Ca2+-Activated Potassium Channels

  • Javier Alvarez
  • Javier García-Sancho
Part of the Contemporary Biomedicine book series (CB, volume 10)

Abstract

It was 50 years ago that the presence in the human red-cell membrane of a K+-selective pathway activatable by Pb (Ørskov, 1935) or fluoride (Wilbrandt, 1937) was reported. Gárdos described a similar pathway that was activated by incubation with iodoacetate and adenosine, and pointed out the absolute requirement of calcium for activation (“Gárdos effect,” Gárdos, 1956, 1958). The site for the Ca2+ effect was later documented to face towards the cytoplasmic side of the membrane (Whittam, 1968; Lew, 1970; Blum and Hoffman, 1972). During the last 15 yr, K+-selective channels that are activated by the increase of ionized calcium levels of the cytoplasm have also been discovered in a large variety of cells. The participation of these channels in important physiological functions, such as the control of membrane potential of excitable cells, the secretion of hormones or neurotransmitters, and the control of cell volume and transephithelial ion transport, is now widely acknowledged (for reviews, see Meech, 1976, 1978; Putney, 1979; Grinstein et al., 1982; Schwarz and Passow, 1983; Petersen and Maruyama, 1984; Sarkadi and Gárdos, 1985; Hoffman, 1985).

Keywords

Fluoride Adenosine Phthalate Mollusk Chlorpromazine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abia, A., Lobatón, C. D., Moreno, A., and García-Sancho, J. (1986) Leiurus quinquestriatus venom inhibits different kinds of Ca2+-dependent K+ channels. Biochim. Biophys. Acta 856403–407.PubMedGoogle Scholar
  2. Adorante, J. S. and Macey, R. I. (1986) Calcium-induced transient potassium efflux in human red blood cells. Am. J. Physiol. 250C55-C64.PubMedGoogle Scholar
  3. Alvarez, J. and García-Sancho, J. (1987) An estimate of the number of Ca2+-dependent K+ channels in the human red cell. Biochim. Biophys. Acta 903543–546.PubMedGoogle Scholar
  4. Alvarez, J., García-Sancho, J., and Herreros, B. (1984) Effects of electron donors on Ca2+-dependent K+ transport in one-step inside-out vesicles from the human erythrocyte membrane. Biochim. Biophys. Acta 11123–27.Google Scholar
  5. Alvarez, J., García-Sancho, J., and Herreros, B. (1985) Paradoxical effects of oligomycin on Ca-dependent 86Rb transport in human red cell ghosts. J. Physiol. 369113P.Google Scholar
  6. Alvarez, J., García-Sancho, J., and Herreros, B. (1986b) Inhibition of Ca2+-dependent K+ channels by lead in one-step inside-out vesicles from human red cell membranes. Biochim. Biophys. Acta 857291–294.PubMedGoogle Scholar
  7. Alvarez, J., García-Sancho, J., and Herreros, B. (1986c) Analysis of the all or nothing behavior of Ca-dependent K channels in one-step inside-out vesicles from human red cell membranes. Biochim. Biophys. Acta 85956–60.PubMedGoogle Scholar
  8. Alvarez, J., García-Sancho, J., and Herreros, B. (1986d) The role of calmodulin on Ca2+-dependent K+ transport regulation in the human red cell. Biochim. Biophys. Acta 86025–34.PubMedGoogle Scholar
  9. Alvarez, J., García-Sancho, J., and Herreros, B. (1988) All or none cell responses of Ca2+-dependent K channels elicited by calcium or lead in human red cells can be explained by heterogeneity of agonist distribution. J. Membr. Biol. 104129–138.PubMedGoogle Scholar
  10. Alvarez, J., Camaleño, J. M., García-Sancho, J., and Herreros, B. (1986a) Modulation of Ca2+-dependent K+ transport by modifications of the NAD+/NADH ratio in intact human red cells. Biochim. Biophys. Acta 856408–411.PubMedGoogle Scholar
  11. Armando-Hardy M., Ellory, J. C, Ferreira, H. G., Fleminger, S., and Lew, V. L. (1975) Inhibition of the calcium-induced increase in the potassium permeability of human red blood cells by quinine. J. Physiol. (Lond.) 25032P–33P.Google Scholar
  12. Atwater, I., Rosario, L., and Rojas, E. (1983) Properties of the Ca2+-activated K+ channel in pancreatic beta-cells. Cell Calcium 4451–461.PubMedGoogle Scholar
  13. Banks, B. E. C, Brown, C, Burgess, G. M., Burnstock, G., Claret, M., Cocks, T. M., and Jenkinson, D. H. (1979) Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 282415–417.PubMedGoogle Scholar
  14. Beech, D. J., Bolton, T. B., Castle, N. A., and Strong, P. N. (1987) Characterization of a toxin from scorpion (Leiurus quinquestriatus) venom that blocks in vitro both large (BK) K+-channels in rabbit vascular smooth muscle and intermediate (IK) conductance Ca2+-activated K+ channels in human red cells. J. Physiol. (Lond.) 38732P.Google Scholar
  15. Berkowitz, L. R. and Orringer, E. P. (1981) Effect of cetiedil, an in vitro antisickling agent on erythrocyte membrane cation permeability. J. Clin. Invest. 681215–1220.PubMedGoogle Scholar
  16. Blatz, A. L. and Magleby, K. L. (1986) Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323718–720.PubMedGoogle Scholar
  17. Blum, R. M. and Hoffman, J. F. (1970) Carrier mediation of Ca-induced K transport and its inhibition in red blood cells. Fed. Proc. 29663a.Google Scholar
  18. Blum, R. M. and Hoffman, J. F. (1971) The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells. J. Membr. Biol. 6315–328.Google Scholar
  19. Blum, R. M. and Hoffman, J. F. (1972) Ca-induced K transport in human red cells: localization of the Ca-sensitive site to the inside of the membrane. Biochem. Biophys. Res. Commun. 461146–1152.PubMedGoogle Scholar
  20. Bodemann, H. and Passow, H. (1972) Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J. Membr. Biol. 81–26.PubMedGoogle Scholar
  21. Bookchin, R. M., and Lew, V. L. (1983) Red cell membrane abnormalities in sickle cell anemia, in Progress in Haematology,Vol XIII (Brown, E. B., ed.), Grune and Stratton, New York, pp. 1–23.Google Scholar
  22. Brown, A. M. and Lew, V. L. (1983) The effect of intracellular calcium on the sodium pump of human red cells. J. Physiol. (Lond.) 343455–493.Google Scholar
  23. Brown, A. M., Ellory, J. C, Young, J. D., and Lew, V. L. (1978) A calcium-activated potassium channel present in foetal red cells of sheep but absent from reticulocytes and mature red cells. Biochim. Biophys. Acta 511163–175.PubMedGoogle Scholar
  24. Burguess, G. M., Claret, M., and Jenkinson, D. H. (1981) Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells. J. Physiol. (Lond.) 31767–90.Google Scholar
  25. Castle, N. A. and Strong, P. N. (1986) Identification of two toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calcium-activated potassium channel FEBS Lett. 209117–121.PubMedGoogle Scholar
  26. Cheung, W. Y., Lynch, T. J., and Wallace, R. W. (1978) An endogenous Ca2+-dependent activator protein of brain adenylate cyclase and cyclic nucleotide phosphodiesterase, in Advances in Cyclic Nucleotide Research,vol 9 (George, W. J. and Ignarro, L. J., eds.), Raven Press, New York, pp. 233–251.Google Scholar
  27. Cotterrell D. (1975) The action of inhibitors of anion transfer on potassium and calcium movements in metabolically depleted human red cells. J. Physiol. (Lond.) 24651P–52P.Google Scholar
  28. De Peyer, J. E., Cachdin, A. B., Levitan, I. B., and Reuter, H. (1982) Ca2+-activated K+ conductance in internally perfused snail neurones is enhanced by protein phosphorilation. Proc. Natl. Acad. Sci. USA 794207–4211.PubMedGoogle Scholar
  29. Ekman, A., Manninen, V., and Salminen, S. (1969) Ion movements in red cells treated with propranolol, Acta Physiol. Scand. 75333–344.PubMedGoogle Scholar
  30. Ferreira, H. G. and Lew, V. L. (1976) Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca. Nature 25947–49.PubMedGoogle Scholar
  31. Findlay, I., Dunne, M. J., Ullrich, S., Wollheim, C. B., and Petersen, O. H. (1985) Quinine inhibits Ca2+-independent K+ channels whereas tetra-ethylammonium inhibits Ca2+-activated K+ channels in insulin-secreting cells. FEBS Lett. 1854–8.PubMedGoogle Scholar
  32. Fosset, M., Schmid-Antomarchi, H., Hugues, M., Romey, G., and Lazdunski, M. (1984) The presence in pig brain of an endogenous equivalent of apamin, the bee venom peptide that specifically blocks Ca2+-dependent K+ channels. Proc. Natl Acad. Sci. USA 817228–7232.PubMedGoogle Scholar
  33. Freedman, J. C. and Novak, T. S. (1983) Membrane potentials associated with Ca-induced conductance in human red blood cells: studies with a fluorescent oxonol dye, WW 781. J. Membr. Biol. 7259–74.PubMedGoogle Scholar
  34. Fuhrmann, G. F., Schwarz, W., Kersten, R., and Sdun, H. (1985) Effects of vanadate, menadione and menadione analogs on the Ca2+-activated K+ channels in human red cells. Possible relations to membrane-bound oxi-doreductase activity. Biochim. Biophys. Acta 820223–234.PubMedGoogle Scholar
  35. García-Sancho, J. and Herreros, B. (1983) Effects of redox agents on the Ca2+-activated K+ channel. Cell Calcium 4493–497.PubMedGoogle Scholar
  36. García-Sancho, J., Sanchez, A., and Herreros, B. (1979) Stimulation of monovalent cation fluxes by electron donors in the human red cell membrane. Biochim. Biophys. Acta 556118–130.PubMedGoogle Scholar
  37. García-Sancho, J., Sanchez, A., and Herreros, B. (1982) All or nothing response of the Ca2+-dependent K+ channel in inside-out vesicles. Nature 296744–746.PubMedGoogle Scholar
  38. Gárdos, G. (1956) The permeability of human erythrocytes to potassium. Acta Physiol. Acad. Sci. Hung. 10185–189.Google Scholar
  39. Gárdos, G. (1958) The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta 30653–654.PubMedGoogle Scholar
  40. Gárdos, G. (1966) The mechanism of ion transport in human erythrocytes. I. The role of 2,3-diphosphoglyceric acid in the regulation of potassium transport. Acta Biochim. Biophys. Acad. Sci. Hung. 1139–148.Google Scholar
  41. Gárdos, G. (1967) Studies on potassium permeability changes in human erythrocytes. Experientia 2319–20.PubMedGoogle Scholar
  42. Gárdos, G., Lassen, U. V., and Pape, L. (1976) Effects of antihistamines and chlorpromazine on the calcium-induced hyperpolarization of Amphiuma red cell membrane. Biochim. Biophys. Acta 448599–606.PubMedGoogle Scholar
  43. Gárdos, G., Szász, I., and Sarkadi, B. (1975) Mechanism of Ca-dependent K transport in human red cells, in Biomembranes: Structure and Function, FEBS Proc., vol 35 (Gárdos, G., and Szász, I., eds.), North-Holland, Amsterdam, pp. 167–180.Google Scholar
  44. Gárdos, G., Szász, I., and Sarkadi, B. (1977) Effect of intracellular calcium on the cation transport processes in human red cells. Acta Biol. Med. Germ. 36823–829.PubMedGoogle Scholar
  45. Glynn, I. M. and Lew, V. L. (1970) Synthesis of adenosine triphosphate at the expense of the downhill cation movements in intact human red cells. J. Physiol. (Lond.) 207393–402.Google Scholar
  46. Glynn, I. M. and Warner A. E. (1972) Nature of the calcium-dependent potassium leak induced by (+)-propranolol, and its possible relevance to the drug’s antiarrhythmic effect. Br. J. Pharmacol. 44271–278.PubMedGoogle Scholar
  47. Grasso, M., Morelli, A. and De Flora, A. (1986) Calcium-induced alterations in the levels and subcellular distribution of proteolytic enzymes in human red blood cells. Biochem. Biophys. Res. Commun. 13887–94.PubMedGoogle Scholar
  48. Grinstein, S. and Rothstein, A. (1978) Chemically induced cation permeability in red cell membrane vesicles. The sidedness of the response and the proteins involved, Biochim. Biophys. Acta 508236–245.PubMedGoogle Scholar
  49. Grinstein, S., Dupre, A., and Rothstein, A. (1982) Volume regulation by human lymphocytes, Role of calcium. J. Gen. Physiol. 79849–868.PubMedGoogle Scholar
  50. Grygorczyk, R. and Schwarz, W. (1983) Properties of the Ca2+-activated K+ conductance of human red cells as revealed by the patch-clamp technique. Cell Calcium 4499–510.PubMedGoogle Scholar
  51. Grygorczyk, R. and Schwarz, W. (1985) Ca2+-activated K+ permeability in human erythrocytes: Modulation of single-channel events. Eur. Biophys. J. 1257–65.PubMedGoogle Scholar
  52. Grygorczyk, R., Schwarz, W., and Passow, H. (1984) Ca2+-activated K+ channels in human red cells: Comparison of single-channel currents with ion fluxes. Biophys. J. 45693–698.PubMedGoogle Scholar
  53. Guggino, S. E., Guggino, W. B., Green, N., and Sacktor, B. (1987) Blocking agents of the Ca2+-activated K+ channels in cultured medullary thick ascending limb cells. Am. J. Physiol. 252C128-C137.PubMedGoogle Scholar
  54. Hamill, O. P. (1981) Potassium channel currents in human red blood cells. J. Physiol. (Lond.) 314125P.Google Scholar
  55. Hamill, O. P. (1983) Potassium and chloride channels in red blood cells, in Single Channel Recording (Sakmann, B., and Neher, E., eds.), Plenum Press, New York, pp. 451–471.Google Scholar
  56. Hamill, O. P. Marty, A., Neher, E., Sakmann B., and Sigworth F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv. 39185–100.PubMedGoogle Scholar
  57. Heinz, A. and Passow, H. (1980) Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts. J. Membr. Biol. 57119–131.PubMedGoogle Scholar
  58. Hermann, A. (1986) Selective blockade of Ca-activated K current in aplysia neurons by charybdotoxin. Pflugers Archiv,suppl. 406204.Google Scholar
  59. Hermann, A. and Hartung, K. (1983) Ca2+-activated K+ conductance in mol-luscan neurones. Cell Calcium 4387–406.PubMedGoogle Scholar
  60. Hoffman, E. K. (1985) Role of separate K+ and Cl- channels and of Na+/Cl-cotransport in volume regulation in Ehrlich cells. Fed. Proc. 442513–2519.Google Scholar
  61. Hoffman, J. F. (1962) Cation transport and structure of the red cell plasma membrane. Circulation 261201–1213.Google Scholar
  62. Hoffman, J. F., Yingst, D. R., Goldinger, J. M., Blum, R. M., and Knauf, P. A. (1980) On the mechanism of Ca-dependent K transport in human red blood cells, in Membrane Transport in Erythrocytes Alfred Benzon Symposium 14 (Lassen, U. V., Ussing, H. H., and Wieth, J. O., eds.), Munksgaard, Copenhagen, pp. 178–195.Google Scholar
  63. Howland, J. L., Daughtey, J. N., Donatelli, M., and Theorfrastous, J. P. (1984) Inhibition of the erythrocyte calcium-sensitive potassium channel by pro-bucol. Pharmacol. Res. Commun. 161057–1064.PubMedGoogle Scholar
  64. Hugues, M., Schmid, H., and Lazdunski, M. (1982a) Identification of a protein component of the Ca2+-dependent K+ channel by affinity labelling with apamin. Biochem. Biophys. Res. Commun. 1071577–1582.PubMedGoogle Scholar
  65. Hugues, M., Romey, G., Duval, D., Vincent, J. P., and Lazdunski, M. (1982b) Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: Voltage-clamp and biochemical characterization of the toxin receptor. Proc. Natl. Acad. Sci. USA 791308–1312.PubMedGoogle Scholar
  66. Iwatsuki, N. and Petersen, O. H. (1985) Inhibition of Ca2+-activated K+ channels in pig pancreatic acinar cells by Ba2+, Ca2+, quinine and quinidine. Biochim. Biophys. Acta 819249–257.PubMedGoogle Scholar
  67. Jenkins D. M. G. and Lew V. L. (1973) Ca uptake by ATP-depleted red cells from different species with and without associated increase in K permeability. J. Physiol. (Lond.) 23441P–42P.Google Scholar
  68. Karlish, S. J. D., Ellory, J. C, and Lew, V. L. (1981) Evidence against Na+-pump mediation of Ca2+-activated K+ transport and diuretic-sensitive (Na+/K+)-cotransport. Biochim. Biophys. Acta 646353–355.PubMedGoogle Scholar
  69. Knauf, P. A., Riordan, J. R., Schuhmann, B., Wood-Guth, I., and Passow, H. (1975) Calcium-potassium-stimulated net potassium efflux from human erythrocyte ghosts. J. Membr. Biol. 251–22.PubMedGoogle Scholar
  70. Kregenow, F. M. and Hoffman, J. F. (1972) Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells. J. Gen. Physiol. 60406–429.PubMedGoogle Scholar
  71. Kurtzer, R. J. and Roberts, M. L. (1982) Calcium-dependent K+ efflux from rat submandibular gland. The effects of trifluoperazine and quinidine. Biochim. Biophys. Acta 693479–484.PubMedGoogle Scholar
  72. Lackington, I. and Orrego, F. (1981) Inhibition of calcium-activated potassium conductance of human erythrocytes by calmodulin inhibitory drugs. FEBS Lett. 133103–106.PubMedGoogle Scholar
  73. Lassen, U. F., Pape, L., and Vestergaard-Bogind, B. (1973) Membrane potential of Amphiuma red cells: Effect of calcium, in Erythrocytes, Thrombocytes, Leukocytes (Gerlach, E., Moser, K., Deutsch, E., and Wilmanns, W., eds.) Georg Thieme, Stuttgard, pp. 33–36.Google Scholar
  74. Lassen U. V Pape L., and Vestergaard-Bogind B. (1976) Effect of calcium on the membrane potential of Amphiuma red cells. J. Membr. Biol. 2651–70.PubMedGoogle Scholar
  75. Lassen, U. V., Pape, L., and Vestergaard-Bogind, B. (1980) Calcium related transient changes in membrane potential of red cells, in Membrane Transport in Erythrocytes Alfred Benzon Symposium 14 (Lassen, U. V., Using, H. H., and Wieth, J. O., eds. Munksgaard, Copenhagen, pp. 255–273.Google Scholar
  76. Latorre, R. and Miller, C. (1983) Conduction and selectivity in potassium channels. J. Membr. Biol. 7111–30.PubMedGoogle Scholar
  77. Lazdunski, M. (1983) Apamin, a neurotoxin specific for one class of Ca2+-dependent K+ channels. Cell Calcium 4421–428.PubMedGoogle Scholar
  78. Lepke, S. and Passow, H. (1968) Effects of fluoride on potassium and sodium permeability of the erythrocyte membrane. J. Gen. Physiol. 51365s–372s.PubMedGoogle Scholar
  79. Levitan, E. S. and Levitan, I. B. (1986) Apparent loss of calcium-activated potassium current in internally perfused snail neurons is due to accumulation of intracellular calcium. J. Membr. Biol. 9059–65.PubMedGoogle Scholar
  80. Lew V. L. (1970) Effects of intracellular calcium on the potassium permeability of human red cells. J. Physiol. (Lond.) 20635P–36P.Google Scholar
  81. Lew, V. L. (1971a) On the ATP-dependence of the Ca2+-induced increase in K+ permeability observed in human red cells. Biochim. Biophys. Acta 233827–830.PubMedGoogle Scholar
  82. Lew, V. L. (1971b) Effect of ouabain on the Ca2+-dependent increase in K+ permeability in ATP depleted guinea-pig red cells. Biochim. Biophys. Acta 249236–239.PubMedGoogle Scholar
  83. Lew, V. L. (1974) On the mechanism of the Ca-induced increase in K permeability observed in human red cell membranes, in Comparative Biochemistry and Physiology of Transport (Bolis L., Bloch K., Luria, S. E., and Lyden F., eds.), North-Holland, Amsterdam, pp. 310–316.Google Scholar
  84. Lew, V. L., ed. (1983) Ca2+-activated K+ channels. Cell Calcium,vol 4, (Churchill-Livingstone, Edinburgh).Google Scholar
  85. Lew, V. L. and Beaugé, L. (1979) Passive cation fluxes in red cell membranes, in Membrane Transport in Biology,vol II: Transport Across Single Biological Membranes (Giebich, G., Tosteson, D. C, and Ussing, H. H., eds.), Springer-Verlag, Berlin, pp. 81–115.Google Scholar
  86. Lew, V. L. and Bookchin, R. M. (1980) Ca2+-refractory state of the Ca-sensitive K+ permeability mechanisms in sickle cell anemia red cells. Biochim. Biophys. Acta 602196–200.PubMedGoogle Scholar
  87. Lew, V. L. and Ferreira, H. G. (1976) Variable Ca sensitivity of a K-selective channel in intact red cell membranes. Nature 263336–338.PubMedGoogle Scholar
  88. Lew, V. L. and Ferreira, H. G. (1977) The effect of Ca on the K permeability of red cells, in Membrane Transport in Red Cells (Ellory, J. C, and Lew, V. L., eds.) Academic Press, London, pp. 93–100.Google Scholar
  89. Lew, V. L. and Ferreira, H. G. (1978) Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes, in Current Topics in Membranes and Transport,vol 10 (Bronner, F. and Kleinzeller, A., eds.), Academic Press, New York, pp. 217–277.Google Scholar
  90. Lew, V. L. and García-Sancho, J. (1985) Use of the ionophore A23187 to measure and control cytoplasmic Ca2+ levels in intact red cells. Cell Calcium 615–23.PubMedGoogle Scholar
  91. Lew, V. L., Muallem, S., and Seymour, C. A. (1982a) Properties of the Ca2+-activated K+ channel in one-step inside-out vesicles from human red cell membranes. Nature 296742–744.PubMedGoogle Scholar
  92. Lew, V. L., Muallem, S., and Seymour, C. A. (1983) The Ca2+-activated K+ channel of human red cells: All or none behavior of the Ca2+-gating mechanism. Cell Calcium 4511–517.PubMedGoogle Scholar
  93. Lew, V. L., Tsien, R. Y., Miner, C, and Bookchin, R. M. (1982b) Physiological (Ca2+), level and pump leak turnover in intact red cells measured using an incorporated Ca chelator. Nature 298478–481.PubMedGoogle Scholar
  94. Lew, V. L., Hockaday, A., Sepulveda, M. I., Somlyo, A. P., Somlyo, A. V., Ortiz, O. E., and Bookchin, R. M. (1985) Compartmentalization of sickle-cell calcium in endocytic inside-out vesicles. Nature 315586–589.PubMedGoogle Scholar
  95. Macey, R. I., Adorante, J. S., and Orme, F. W. (1978) Erythrocyte membrane potential determined by hydrogen ion distribution. Biochim. Biophys. Acta 512284–295.PubMedGoogle Scholar
  96. Manninen, V. (1970) Movements of sodium and potassium ions and their tracers in propranolol-treated red cells and diaphragm muscle. Acta Physiol. Scand. Suppl. 355,1–76.Google Scholar
  97. Manninen, V. and Skulskii, I. A. (1981) Effect of extracellular potassium on the loss of potassium from human red blood cells treated with propranolol. Acta Physiol. Scand. 111361–365.PubMedGoogle Scholar
  98. Marty, A. (1983) Ca2+-dependent K+ channels with large unitary conductance. Trends in Neurosci. 6262–265.Google Scholar
  99. Meech, R. W. (1976) Intracellular calcium and the control of membrane permeability, in Calcium in Biological Systems XXX Symp. Exptl. Biol. (Duncan, C. J., ed.), Cambridge University Press, London, pp. 161–191.Google Scholar
  100. Meech, R. W. (1978) Calcium-dependent potassium activation in nervous tissues. Ann. Rev. Biophys. Bioeng. 71–18.Google Scholar
  101. Miller, C. (1983) Integral membrane channels: studies in model membranes. Physiol. Rev. 631209–1242.PubMedGoogle Scholar
  102. Miller, C., Moczydlowski, E., Latorre, R., and Phillips, M. (1985) Charyb-dotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature 313316–318PubMedGoogle Scholar
  103. Miner, C., Lopez-Burillo, S., García-Sancho, J., and Herreros, B. (1983) Plasma membrane NADH dehydrogenase and Ca2+-dependent potassium transport in erythrocytes of several animal species. Biochim. Biophys. Acta 727266–272.PubMedGoogle Scholar
  104. Moczydlowski, E. and Latorre, R. (1983) Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. J. Gen. Physiol. 82511–542.PubMedGoogle Scholar
  105. Ørskov, S. L. (1935) Untersuchungen über des einfluss von kohlensaure und blei auf die permeabilität der blutkörperchen für kallium und rubidum. Biochem. Z. 279250–261.Google Scholar
  106. Pape, L. (1982) Effect of extracellular Ca2+, K+ and CH- on erythrocyte membrane potential as monitored by the fluorescent probe 3,3-dipropylthiodicarbocyanine. Biochim. Biophys. Acta 686225–232.PubMedGoogle Scholar
  107. Pape, L. and Kristensen, B.I. (1984) A calmodulin-activated Ca2+-dependent K+ channel in human erythrocyte membrane inside-out vesicles. Biochim. Biophys. Acta 7701–6.PubMedGoogle Scholar
  108. Parker, J. C. (1969) Influences of 2,3-diphosphoglycerate metabolism on sodium-potassium permeability in human red blood cells: Studies with bisulfite and other redox agents. J. Clin. Invest. 48117–125.PubMedGoogle Scholar
  109. Parker, J. C. (1981) Effects of drugs on calcium related phenomena in red blood cells. Fed. Proc. 402872–2876.PubMedGoogle Scholar
  110. Parker, J. C. (1983) Hemolytic action of potassium salts in dog red cells. Am. J. Physiol. 244C313–317.PubMedGoogle Scholar
  111. Passow, H. (1981) Selective enhancement of potassium efflux from red blood cells by lead, in The Function of Red Blood Cells: Erythrocyte Pathobiology (Wallach, D. F. H., ed.), Alan R. Liss Inc., New York, pp. 79–104.Google Scholar
  112. Passow, H., Shields, M., and La Celle, P. (1986) Effects of calcium on structure and function of the human red blood cell membrane, in The Cytoskeleton (Clarkson, T. W., Sager, P. R., and Syversen, T. L. M., eds.), Plenum Publishing Corporation, New York, pp. 177–186.Google Scholar
  113. Petersen, O. H. and Maruyama, Y. (1984) Calcium-activated potassium channels and their role in secretion. Nature 307693–696.PubMedGoogle Scholar
  114. Plishker, G. A. (1984) Phenothiazine inhibition of calmodulin stimulated calcium-dependent potassium efflux in human red blood cells. Cell Calcium 5177–185.PubMedGoogle Scholar
  115. Plishker, G. A. (1985) Iodoacetic acid inhibition of calcium-dependent potassium efflux in red blood cells. Am. J. Physiol. 248C419-C424.PubMedGoogle Scholar
  116. Porzig, H. (1975) Comparative study of the effects of propranolol and tetracaine on cation movements in resealed human red cell ghosts. J. Physiol. (Lond.) 24927–49.Google Scholar
  117. Porzig, H. (1977) Studies on the cation permeability of human red cell ghosts. J. Membr. Biol. 31317–349.PubMedGoogle Scholar
  118. Putney, J. W. (1979) Stimulus-permeability coupling: role of calcium in the receptor regulation of membrane permeability. Pharmacol. Rev. 30209–245.Google Scholar
  119. Reed, P. W. (1976) Effects of the divalent cation ionophore A23187 on potassium permeability of rat erythrocytes. J. Biol. Chem. 2513489–3494.PubMedGoogle Scholar
  120. Reichstein, E. and Rothstein, A. (1981) Effects of quinine on Ca2+-induced K+ efflux from human red blood cells. J. Membr. Biol. 5957–63.PubMedGoogle Scholar
  121. Richhardt, H. W., Fuhrmann, G. F., and Knauf, P. A. (1979) Dog red blood cells exhibit a Ca stimulated increase in permeability in the absence of (Na,K)-ATPase activity. Nature 279248–250.PubMedGoogle Scholar
  122. Riordan, J. R. and Passow, H. (1971) Effects of calcium and lead on potassium permeability of human erythrocyte ghosts. Biochim. Biophys. Acta 249601–605.PubMedGoogle Scholar
  123. Riordan, J. R. and Passow, H. (1973) The effects of calcium and lead on the potassium permeability of human erythrocytes and erythrocyte ghosts, in Comparative Physiology (Bolis, L., Schmidt-Nielsen, K., and Maddrell, S. H. P., eds.) North-Holland, Amsterdam, pp. 543–581.Google Scholar
  124. Romero, P. J. and Whittam, R. (1970) The control by internal calcium of membrane permeability to sodium and potassium. J. Physiol. (Lond.) 214481–507.Google Scholar
  125. Romey, G. and Lazdunski, M. (1984) The coexistence in rat muscle cells of two distinct classes of Ca2+-dependent K+ channels with different pharmacological properties and different physiological functions. Biochem. Biophys. Res. Commun. 118669–674.PubMedGoogle Scholar
  126. Sanchez, A., García-Sancho, J., and Herreros, B. (1980) Effects of several inhibitors on the K+ efflux induced by activation of the Ca2+-dependent channel and by valinomycin in the human red cell. FEBS Lett. 11065–68.PubMedGoogle Scholar
  127. Sanchez, A., Valdeolmillos, M., García-Sancho, J., and Herreros, B. (1986) Ca2+-dependent K+ transport in lymphocytes. Rev. Esp. Fisiol. 42459–464.PubMedGoogle Scholar
  128. Sarkadi, B., and Gárdos, G. (1985) Calcium-induced potassium transport in cell membranes, in The Enzymes of Biological Membranes,vol 3 (Martonosi, A. N., ed.), Plenum Press, New York and London, pp. 193–234.Google Scholar
  129. Sarkadi, B., Szász, I., and Gárdos, G. (1976) The use of ionophores for rapid loading of human red cells with radioactive cations for cation pump studies. J. Membr. Biol. 26357–370.PubMedGoogle Scholar
  130. Sarkadi, B., Szebeni, J., and Gárdos, G. (1980) Effects of calcium on cation transport processes in inside-out red cell membrane vesicles, in Membrane Transport in Erythrocytes Alfred Benzon Symposium 14 (Lassen, U. V., Ussing, H. H., and Wieth, J. O., eds.), Munksgaard, Copenhagen, pp. 220–235.Google Scholar
  131. Schmid-Antomarchi, H., Huges, M., Norman, R., Ellory, C., Borsotto, M., and Lazdunski, M. (1984) Molecular properties of the apamin-binding component of the Ca2+-dependent K+ channel. Radiation-inactivation, affinity labelling and solubilization. Eur. J. Biochem. 1421–6.PubMedGoogle Scholar
  132. Schwarz, W. and Passow, H. (1983) Ca2+-activated K+ channels in erythrocytes and excitable cells. Ann. Rev. Physiol. 45359–374.Google Scholar
  133. Seagar, M. J., Labbe-Jullie, C., Granier, C., Goll, A., Glossman, H., Van Rietschoten, J., and Couraud, F. (1986) Molecular structure of rat brain apamin receptor: Differential photoaffinity labelling of putative K+ channel subunits and target size analysis. Biochemistry 254051–4057.PubMedGoogle Scholar
  134. Shields, M., Grygorczyk, R., Fuhrmann, G. F., Schwarz, W., and Passow, H. (1985) Lead-induced activation and inhibition of potassium-selective channels in the human red blood cell. Biochim. Biophys. Acta 815223–232.PubMedGoogle Scholar
  135. Simons, T. J. B. (1976a) The preparation of human red cell ghosts containing calcium buffers. J. Physiol. (Lond.) 256209–225.Google Scholar
  136. Simons, T. J. B. (1976b) Calcium-dependent potassium exchange in human red cell ghosts. J. Physiol. (Lond.) 256227–244.Google Scholar
  137. Simons, T. J. B. (1976c) Carbocyanine dyes inhibit Ca-dependent K efflux from human red cell ghosts. Nature 264467–469.PubMedGoogle Scholar
  138. Simons, T. J. B. (1979) Actions of a carbocyanine dye on calcium-dependent potassium transport in human red cell ghosts. J. Physiol. (Lond.) 288481–507.Google Scholar
  139. Simons T. J. B. (1980) Effect of propranolol on calcium-dependent potassium permeability of red cell membranes. J. Physiol. (Lond.) 30035P–36P.Google Scholar
  140. Simons, T. J. B. (1982) A method for estimating free Ca within human red blood cells, with application to the study of their Ca-dependent permeability. J. Membr. Biol. 66235–247.PubMedGoogle Scholar
  141. Simons, T. J. B. (1983) The transport of lead ions across human red cell membranes. J. Physiol. (Lond.) 345108P.Google Scholar
  142. Simons, T. J. B. (1984) Active transport of lead by human red blood cells. FEBS Lett. 172250–254.PubMedGoogle Scholar
  143. Simons, T. J. B. (1985) Influence of lead ions on cation permeability in human red cell ghosts. J. Membr. Biol. 8461–71.PubMedGoogle Scholar
  144. Simons, T. J. B. (1986a) Passive transport and binding of lead by human red blood cells. J. Physiol. (Lond.) 378267–286.Google Scholar
  145. Simons, T. J. B. (1986b) The role of anion transport in the passive movement of lead across the human red cell membrane. J. Physiol. (Lond.) 378287–312.Google Scholar
  146. Simonsen, L. O., Gomme, J. and Lew, V. L. (1982) Uniform ionophore A23187 distribution and cytoplasmic calcium buffering in intact human red cells. Biochim. Biophys. Acta 692431–440.PubMedGoogle Scholar
  147. Skulskii, I. A. and Manninen, V. (1984) Interaction between propranolol and electron donors in altering the calcium ion-dependent potassium ion-permeability of the human red blood cell membrane. Acta Physiol. Scand. 120329–332.PubMedGoogle Scholar
  148. Smith, C., Phillips, M., and Miller C. (1986) Purification of charybdotoxin, a specific inhibitor of the high-conductance Ca2+-activated channel. J. Biol. Chem. 26114607–14613.PubMedGoogle Scholar
  149. Stampe, P. and Vestergaard-Bogind, B. (1985) The Ca2+ sensitive K+-conductance of the human red cell membrane is strongly dependent on cellular pH. Biochim. Biophys Acta. 815313–321.PubMedGoogle Scholar
  150. Steck, T. L. and Kant, J. A. (1974) Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Meth. Enzymol. 31172–180.PubMedGoogle Scholar
  151. Szász, I. and Gárdos, G. (1974) Mechanism of various drug effects on the Ca2+-dependent K+-efflux from human red blood cells. FEBS Lett. 44213–216.PubMedGoogle Scholar
  152. Szász, I., Sarkadi, B., and Gárdos, G. (1974) Erythrocyte parameters during induced Ca2+-dependent rapid K+ efflux: Optimum conditions for kinetic analysis. Haematologia 8143–151.PubMedGoogle Scholar
  153. Szász, I., Sarkadi, B., and Gárdos, G. (1978) Effects of drugs on the calcium-dependent rapid potassium transport in calcium-loaded intact red cells. Acta Biochim. Biophys. Acad. Sci. Hung. 13133–141.PubMedGoogle Scholar
  154. Szász, I., Sarkadi, B., and Gárdos, G. (1980) Calcium sensitivity of calcium-dependent functions in human red blood cells, in Advances in Physiological Sciences,vol 6 (Eds. S. R. Hollan, G. Gárdos and B. Sarkadi), pp. 211–221, Pergamon Press, Akademiai Kiado, Budapest.Google Scholar
  155. Szász, I., Sarkadi, B., Schubert, A., and Gárdos, G. (1978) Effects of lanthanum on calcium-dependent phenomena in human red cells. Biochim. Biophys. Acta 512331–340.PubMedGoogle Scholar
  156. Sze, H. and Solomon, A. K. (1979) Calcium-induced potassium pathway in sided erythrocyte membrane vesicles. Biochim. Biophys. Acta 554180–194.PubMedGoogle Scholar
  157. Szebeni, J. (1981) The Ca2+-sensitive K+ transport in inside-out red cell membrane vesicles. Acta Biochim. Biophys. Acad. Sci. Hung. 1677–82.PubMedGoogle Scholar
  158. Tiffert, T., García-Sancho, J., and Lew, V. L. (1984) Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium-chelator esters in intact human red cells. Biochim. Biophys. Acta 773143–156.PubMedGoogle Scholar
  159. Valdeolmillos, M., García-Sancho, J., and Herreros, B. (1982) Ca2+-dependent K+ transport in the Ehrlich ascites tumor cell. Biochim. Biophys. Acta 685273–278.PubMedGoogle Scholar
  160. Valdeolmillos, M., García-Sancho, J., and Herreros, B. (1986) Differential effects of transmembrane potential on two Na+-dependent transport systems for neutral amino acids. Biochim. Biophys. Acta 858181–187.PubMedGoogle Scholar
  161. Verma, A. K. and Penniston, J. T. (1985) Evidence against involvement of the human erythrocyte plasma membrane Ca2+-ATPase in Ca2+-dependent K+ transport. Biochim. Biophys. Acta 815135–138.PubMedGoogle Scholar
  162. Vestergaard-Bogind, B. (1983) Spontaneous inactivation of the Ca2+-sensitive K+ channels of human red cells at high intracellular Ca2+ activity. Biochim. Biophys. Acta 730285–294.PubMedGoogle Scholar
  163. Vestergaard-Bogind, B. and Bennekou, P. (1982) Calcium induced oscillations in the K+ conductance and membrane potential of human erythrocytes mediated by the ionophore A23187. Biochim. Biophys. Acta 68837–44.PubMedGoogle Scholar
  164. Vestergaard-Bogind, B., Stampe, P. and Christophersen, P. (1985) Single-file diffusion through the Ca2+-activated K+ channels of human red cells. J. Membr. Biol. 8867–75.PubMedGoogle Scholar
  165. Weiss, B. and Levin, B. M. (1978) Mechanism for selectively inhibiting the activation of cyclic nucleotide phosphodiesterase and adenylate cyclase by antipsychotic agents, in Advances in Cyclic Nucleotide Research,vol 9 (George, W. J., and Ignarro, L. J., eds.), Raven Press, New York, pp. 285–303.Google Scholar
  166. Wen, Y., Famulski, K. S., and Carafoli, E. (1984) Ca2+-dependent K+ permeability of heart sarcolemmal vesicles. Modulation by cAMP-dependent protein kinase activity and by calmodulin. Biochem. Biophys. Res. Commun. 122237–243.PubMedGoogle Scholar
  167. Whittam, R. (1968) Control of membrane permeability to potassium in red blood cells. Nature 219610.PubMedGoogle Scholar
  168. Whittam, R., Wheeler, K. P., and Blake, A. (1964) Oligomycin and active transport reactions in cell membranes. Nature 203720–724.PubMedGoogle Scholar
  169. Wilbrandt, W. (1937) A relation between the permeability of red cell and its metabolism. Trans. Faraday Soc. 33956–959.Google Scholar
  170. Wood, P. G. and Mueller, H. (1984) Modification of the cation selectivity filter and the calcium receptor of the Ca-stimulated K channel in resealed ghosts of human red blood cells by low levels of incorporated trypsin. Eur. J. Biochem. 14191–95.PubMedGoogle Scholar
  171. Yamamoto, H. and Harris, R. A. (1983) Calcium-dependent 86Rb efflux and ethanol intoxication: studies of human red blood cells and rodent brain synaptosomes. Eur. J. Pharmacol. 88357–363.PubMedGoogle Scholar
  172. Yellen, G. (1984) Relief of Na+ block of Ca2+-activated K+ channels by external cations, J. Gen. Physiol. 84187–199.PubMedGoogle Scholar
  173. Yingst, D. R. and Hoffman, J. F. (1978) Changes of intracellular Ca2+ as measured by arsenazo III in relation to the K permeability of human erythrocyte ghosts. Biophys. J. 23463–471.PubMedGoogle Scholar
  174. Yingst, D. R. and Hoffman, J. F. (1981) Effects of intracellular Ca on inhibiting Na-K pump and stimulating Ca-induced K transport in resealed human red cell ghosts. Fed. Proc. 40543.Google Scholar
  175. Yingst, D. R. and Hoffman, J. F. (1984) Ca-induced transport in human red blood cell ghosts containing arsenazo III: Transmembrane interactions of Na, K and Ca and the relationship to the functioning Na-K pump. J. Gen. Physiol. 8319–45.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1989

Authors and Affiliations

  • Javier Alvarez
  • Javier García-Sancho

There are no affiliations available

Personalised recommendations