Skip to main content

Why Red Cells?

  • Chapter
The Red Cell Membrane

Part of the book series: Contemporary Biomedicine ((CB,volume 10))

Abstract

This is a book about the passage of matter across the plasma membrane of the mature and, for the most part, nonnucleated red blood cell (of mammals). It seems appropriate at the outset to try to answer the question of why one wishes to know much about such processes (although the reader certainly has his or her own answer). The textbook truth is that the only obvious function of mature red cells in the body’s economy is to transport oxygen (why it is advantageous to have haemoglobin within a membrane-bounded space rather than in free solution must not concern us here). Yet, necessarily, there is a red-cell membrane. In point of fact, there is too much of it for the volume of the cell. Human red cells can swell by about 50 per cent (increasing their water content by 70 per cent) before reaching the volume of a sphere having the surface of the original disc. Since water-permeable bags filled with a 5 mM protein solution will swell and eventually burst by colloid-osmotic lysis, keeping water out of the cell is a vital function of the plasma membrane. On aging in the circulation, red cells do not swell but become even further dehydrated (and therefore heavier). Lew and Bookchin (1986) offer an astute explanation for this all but self-evident fact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, G. F. and Widdas, W. F. (1973) The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two-compound model. J. Physiol. 231 143–165.

    PubMed  CAS  Google Scholar 

  • Baldini, P., Incerpi, S., Luly, P., and Verna, R. (1985) Insulin responsiveness of human erythrocyte plasma membrane. J. Physiol. 369 112P.

    Google Scholar 

  • Baldini, P., Incerpi, S., Pascale F., Rinaldi, C, Verna, R., Luly, P. (1986) Insulin effects on human red blood cells. Molec. Cell. Endocrinology 46 93–102.

    Article  CAS  Google Scholar 

  • Beaugé, L. and Lew, V. L. (1977) Passive fluxes of sodium and potassium across the red cell membrane, in Membrane Transport in Red Cells (Ellory, J. C. and Lew, V. L., eds.) Academic, London, New York, pp. 39–51.

    Google Scholar 

  • Bree, F., Goult, J., d’Athis, P., and Tillement, J. P. (1984) Beta adrenoceptors of human red blood cells; determination of their subtypes. Biochem. Pharmacol. 33 4045–4050.

    Article  PubMed  CAS  Google Scholar 

  • Chipperfld, A. R. (1986) The (Na+ -K+ -ce-) co-transport system. Clin. Sci. 71 465–476.

    Google Scholar 

  • Christinaz, P. and Schatzmann, H. J. (1972). High potassium and low potassium erythrocytes in cattle. J. Physiol. 224 391–406

    PubMed  CAS  Google Scholar 

  • Dows, R. F., Corash, L. M., and Gorden, P. (1981) The insulin receptor is an age-dependent integral component of the human erythrocyte membrane. J. Biol. Chem. 256 2982–2987.

    Google Scholar 

  • Ellory, J. C. (1987) Amino acid transport systems in mammalian red cells, in Amino Acid Transport in Animal Cells. (Yudilevich, D. L. and Boyd, C. A. R., eds.), Manchester University Press, pp. 106–119.

    Google Scholar 

  • Ellory, J. C. and Tucker, E. M. (1983) Cation transport in red blood cells, in Red Blood Cells of Domestic Mammals (Agar, N. S. and Board, P. G., eds.) Elsevier, Amsterdam, pp. 291–312.

    Google Scholar 

  • Ellory, J. C, Hall, A. C, and Stewart, G. W. (1985) Volume-sensitive cation fluxes in mammalian red cells. Molecular Physiol. 8 235–246.

    CAS  Google Scholar 

  • Ellory, J. C., Jones, S. E. M., and Young, J. D. (1981) Glycine transport in human erythrocytes. J. Physiol. 320 403–422.

    PubMed  CAS  Google Scholar 

  • Farfel, Z. and Cohen, Z. (1984) Adenylate cyclase in the maturing human reticulocyte. Selective loss of the catalytic unit but not of the receptor-cyclase coupling protein. Eur. J. Clin. Invest. 14 79–82.

    Article  PubMed  CAS  Google Scholar 

  • Féray, J. C. and Garay, R. (1986) A Na+-stimulated Mg2+ transport system in human red blood-cells. Biochim. Biophys. Acta 856 76–84.

    Article  PubMed  Google Scholar 

  • Ferreira, H. G. and Lew, V.L. (1977) Passive Ca transport and cytoplasmic Ca buffering in intact red cells, in Membrane Transport in Red Cells (Ellory, J. C. and Lew, V. L., eds.) Academic, London, San Francisco, pp 53–91.

    Google Scholar 

  • Flatman, P. W. and Lew V. L. (1980). Magnesium buffering in intact human red blood cells measured using the ionophore A 23187. J. Physiol. 305 13–20.

    PubMed  CAS  Google Scholar 

  • Freedman, J. C. and Hoffman, J. F. (1979) Ionic osmotic equilibria of human red blood cells treated with nystatin. J. Gen. Physiol. 74 157–185.

    Article  PubMed  CAS  Google Scholar 

  • Funder, J. and Wieth, J. O. (1967) Effects of some monovalent anions on fluxes of Na and K, and on glucose metabolism of ouabain treated human red cells. Acta Physiol. Scand. 71 168–185.

    Article  PubMed  CAS  Google Scholar 

  • Gambhir, K. K., Archer, J. A., and Bradley, C. J. (1978) Characteristics of human erythrocyte insulin receptors. Diabetes 27 701-708

    Article  PubMed  CAS  Google Scholar 

  • Garay, R. P. and Garrahan, P. J. (1973) The interaction of sodium and potassium with the sodium pump in red cells. J. Physiol. 231 297–325.

    PubMed  CAS  Google Scholar 

  • Gardos, G. (1958) The function of calcium in the potassium permeability of human red cells. Biochim. Biophys. Acta 30 653–654.

    Article  PubMed  CAS  Google Scholar 

  • Glynn I. M. and Karlish, S. J. D. (1975) The sodium pump. Ann Rev. Physiol. 37 13–55.

    Article  CAS  Google Scholar 

  • Grigorescu, F., White, M. F., and Kalm, C. R. (1983) Insulin binding and insulin-dependent phosphorylation of the insulin receptor from human erythrocytes. J. Biol. Chem. 258 13708–13716.

    PubMed  CAS  Google Scholar 

  • Günther, T., Vormann, J., and Förster, R. (1984) Regulation of intracellular magnesium by Mg2+-efflux. Biochem. Biophys. Res. Comm. 119 124–131.

    Article  Google Scholar 

  • Hamburger, H. J. (1886) Ueber den Einfluss chemischer Verbindungen auf Blutkörperchen in Zusammenhang mit ihren Molekulargewichten. Arch. Physiol. 476–487.

    Google Scholar 

  • Hamburger, H. J. (1890) Die isotonischen Koeffizienten und die rothen Blutkörperchen. Z. Physik. Chemie 6 319–333.

    Google Scholar 

  • Hamburger, H. J. (1897a) Die Gefrierpunktserniedrigung des lackfarbenen Blutes und das Volumen der Blutkörperchenschatten. Arch. Physiol. 486–496.

    Google Scholar 

  • Hamburger, H. J. (1897b) Die Blutkörperchenmethode für die Bestimmung des osmotischen Druckes von Lösungen und für die Bestimmung der Resistenzfähigkeit der rothen Blutkörperchen. Arch. Physiol. 144–145.

    Google Scholar 

  • Herzberg, V., Boughter, J. M., Carlisle, S., and Hill, D. E. (1980) Evidence for two insulin receptor populations on human erythrocytes. Nature 286 279–281.

    Article  PubMed  CAS  Google Scholar 

  • Höber, R. (1914) Physikalische Chemie der Zellen und der Gewebe, 4. Aufl. W. Engelmann, Leipzig-Berlin.

    Google Scholar 

  • Hoffman, J. F. and Blum, R. M. (1977). On the nature of the pathway used for Ca-dependent K movement in human red blood cells, in Membrane Toxicity (Miller, M. W. and Shamoo, A. E., eds.), Plenum, New York, pp. 381–405.

    Google Scholar 

  • Hunter, F. R. (1970) Facilitated diffusion in pigeon erythrocytes. Am. J. Physiol. 218 1765–1772.

    PubMed  CAS  Google Scholar 

  • Hunter, M. J. (1977). Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J. Physiol. 268 35–49.

    PubMed  CAS  Google Scholar 

  • Im, J. H., Meezan, E., Rackley, C. E., and Kim, H. D. (1983) Isolation and characterization of human erythrocyte insulin receptors. J. Biol. Chem. 258 5021–5026.

    PubMed  CAS  Google Scholar 

  • Jarvis, S. M., Young, J. D., Ansay, M., Archibald, A. L., Harkness, R. A., and Simmonds, R. J. (1980) Is inosine the physiological energy source of pig erythrocytes? Biochim. Biophys. Acta 597 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, G., Wiener, G., Kremer, G., Dietz, J. Helwich, M., and Palm, D. (1978) Correlation between isoprenaline-stimulated synthesis of cyclic AMP and occurence of ß-adrenoceptors in immature erythrocytes from rats. Eur. J. Pharmocol. 48 253–262.

    Article  Google Scholar 

  • Kaji, D. (1986) Volume sensitive K transport in human erythrocytes. J. Gen. Physiol. 88 719–738.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, M. A., Hays, L., and Hays, R. (1974) Evolution of facilitated diffusion pathway for amides in erythrocytes. Am. J. Physiol. 226 1327–1337.

    PubMed  CAS  Google Scholar 

  • Kim, H. D., Watts, R. P., Luthra, M. G., Schwalbe, C. R., Comer, R., T., and Brendel, K. (1980) A symbiotic relationship of energy metabolism between a “non-glycolytic” mammalian red cell and the liver. Biochim. Biophys. Acta 589 256–263.

    Article  PubMed  CAS  Google Scholar 

  • LeFevre, P. G. (1948) Evidence of active transfer of certain non-electrolytes across the human red cell membrane. J. Gen. Physiol. 31 505–527.

    Article  Google Scholar 

  • Lew, P. G. (1954) The evidence for active transport of monosaccharides across the red cell membrane. Symp. Soc. exptl. Biol. 8 118–135.

    Google Scholar 

  • Lew, V.L. and Bookchin, R. M. (1986) Volume, pH and ion content regulation in human red cells: analysis of transient behaviour with integrated models. J. Membr. Biol. 92 57–74.

    Article  PubMed  CAS  Google Scholar 

  • Lew, V. L., Tsien, R. Y., Miner, C, and Bookchin, R. M. (1982) Physiological (Ca2+)i level and pump-leak in intact red cells measured using an incorporated Ca chelator. Nature (London) 298 478–481.

    Article  CAS  Google Scholar 

  • Lüdi, H. and Schatzmann, H. J. (1987) Some properties of a system for Na-dependent outward movement of Mg2+ from metabolizing human red blood cells. J. Physiol. 390 367–382.

    PubMed  Google Scholar 

  • Macey, R. I. (1982) Water transport in red blood cells, in Membranes and Transport (Martonosi, A. N., ed.), Plenum, New York, pp. 461–466.

    Google Scholar 

  • Macey, R. I., Adorante, J. S., and Orme, F. W. (1978) Erythrocyte membrane potentials determined by hydrogen ion distribution. Biochim. Biophys. Acta 512 284–295.

    Article  PubMed  CAS  Google Scholar 

  • Mahatma, M. and Thomas, H. W. (1979). Can glucose transport across the human erythrocyte membrane be sustained against a concentration gradient? J. Physiol. 296 104P.

    Google Scholar 

  • Mantione, C. R. and Hanin, I. (1980). Further characterization of man red blood cell cholinergic receptor. Molec. Pharmacol. 18 28–32.

    CAS  Google Scholar 

  • Miller, D. M. (1968a) The kinetics of selective biological transport. Ill Erythrocyte-monosaccharide transport data. Biophys. J. 8 1329–1339.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D.M. (1968b) The kinetics of selective biological transport. IV Assessment of three carrier systems using the erythrocyte-monosaccharide data. Biophys. J. 8 1339–1352.

    Article  PubMed  CAS  Google Scholar 

  • Motais, R. (1977) Organic anion transport in red blood cells, in Membrane Transport in Red Cells (Ellory, J. C. and Lew, V. L., eds.) Academic, pp. 197–220.

    Google Scholar 

  • Nielsen, T. B., Lad, P. M., Preston, S., and Rodbell, M. (1980) Characteristics of the guanine nucleotide regulation component of adenylate cyclase in human erythrocyte membranes. Biochim. Biophys. Acta 629 143–155.

    PubMed  CAS  Google Scholar 

  • Ojcius, D. M. and Solomon, A. K. (1988) Sites of p-chloromercuribenzene sulfonate inhibition of red cell urea and water transport. Biochim. Biophys.Acta 942 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Parker, J. C. (1978) Sodium and calcium movements in dog red blood cells. J. Gen. Physiol. 71 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Parker, J. C. (1979) Active and passive Ca movements in dog red blood cells and resealed ghosts. Am. J. Physiol. 237 C10–C16.

    PubMed  CAS  Google Scholar 

  • Parker, J. C, Gitelman, H. J., Glosson, P. S., and Leonard, D. L. (1975) Role of calcium in volume regulation by dog red blood cells. J. Gen. Physiol. 65 84–96.

    Article  PubMed  CAS  Google Scholar 

  • Ponder, E. (1948) Hemolysis and Related Phenomena. Grune & Stratton, New York.

    Google Scholar 

  • Robinson, T. J., Archer, J. A., Gambhir, K. K., Hollis, V. W. Jr., Carter, L., and Bradley, C. (1979) Erythrocytes: A new cell type for the evaluation of insulin receptor defects in diabetic humans. Science 205 200–202.

    Article  PubMed  CAS  Google Scholar 

  • Sager, G. (1982) Receptor binding sites for ß-adrenergic ligands on human erythrocytes. Biochem. Pharmacol. 31 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Sawitz, D., Sidel, V. S., and Solomon, A. K. (1964) Osmotic properties of human red cells. J. Gen. Physiol. 48 79–91.

    Article  Google Scholar 

  • Schatzmann, H. J. (1966) ATP-dependent Ca++-extrusion from human red cells. Experientia 22 364–368.

    Article  PubMed  CAS  Google Scholar 

  • Schatzmann, H. J. (1986) The human red blood cell calcium pump, in: Membrane Control of Cellular Activity (Lüttgau, H. C, ed.) Fischer-Verlag, Stuttgart. Fortschritte der Zoologie 33 435–442.

    Google Scholar 

  • Simons, T. J. B. (1976) Calcium dependent potassium exchange in human red cell ghosts. J. Physiol. 256 227–244.

    PubMed  CAS  Google Scholar 

  • Skou, J. C. (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23 394–401.

    Article  PubMed  CAS  Google Scholar 

  • Skou, J. C. (1962) Preparation from mammalian brain and kidney of the enzyme system involved in active transport of Na+ and K+. Biochim. Biophys. Acta 58 314–325.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, A. K., Toon, M. R., and Dix, J. A. (1986) Osmotic properties of human red cells. J. Membr. Biol. 91 259–273.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, S. K. (1977) Glutathione movements, in: Membrane Transport in Red Cells(Ellory, J. C. and Lew V. L., eds.) Academic, London, New York, San Francisco, pp. 327–335.

    Google Scholar 

  • Stucki, P. and Schatzmann, H. J. (1983) The response to potassium of the Na-K-pump ATPase in low-K red blood cells from cattle at birth and in later life. Experientia 39 535–536.

    Article  PubMed  CAS  Google Scholar 

  • Tang, L. C, Shoomaker, E., and Wiesman, W. P. (1984). Cholinergic agonists stimulate calcium uptake and cAMP formation in human erythrocytes. Biochim. Biophys. Acta 772 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Vestergaard-Bogind, B., Stampe, P., and Christophersen, P. (1985) Single file diffusion through the Ca-activated K+-channel of human red cells. J. Membrane Biol. 88 67–75.

    Article  CAS  Google Scholar 

  • Weinstein, R. S. (1974) The morphology of adult cells, in The Red Blood Cell (Surgenor, D. M., ed.) Academic, New York, London, pp. 213–268.

    Google Scholar 

  • Whittam, R. and Wheeler, K. P. (1970) Transport across cell membranes. Ann. Rev. Physiol. 32 21–60.

    Article  CAS  Google Scholar 

  • Widdas, W. F. (1980) The asymmetry of the hexose transfer system in the human red cell membrane. Curr. Topics. Membr. Transport 14 165–223.

    CAS  Google Scholar 

  • Wieth, J. O. and Brahm, J. (1985). Cellular anion transport, in The Kidney. (Seldin, D. W. and Giebisch, G., eds.) Raven, New York, pp. 49–89.

    Google Scholar 

  • Wilbrandt, W. (1955) Osmotische Erscheinungen und osmotische Methoden an Erythrozyten. Handbuch physiol.-pathol.-chem. Analyse Hoppe-Seyler/ Thierfelder, 10. Aufl., Vol. II pp. 49–71.

    Google Scholar 

  • Wilbrandt, W. (1961) Zuckertransporte. 12th Colloq. Ges. physiol. Chemie, Mosbach-Baden, pp. 113–136.

    Google Scholar 

  • Wilbrandt, W. and Rosenberg, T. C. (1961) The concept of carrier transport and its corollaries in pharmacology. Pharmacol. Rev. 13, 109–183.

    PubMed  CAS  Google Scholar 

  • Wiley, J. S. and Cooper, R. A. (1974) A furosemide-sensitive cotransport of sodium and potassium in the human red cell. J. Clin. Invest. 53 745–755.

    Article  PubMed  CAS  Google Scholar 

  • Young, J. D. and Ellory, J. C. (1977). Red cell amino acid transport, in Membrane Transport in Red Cells (Ellory, J. C. and Lew, V. L., eds.) Academic, London, New York, San Francisco, pp. 301–325.

    Google Scholar 

  • Zipper, H. and Mawe, R. C. (1972) The exchange and maximal net flux of glucose across the human erythrocyte. I. The effect of insulin, insulin derivatives and small proteins. Biochim. Biophys. Acta 282 311–325.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 The Humana Press Inc.

About this chapter

Cite this chapter

Schatzmann, H.J. (1989). Why Red Cells?. In: Raess, B.U., Tunnicliff, G. (eds) The Red Cell Membrane. Contemporary Biomedicine, vol 10. Humana Press. https://doi.org/10.1007/978-1-4612-4500-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4500-1_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8848-0

  • Online ISBN: 978-1-4612-4500-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics