholar 

  • Gietzen, K., Sadorf, I., and Bader, H. (1982) A model for the regulation of calmodulin-dependent enzymes erythrocyte Ca2+-transport ATPase and brain Phosphodiesterase by activators and inhibitors. Biochem. J. 207 541 – 548.

    PubMed  CAS  Google Scholar 

  • Gietzen, K., Adamczyk-Engelmann, P., Wüthrich, A., Konstantinova, A., and Bader, H. (1983a) Compound 48/80 is a selective and powerful inhibitor of calmodulin regulated functions. Biochim. Biopys. Acta 736 109–118.

    Article  CAS  Google Scholar 

  • Gietzen, K., Sanchez-Delgado, E., and Bader, H. (1983b) Compound 48/80: a powerful and specific inhibitor of calmodulin-dependent Ca2+-transport ATPase. IRCS Med. Sci. 11 12–13.

    CAS  Google Scholar 

  • Gopinath, R. M. and Vincenzi, F. F. (1977) Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of (Ca2++Mg2+)-ATPase activity. Biochem. Biophys. Res. Commun. 77 1203–1209.

    Article  PubMed  CAS  Google Scholar 

  • Graf, E. and Penniston, J. T. (1981) CaATP: The substrate, at low ATP concentrations, of Ca2+-ATPase from human erythrocyte membranes. J. Biol. Chem. 256 1587–1592.

    PubMed  CAS  Google Scholar 

  • Hebbel, R. P., Shalev, O., Foker, W., and Rank, B. H. (1986) Inhibition of erythrocyte Ca2+-ATPase by activated oxygen through thiol- and lipid-dependent mechanisms. Biochim. Biophys. Acta 862 8–16.

    Article  PubMed  CAS  Google Scholar 

  • Hidaka, H. and Tanaka, T. (1983) Naphthalenesulfonamides as calmodulin antagonists. Methods Enzymol. 102 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, T. R., Larsen, F. L., and Vincenzi, F. F. (1978) Plasma membrane Ca2+ transport: stimulation by soluble proteins. Biochem. Biophys. Res. Commun. 81 455–461.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, T. R., Raess, B. U., and Vincenzi, F. F. (1981) Plasma membrane Ca2+ transport: antagonism by several potential inhibitors. J. Membrane Biol. 58 57–65.

    Article  CAS  Google Scholar 

  • Iglesias, R. O. and Rega, A. F. (1987) Gramicidin S inhibition of the Ca2+-ATPase of human red blood cells. Biochim. Biophys. Acta 905 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, H., Tanaka, T, Mitani, Y., and Hidaka, H. (1986) The binding of the calcium channel blocker, bepridil, to calmodulin. Biochem. Pharmacol. 35 217–220.

    Article  PubMed  CAS  Google Scholar 

  • Jarrett, H. W. (1984) The synthesis and reaction of a specific affinity label for the hydrophobic drug-binding domains of calmodulin. J. Biol. Chem. 259 10136–10144.

    PubMed  CAS  Google Scholar 

  • Jarrett, H. W. (1986) Response of three enzymes to oleic acid, trypsin and calmodulin chemically modified with a reactive phenothiazine. J. Biol. Chem. 261 4967–4972.

    PubMed  CAS  Google Scholar 

  • Jarrett, H. W. and Penniston, J. T. (1977) Partial purification of the (Ca2+ + Mg2+)-ATPase activator from human erythrocytes: its similarity to the activator of 3′: 5′-cyclic nucleotide Phosphodiesterase. Biochem. Biophys. Res. Commun. 77 1210–1216.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J. D. (1984) A calmodulin-like Ca2+ receptor in the Ca2+ channel. Biophys. J. 45 134–136.

    Article  PubMed  CAS  Google Scholar 

  • Karlish, S. J. D. (1980) Characterization of conformational changes in (Na, K) ATPase labeled with fluorescein at the active site. J. Bioenerg. Biomembr. 12 111–136.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. C. and Raess, B. U. (1988) Verapamil, diltiazem and nifedipine interactions with calmodulin stimulated (Ca2+ + Mg2+)-ATPase. Biochem. Pharmacol. 37 917–920.

    Article  PubMed  CAS  Google Scholar 

  • Kratje, R. B., Garrahan, P. J., and Rega, A. F. (1985) Two modes of inhibition of the Ca2+ pump in red cells by Ca2+. Biochim. Biophys. Acta 816 365–378.

    Article  PubMed  CAS  Google Scholar 

  • Krebs, J., Buerkler, J., Guerini, D., Brunner, J., and Carafoli, E. (1984) 3-(Trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine, a hydrophobic, photoreactive probe, labels calmodulin and calmodulin fragments in a Ca2+ — dependent way. Biochemistry 23 400–403.

    Article  PubMed  CAS  Google Scholar 

  • Lamers, J. M. J., Cysouw, K. J., and Verdouw, P. D. (1985) Slow calcium channel blockers and calmodulin. Effect of felodipine, nifedipine, prenylamine and bepridil on cardiac sarcolemmal calcium pumping ATPase. Biochem. Pharmacol. 34 3837–3843.

    Article  PubMed  CAS  Google Scholar 

  • LaPorte, D. C., Wierman, B. M., and Storm, D. R. (1980) Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry 19 3814–3819.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, F. L. and Vincenzi, F. F. (1979) Calcium transport across the plasma membrane: stimulation by calmodulin. Science 204 306–309.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, F. L., Raess, B. U., Hinds, T. R., and Vincenzi, F. F. (1978) Modulator binding protein antagonizes activation of (Ca2+ + Mg2+)-ATPase and Ca2+ transport of red blood cell membranes. J. Supramolec. Struct. 9 269–274.

    Article  CAS  Google Scholar 

  • Levin, R. M. and Weiss, B. (1977) Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide Phosphodiesterase. Mol. Pharmacol. 13 690–697.

    PubMed  CAS  Google Scholar 

  • Levin, R. M. and Weiss, B. (1978) Selective inhibition of an activatable ATPase by trifluoperazine. The Pharmacologist 20 195.

    Google Scholar 

  • Levin, R. M. and Weiss, B. (1979) Selective binding of antipsychotics and other psychoactive agents to the calcium-dependent activator of cyclic nucleotide Phosphodiesterase. J. Pharmacol. Exp. Ther. 208 454–459.

    PubMed  CAS  Google Scholar 

  • Lew, V. and Seymour, C. A. (1982) Preparation of sealed vesicles and transport measurements. Cation transport in one-step inside-out-vesicles from red cell membranes, in Techniques in Lipid and Membrane Biochemistry B415, Elsevier, Amsterdam, pp. 1–13.

    Google Scholar 

  • Luterbacher, S. (1982) Die Teilreaktion der ATP-Spaltung durch das isolierte Protein der Ca2+-Pumpe aus der Erythrozytenmembran. Dissertation, University of Bern, Switzerland.

    Google Scholar 

  • Luterbacher, S. and Schatzmann, H. J. (1983) The site of action of La3+ in the reaction cycle of the human red cell membrane Ca2+-pump ATPase. Experientia 39 311–312.

    Article  PubMed  CAS  Google Scholar 

  • Macintyre, J. D. (1982) Properties and uses of human erythrocyte membrane vesicles, in Red Cell Membranes: A Methodological Approach (Ellory, J. C. and Young, J. D., eds.), Academic Press, London, pp. 199–217.

    Google Scholar 

  • Macintyre, J. D. and Green, J. W. (1978) Stimulation of calcium transport in inside-out vesicles of human erythrocyte membranes by a soluble cytoplasmic activator. Biochim. Biophys. Acta 510 373–377.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, H. H. (1899) Zur Theorie der Alkoholnarkose. Erste Mitteilung. Arch. Exp. Path. Pharmak. 42 109–118.

    Article  Google Scholar 

  • Meyer, H. H. and Hemmi, H. (1935) Beiträge zur Theorie der Narkose. III. Biochem. Z. 277, 39–54.

    CAS  Google Scholar 

  • Minocherhomjee, A. and Roufogalis, B. D. (1982) Selective antagonism of the Ca2+ transport ATPase of the red cell membrane by N-(4-azido-2-nitrophenyl)-2-amino-ethylsulfonate (NAP-taurine). J. Biol. Chem. 257 5426–5430.

    PubMed  CAS  Google Scholar 

  • Minocherhomjee, A. M. and Roufogalis, B. D. (1984) Antagonism of calmodulin and Phosphodiesterase by nifedipine and related calcium entry blockers. Cell Calcium 5 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Muallem, S. and Karlish, S. J. D. (1983) Catalytic and regulatory ATP-binding sites of the red cell Ca2+ pump studied by irreversible modification with fluorescein isothiocyanate. J. Biol. Chem. 258 169–175.

    PubMed  CAS  Google Scholar 

  • Mugica, H., Rega, A. F., and Garrahan, P. J. (1984) The inhibition of the calcium dependent ATPase from human red cells by erythrosin B. Acta Physiol. Pharmacol. Lat. 34 163.

    CAS  Google Scholar 

  • Niggli, V., Adunyah, E. S., and Carafoli, E. (1981a) Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+-ATPase. J. Biol. Chem. 256 8588–8592.

    PubMed  CAS  Google Scholar 

  • Niggli, V., Adunyah, E. S., Penniston, J. T., and Carafoli, E. (1981b) Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J. Biol. Chem. 256 395–401.

    PubMed  CAS  Google Scholar 

  • Niggli, V., Sigel, E., and Carafoli, E. (1982) Inhibition of the purified and reconstituted calcium pump of erythrocytes by μM levels of DIDS and NAP-taurine. FEBS Lett. 138 164–166.

    Article  PubMed  CAS  Google Scholar 

  • Overton, E. (1901) Studien über die Narkose, zugleich ein Beitrag zur allgemeinin Pharmakologie. Fischer, Jena.

    Google Scholar 

  • Pick, U. and Karlish, S. J. D. (1980) Indications for an oligomeric structure and for conformational changes in sarcoplasmic reticulum Ca2+-ATPase labelled selectively with fluorescin. Biochim. Biophys. Acta 626 255–261.

    PubMed  CAS  Google Scholar 

  • Popescu, L. M., Hinescu, M. E., Spiru, L., Popescu, M., and Diculescu, I. (1987) The effect of procaine on Ca2+-Mg2+-ATPase of erythrocyte membrane. Rev. Roum. Biochim. 24 119–124.

    CAS  Google Scholar 

  • Raess, B. U. (1985) Inhibition of human erythrocyte (Ca2+ + Mg2+)-ATPase and Ca2+-transport by phenylglyoxal. Proc. Fed. Amer. Soc. Exp. Biol. 44 1595.

    Google Scholar 

  • Raess, B. U. and Gersten, M. H. (1987) Calmodulin-stimulated plasma membrane (Ca2+ + Mg2+)-ATPase: inhibition by calcium channel entry blockers. Biochem. Pharmacol. 36 2455–2459.

    Article  PubMed  CAS  Google Scholar 

  • Raess, B. U. and Vincenzi, F. F. (1980a) A semi-automated method for determination of multiple membrane ATPase activities. J. Pharmacol. Methods. 4 273–283.

    Article  PubMed  CAS  Google Scholar 

  • Raess, B. U. and Vincenzi, F. F. (1980b) Calmodulin activation of red blood cell (Ca2+ + Mg2+)-ATPase and its antagonism by phenothiazines. Mol. Pharmacol. 18 253–258.

    PubMed  CAS  Google Scholar 

  • Raess, B. U., Record, D. M., and Tunnicliff, G. (1985) Interaction of phenylglyoxal with the human erythrocyte (Ca2+ + Mg2+)-ATPase. Evidence for the presence of an essential arginyl residue. Mol. Pharmacol. 27 444–450.

    PubMed  CAS  Google Scholar 

  • Richards, D. E. and Eisner, D. A. (1982) Preparation and use of resealed red cell ghosts, in Red Cell Membranes — A Methodological Approach (Ellory, J. D. and Young, J. D., eds.), Academic Press, London, pp. 165–177.

    Google Scholar 

  • Richards, D. E., Rega, A. F. and Garrahan, P. J. (1977) ATPase and Phosphatase activities from human red cell membranes. I. The effects of N-ethylmaleimide J. Membr. Biol. 35 113–124.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, J. P. F. C. and Schatzmann, H. J. (1982) Trypsin activation of the red cell Ca2+-pump ATPase is calcium-sensitive. Cell Calcium 3 583–590.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, J. P. F. C, Garrahan, P. J., and Rega, A. F. (1981) Vanadate inhibition of active Ca2+ transport across human red cell membranes. Biochim. Biophys Acta 648 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, J. P. F. C., Garrahan, P. J., and Rega, A. F. (1987) Differential effects of compounds 48/80 on the ATPase and Phosphatase activities of the Ca2+ pump of red cells. Biochim. Biophys. Acta 902 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, J. P. F. C., Rega, A. F., and Garragan, P. J. (1985) Compound 48/80 and calmodulin modify the interaction of ATP with the (Ca2+ + Mg2+)-ATPase of red cell membranes. Biochim. Biophys. Acta 816 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Roufogalis, B. D. (1979) Regulation of calcium translocation across the red blood cell membrane. Can. J. Physiol. Pharmacol. 57 1331–1349.

    Article  CAS  Google Scholar 

  • Roufogalis, B. D. (1981) Phenothiazine antagonism of calmodulin: a structurally-nonspecific interaction. Biochem. Biophys. Res. Commun. 98 607–613.

    Article  PubMed  CAS  Google Scholar 

  • Sarkadi, B., Szász, I., Gerloczy, A., and Gárdos, G. (1977) Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells. Biochim. Biophys. Acta 464 93–107.

    Article  PubMed  CAS  Google Scholar 

  • Sarkadi, B., Enyedi, A., Foldes-Papp, Z., and Gárdos, G. (1986) Molecular characterization of the in situ red cell membrane calcium pump by limited proteolysis. J. Biol. Chem. 261 9552–9557.

    PubMed  CAS  Google Scholar 

  • Sarkadi, B., Enyedi, A., and Gárdos, G. (1987) Conformational changes of the in situ red cell membrane calcium pump affect its proteolysis. Biochim. Biophys. Acta 899 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Scharff, O. and Foder, B. (1984) Effect of trifluoperazine, compound 48/80, TMB-8 and Verapamil on the rate of calmodulin binding to erythrocyte Ca2+-ATPase. Biochim. Biophys. Acta 772 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Schatzmann, H. J. (1970) Transmembrane calcium movements in resealed human red cells, in Calcium and Cellular Function. (Cuthbert, A. W., ed.), Martin’s Press, New York, pp. 85–95.

    Google Scholar 

  • Schatzmann, H. J. (1975a) Active calcium transport across the plasma membrane of erythrocytes, in Calcium Transport in Contraction and Secretion. (Carafoli, E., Clementi, F., Drabikowski, W., and Margreth, A., eds.) North-Holland Publishing Company, Amsterdam, pp. 45–49.

    Google Scholar 

  • Schatzamnn, H. J. (1975b) Active calcium transport and Ca2+-activated ATPase in human red cells, in Current Topics in Membranes and Transport (Bronner, F. and Kleinzeller, A., eds.), Academic Press, New York and London, pp. 125–161.

    Google Scholar 

  • Schatzmann, H. J. (1977) Role of magnesium in the (Ca2+ + Mg2+)-stimulated membrane ATPase of human red blood cells. J. Membrane Biol. 35 149–158.

    Article  CAS  Google Scholar 

  • Schatzmann, H. J. (1982) The plasma membrane calcium pump of erythrocytes and other animal cells, in Membrane Transport of Calcium (Carafoli, E., ed.), Academic Press, New York, pp. 41–108.

    Google Scholar 

  • Schatzmann, H. J. (1983) The red cell calcium pump. Ann. Rev. Physiol. 45 303–312.

    Article  CAS  Google Scholar 

  • Schatzmann, H. J. and Rossi, G. L. (1971) (Ca2+ + Mg2+)-activated membrane ATPase in human red cells and their possible relations to certain transport. Biochim. Biophys. Acta 241 379–392.

    Article  PubMed  CAS  Google Scholar 

  • Schatzmann, H. J. and Tschabold, M. (1971) The lanthanides Ho3+ and Pr3+ as inhibitors of calcium transport in human red cells. Experientia 27 59–61.

    Article  PubMed  CAS  Google Scholar 

  • Schatzmann, H. J. and Vincenzi, F. F. (1969) Calcium movements across the membrane of human red cells. J. Physiol. 201 369–395.

    PubMed  CAS  Google Scholar 

  • Schatzmann, H. J., Luterbacher, S., Stieger, J., and Wüthrich, A. (1986) Red blood cell calcium pump and its inhibition by vanadate and lanthanum. J. Cardiovasc. Pharmacol. 8 S33-S37.

    Article  PubMed  Google Scholar 

  • Schwoch, G. and Passow, H. (1973) Preparation and properties of human erythrocyte ghosts. Mol. Cell Biochem. 2 197–218.

    Article  PubMed  CAS  Google Scholar 

  • Scofano, H. M., Barrabin, H., Lewis, D., and Inesi, G. (1985) Specific dicyclohexylcarbodiimide inhibition of the E-P + H2O = E + Pi reaction and ATP = Pi exchange in sarcoplasmic reticulum adenosinetriphos-phatase. Biochemistry 24 1025–1029.

    Article  PubMed  CAS  Google Scholar 

  • Shalev, O., Leida, M. N., Hebbel, R. P., Jacob, H. S., and Eaton, J. W. (1981) Abnormal erythrocyte calcium homeostasis in oxidant-induced hemolytic disease. Blood 58 1232–1235.

    PubMed  CAS  Google Scholar 

  • Spedding, M. (1985) Calcium antagonist subgroups. Trends Pharmacol. Sci. 6 109–114.

    Article  CAS  Google Scholar 

  • Steck, T. L. (1974) Preparation of impermeable inside-out and right-side-out vesicles from human erythrocyte membranes, in Methods in Membrane Biology, vol. 2 (Korn, E. D., ed.), Plenum, New York, pp. 245–281.

    Google Scholar 

  • Steck, T. L. and Kant, J. A. (1974) Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 31 172–180.

    Article  PubMed  CAS  Google Scholar 

  • Stein, W. D. (1967) The Movement of Molecules Across Cell Membranes. Academic, New York.

    Google Scholar 

  • Stein, W. D. (1986) Transport and Diffusion Across Cell Membranes. Academic, London.

    Google Scholar 

  • Tanaka, T., Ohmura, T., and Hidaka, H. (1982a) Hydrophobic interaction of the Ca2+-calmodulin complex with calmodulin antagonists. Naphthalenesulfonamide derivatives. Mol. Pharmacol. 22 403–407.

    PubMed  CAS  Google Scholar 

  • Tanaka, T., Ohmura, T., Yamakado, T., and Hidaka, H. (1982b) Two types of calcium-dependent protein phosphorylations modulated by calmodulin antagonists. Naphthalenesulfonamide derivatives. Mol. Pharmacol. 22 408–412.

    PubMed  CAS  Google Scholar 

  • Tanaka, T., Ohmura, T., and Hidaka, H. (1983) Calmodulin antagonists’ binding sites on calmodulin. Pharmacology 26 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Van Belle, H. (1981) R-24–571: A potent inhibitor of calmodulin-activated enzymes. Cell Calcium 2 483–494.

    Article  Google Scholar 

  • VanHoutte, P. M. and Paoletti, R. (1987) The WHO classification of calcium antagonists. Trends Pharmacol. Sci. 8 4–6.

    Article  Google Scholar 

  • Villalobo A., Brown, L., and Roufogalis, B. D. (1986a) Kinetic properties of the purified Ca2+-translocating ATPase from human erythrocyte plasma membrane. Biochim. Biophys. Acta 854 9–20.

    Article  PubMed  CAS  Google Scholar 

  • Villalobo, A., Harris, J. W., and Roufogalis, B. D. (1986b) Calcium-dependent inhibition of the erythrocyte Ca2+ translocating ATPase by carbodiimides. Biochim. Biophys. Acta 858 188–194.

    Article  PubMed  CAS  Google Scholar 

  • Vincenzi, F. F. and Schatzmann, H. J. (1967) Some properties of Ca-activated ATPase in human red cell membranes. Helv. Physiol. Acta 25 CR233– CR234.

    CAS  Google Scholar 

  • Vincenzi, F. F., Raess, B. U., Larsen, F. L., Jung, N. S. G. T., and Hinds, T. R. (1978) The Plasma membrane calcium-pump: A potential target for drug action. The Pharmacologist 20 195.

    Google Scholar 

  • Vincenzi, F. F., Hinds, T. R., and Raess, B. U. (1980) Calmodulin and the plasma membrane calcium pump. Ann. NY Acad. Sci. 356 232–244.

    Article  PubMed  CAS  Google Scholar 

  • Vincenzi, F. F., Adunyah, E. S., Niggli, V., and Carafoli, E. (1982) Purified red blood cell Ca2+-pump ATPase: evidence for direct inhibition by presumed anticalmodulin drugs in the absnece of calmodulin. Cell Calcium 3 545–559.

    Article  PubMed  CAS  Google Scholar 

  • Volpi, M., Sha’afi, R. I., Epstein P. M., Andrenyak, D. M., and Feinstein, M. B. (1981) Local anesthetics, mepacrine and Propranolol are antagonists of calmodulin. Proc. Natl. Acad. Sci. USA 78 795–799.

    Article  PubMed  CAS  Google Scholar 

  • Waisman, D. M., Gimble, J. M., Goodman, D. B. P., and Rasmussen, H. (1981) Studies of the Ca2+ transport mechanism of human inside-out vesicles. II. Stimulation of the Ca2+ pump by phosphate. J. Biol. Chem. 256 415–419.

    PubMed  CAS  Google Scholar 

  • Weiner, M. L. and Lee, K. S. (1972). Active calcium ion uptake by inside-out and right-side out vesicles of red blood cell membranes. J. Gen. Physiol. 59 462–475.

    Article  PubMed  CAS  Google Scholar 

  • Wilbrandt, W. and Rosenberg, T. (1961) The concept of carrier transport and its corollaries in pharmacology. Pharmacol. Rev. 13 109–129.

    PubMed  CAS  Google Scholar 

  • Xu, Y. and Zhang, S. (1986) A derivative of bisbenzylisoquinoline alkaloid is a new and potential calmodulin antagonist. Biochem. Biophys. Res. Commun. 140 461–467.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, H. -A. and Harris, R. A. (1983) Effects of ethanol and barbiturates on Ca2+-ATPase activity of erythrocyte and brain membranes. Biochem. Pharmacol. 32 2787–2791.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc.

About this chapter

Cite this chapter

Raess, B.U. (1989). Pharmacological Modification of the Red Cell Ca2+-Pump. In: Raess, B.U., Tunnicliff, G. (eds) The Red Cell Membrane. Contemporary Biomedicine, vol 10. Humana Press. https://doi.org/10.1007/978-1-4612-4500-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4500-1_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8848-0

  • Online ISBN: 978-1-4612-4500-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics