Subtypes of Muscarinic Cholinergic Receptors

Ligand Binding, Functional Studies, and Cloning
  • Barry B. Wolfe
Part of the The Receptors book series (REC)


Acetylcholine released from neurons has effects on many biological processes. These effects are mediated through two major classes of receptors termed nicotinic and muscarinic cholinergic receptors. There is currently strong evidence supporting the concept that both of these major classes of cholinergic receptors are themselves comprised of distinct subtypes of receptors. For example, the nicotinic receptors on autonomic ganglia have very different properties from those on skeletal muscle, suggesting that there are at least two subtypes of the nicotinic cholinergic receptor (Taylor, 1985). The genes encoding the subunits of nicotinic receptors have been isolated and sequenced from both muscle and nerve, and indeed these molecules have distinct primary structures (Boulter et al., 1985, 1986). Similarly, the existence of subtypes of mAChR has long been postulated on the basis of distinct pharmacologic profiles of some muscarinic receptors, and recently, several genes have been isolated and sequenced that appear to code for distinct subtypes of muscarinic receptors (Kubo et al., 1986a,b; Peralta et al., 1987a,b; Bonner et al., 1987, 1988; Braun et al., 1987; Akiba et al., 1988). Thus, it appears that there are at least five distinct genes that code for proteins that have the properties of muscarinic receptors in both the human and rat genome (Bonner et al., 1987, 1988). This chapter will attempt to put into historical perspective the various reports that have led us to our current thinking with regard to subtypes of muscarinic receptors.


Muscarinic Receptor Muscarinic Acetylcholine Receptor High Affinity Site Muscarinic Cholinergic Receptor Muscarinic Receptor Subtype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiba, I., Kubo, T., Maeda, A., Bujo, H., Nakai, J., Mishina, M., and Numa, S. (1988) Primary structure of porcine muscarinic acetylcholine receptor III and antagonist binding studies. FEBS Lett. 235, 257–261.PubMedCrossRefGoogle Scholar
  2. Ashkenazi, A., Winslow, J. W., Peralta, E. G., Peterson, G. L., Schimerlik, M. I., Capon, D. J., and Ramachandran, J. (1987) An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science 238, 672 - 675.PubMedCrossRefGoogle Scholar
  3. Ashkenazi, A., Peralta, E. G., Winslow, J. W., Ramachandran, J., and Capon, D. J. (1989) Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. Cell 56, 487 - 493.PubMedCrossRefGoogle Scholar
  4. Barlow, R. B., Berry, K. J., Glenton, P. A. M., Nikolaou, N. M., and Soh, K. S. (1976) A comparison of affinity constants for muscarinesensitive acetylcholine receptors in guinea pig atrial pacemaker cells at 29°C and in ileum at 29°C and 37°C. Br. J. Pharmacol. 58, 616 - 620.Google Scholar
  5. Beld, A. J., Van Den Hoven, S., Wouterse, A. C., and Zegers, M. A. P. (1975) Are muscarinic receptors in the central and peripheral nervous system different ? Eur. J. Pharmacol. 30, 360 - 363.PubMedCrossRefGoogle Scholar
  6. Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. (1979) Guanine nucleotides modulate muscarinic receptor binding in the heart. Biochem. Biophys. Res. Comm. 87, 1000 - 1005.PubMedCrossRefGoogle Scholar
  7. Berrie, C. P., Birdsall, N. J. M., Hulme, E. C., Keen, M., and Stockton, J. M. (1985) Solubilization and characterization of high and low affinity pirenzepine binding sites from rat cerebral cortex. Br. J. Pharmacol. 85, 697 - 703.PubMedGoogle Scholar
  8. Berrie, C. P., Birdsall, N. J. M., Hulme, E. C., Keen, M., Stockton, J. M., and Wheatley, M. (1986) Muscarinic receptor subclasses: The binding properties of the soluble receptor binding sites, in Subtypes of Muscarinic Receptors. Trends Pharmacol. Sci. Supplement, pp 8–13.Google Scholar
  9. Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. (1978) The binding of agonists to brain muscarinic receptors. Mol. Pharmacol. 14, 723 - 736.PubMedGoogle Scholar
  10. Birdsall, N. J. M., Hulme, E. C., and Burgen, A. S. V. (1980) The character of the muscarinic receptors in different regions of the rat brain. Proc. R. Soc. Lond. B 207, 1 - 12.PubMedCrossRefGoogle Scholar
  11. Bloom, J. W., Halonen, M., Lawrence, L. J., Rould, E., Seaver, N. A., and Yamamura, H. I. Characterization of high affinity (3H)pirenzepine and (3H)-quinuclidinyl benzilate binding to muscarinic cholinergic receptors in rabbit peripheral lung. J. Pharmacol. Exp. Ther. 240, 51–58.Google Scholar
  12. Boeynaems, J. M. and Dumont, J. E. (1977) The two-step model of ligand-receptor interaction. Mol. Cell. Endocrinol. 7, 33 - 47.PubMedCrossRefGoogle Scholar
  13. Bonner, T. I., Buckley, N. J., Young, A. C., and Brann, M. R. (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237, 527 - 532.PubMedCrossRefGoogle Scholar
  14. Bonner, T. I., Young, A. C., Brann, M. R., and Buckley, N. J. (1988) Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1, 403 - 410.PubMedCrossRefGoogle Scholar
  15. Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemann, S., and Patrick, J. (1986) Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit. Nature 319, 368 - 373.PubMedCrossRefGoogle Scholar
  16. Boulter, J., Luyten, W., Evans, K., Mason, P., Ballivet, M., Goldman, D., Stengelin, S., Martin, G., Heinemann, S., and Patrick, J. (1985) Isolation of a clone coding for the alpha-subunit of a mouse acetylcholine receptor. J. Neurosci. 5, 2545–2552.PubMedGoogle Scholar
  17. Brann, M. R., Buckley, N. J., and Bonner, T. I. (1988a) The striatum and cerebral cortex express different muscarinic receptor mRNA’s. FEBS Lett. 230, 90 - 94.CrossRefGoogle Scholar
  18. Brann, M. R., Conklin, B. R., Penelope-Jones, S. V., Dean, N. M., Collins, R. M., Bonner, T. I., and Buckley, N. J. (1988b) Cloned muscarinic receptors couple to different G-proteins and second messengers. Soc. Neurosci. Abstr. 14, 600.Google Scholar
  19. Braun, T., Schofield, P. R., Shivers, B. D., Pritchett, D. B., and Seeburg, P. H. (1987) A novel subtype of muscarinic receptor identified by homology screening. Biochem. Biophys. Res. Comm. 149, 125 - 132.PubMedCrossRefGoogle Scholar
  20. Brown, J. H. and Goldstein, D. (1986) Analysis of cardiac muscarinic receptors recognized selectively by nonquaternary but not by quaternary ligands. J. Pharmacol. Exp. Ther. 238, 580 - 586.PubMedGoogle Scholar
  21. Buckley, N. J., Bonner, T. I., and Brann, M. R. (1988) Localization of a family of muscarinic receptors mRNAs in rat brain. J. Neurosci. 8, 4646 - 4652.PubMedGoogle Scholar
  22. Burgen, A. S. V. and Spero, L. (1968) The action of acetylcholine and other drugs on the efflux of potassium and rubidium from smooth muscle of guinea pig intestine. Br. J. Pharmacol. 34, 99 - 115.PubMedGoogle Scholar
  23. Cortes, R. and Palacios, J. M. (1986) Muscarinic cholinergic receptor subtypes in the rat brain. I. Quantitative autoradiographic studies. Brain Res. 362, 227–238.PubMedCrossRefGoogle Scholar
  24. Dixon, R. A. F., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., Bolanowski, M. A., Bennett, C. D., Rands, E., Diehl, R. E., Mumford, R. A., Slater, E. E., Sigal, I. S., Caron, M. G., Lefkowitz, R. J., and Strader, C. D. (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321, 75 - 79.PubMedCrossRefGoogle Scholar
  25. Doods, H. I., Mathy, M. J., Dividesko, D., van Charldorp, K. J., deJonge, A., and van Zweiten, P. A. (1987) Selectivity of muscarinic antagonists in radioligand and in vivo experiments for the putative M1, M2 and M3 receptors. J. Pharmacol. Exp. Ther. 242, 257 - 262.PubMedGoogle Scholar
  26. Dunlap, J. and Brown, J. H. (1983) Heterogeneity of binding sites on cardiac muscarinic receptors induced by the neuromuscular blocking agents gallamine and pancuronium. Mol. Pharmacol. 24, 15 - 22.PubMedGoogle Scholar
  27. Evans, R. A., Watson, M., Yamamura, H. I., and Roeske, W. R. (1985) Differential Ontogeny of putative M1 and M2 muscarinic receptor binding sites in the murine cerebral cortex and heart. J. Pharmacol. Exp. Ther. 235, 612 - 618.PubMedGoogle Scholar
  28. Fibiger, H. C. (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res. Rev. 4, 327–388.CrossRefGoogle Scholar
  29. Fisher, A., Grunfeld, Y., Weinstock, M., Gitter, S., and Cohen, S. (1976a) A study of muscarinic receptor heterogeneity with weak antagonists. Eur. J. Pharmacol. 38, 131 - 139.CrossRefGoogle Scholar
  30. Fisher, A., Weinstock, M., Gitter, S., and Cohen, S. (1976b) A new probe for heterogeneity in muscarinic receptors: 2-Methylspiro(1,3-dioxolane-3,4)quinuclidine. Eur. J. Pharmacol. 37, 329 - 338.CrossRefGoogle Scholar
  31. Fuder, H. (1982) The affinity of pirenzepine and other antimuscarinic compounds for pre-and postsynaptic muscarine receptors of the isolated rabbit and rat heart. Scand. J. Gastroenterol., suppl. 72, 79–85.Google Scholar
  32. Fukuda, K., Higashida, H., Kubo, T., Maeda, A., Akiba, I., Bujo, H., Mishina, M., and Numa, S. (1988) Selective coupling with K + currents of muscarinic acetylcholine receptor subtypes in NG108–15 cells. Nature 335, 355 - 358.PubMedCrossRefGoogle Scholar
  33. Fukuda, K., Kubo, T., Akiba, I., Maeda, A., Mishina, M., and Numa, S. (1987) Molecular distinction between muscarinic acetylcholine receptor subtypes. Nature 327, 623 - 625.PubMedCrossRefGoogle Scholar
  34. Gardier, R. W., Tsevdos, E. J., Jackson, D. B., and Delaunois, A. L. (1978) Distinct muscarinic mediation of suspected dopaminergic activity in sympathetic ganglia. Fed. Proc. 37, 2422 - 2248.PubMedGoogle Scholar
  35. Giachetti, A., Mlcheletti, R., and Montagna, E. (1986) Cardioselective profile of AF-DX 116, a muscarinic M2-receptor antagonist. Life Sci. 38, 1663–1672.PubMedCrossRefGoogle Scholar
  36. Goyal, R. K. and Rattan, S. (1978) Neurohormonal, hormonal, and drug receptors for the lower esophageal sphicter. Prog. Gastroenterol. 74, 598–619.Google Scholar
  37. Haga, K. and Haga, T. (1983) Affinity chromatography of the mus- carinic acetylcholine receptor. J. Biol. Chem. 258, 13575 - 13579.PubMedGoogle Scholar
  38. Hammer, R. and Giachetti, A. (1982) Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci. 31, 2991–2998.PubMedCrossRefGoogle Scholar
  39. Hammer, R., Berrie, C. P., Birdsall, J. J. M., Burgen, A. S. V., and Hulme, E. C. (1980) Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature 283, 90 - 92.PubMedCrossRefGoogle Scholar
  40. Hammer, R., Giraldo, E., Schiavi, G. B., Monferini, E., and Ladinsky, H. (1986) Binding profile of a novel cardioselective muscarine receptor antagonist, AF-DX 116, to membranes of peripheral tissues and brain in the rat. Life Sci. 38, 1653–1662.PubMedCrossRefGoogle Scholar
  41. Herron, G. S. and Schimerlik, M. I. (1983) Glycoprotein properties of the solubilized atrial muscarinic acetylcholine receptor. J. Neurochem. 41, 1414 - 1420.PubMedCrossRefGoogle Scholar
  42. Hulme, E. C., Burgen, A. S. V., and Birdsall, N. J. M. (1976) Interactions of agonists and antagonists with the muscarinic receptor. INSERM 50, 49 - 69.Google Scholar
  43. Jacobs, S. and Cuatrecasas, P. (1976) The mobile receptor hypothesis and “cooperativity” of hormone binding. Application to insulin. Biochim. Biophys. Acta. 433, 482 - 495.PubMedCrossRefGoogle Scholar
  44. Jarv, J., Hedlund, B., and Bartfai, T. (1979) Isomerization of the muscarinic receptor-antagonist complex. J. Biol. Chem. 254, 5595 - 5598.PubMedGoogle Scholar
  45. Kubo, T., Fukuda, K., Mikami, A., Maeda, A., Takahashi, H., Mishina, M., Haga, T., Haga, K., Ichiyama, A., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S. (1986a) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323, 411 - 416.CrossRefGoogle Scholar
  46. Kubo, T., Meada, A., Sugimoto, K., Akiba, I., Mikami, A., Takahashi, H., Haga, T., Haga, K., Ichiyama, A., Kangawa, M., Matsuo, H., Hirose, T., and Numa, S. (1986b) Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence. FEBS 209, 367 - 372.CrossRefGoogle Scholar
  47. Lee, J. H. and El-Fakahany, E. E. (1985) Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates. J. Pharmacol. Exp. 233, 707 - 714.Google Scholar
  48. Lee, W. and Wolfe, B. B. (1985) Ontogeny of muscarinic receptor binding sites and muscarinic receptor-mediated stimulation of phosphoinositide breakdown and inhibition of cyclic AMP accumulation in rat forebrain. Soc. Neurosci. Abstr. 11, 95.Google Scholar
  49. Lee, W. and Wolfe, B. B. (1986) Selective regulation of putative muscarinic receptor subtypes and their responsiveness with chronic atropine treatment. Soc. Neurosci. Abstr. 12, 307.Google Scholar
  50. Li, M. and Wolfe, B. B. (1988) Preferential coupling of subtypes of muscarinic receptors to specific second messenger systems: The M1 receptor prefers phosphoinositide breakdown while the M2 receptor prefers inhibition of adenylate cyclase. Soc. Neurosci. Abstr. 14, 228.Google Scholar
  51. Luthin, G. R. and Wolfe, B. B. (1984a) Comparison of (3H)-pirenzepine and (3H)-QNB binding to muscarinic cholinergic receptors in rat brain. J. Pharmacol. Exp. Ther. 228, 648 - 655.Google Scholar
  52. Luthin, G. R. and Wolfe, B. B. (1984b) (3H)-Pirenzepine and (3H)-QNB binding to brain muscarinic cholinergic receptors: Differences in receptor density are not explained by differences in receptor isomerization. Mol. Pharmacol. 26, 164–169.Google Scholar
  53. Luthin, G. R. and Wolfe, B. B. (1985) Characterization of (3H)pirenzepine binding to muscarinic cholinergic receptors solubilized from rat brain. J. Pharmacol. Exp. Ther. 234, 37 - 44.PubMedGoogle Scholar
  54. Luthin, G. R., Harkness, J., Artymyshyn, R. P., and Wolfe, B. B. (1988) Antibodies to a synthetic peptide can be used to distinguish between mucscarinic acetylcholine receptor binding sites in brain and heart. Mol. Pharmacol. 34, 327 - 333.PubMedGoogle Scholar
  55. Martin, M. W., Evans, T., Smith, M. M., and Harden, T. K. (1984) Guanine nucleotide-insensitive binding of a tritiated agonist to muscarinic acetylcholine receptors of rat brain. Fed. Proc. 43, 567.Google Scholar
  56. Mei, L., Lai, J., Roeske, W. R., Fraser, C. M., Venter, J. C., and Yamamura, H. I. (1989) Pharmacological characterization of the M1 muscarinic receptors expressed in murine fibroblast B82 cells. J. Pharmacol. Exp. Ther. 248, 661 - 670.PubMedGoogle Scholar
  57. Minneman, K. P. and Molinoff, P. B. (1980) Classification and quantitation of beta-adrenergic receptor subtypes. Biochem. Pharmacol. 29, 1317 - 1323.PubMedCrossRefGoogle Scholar
  58. Mutschier, E. and Lamrecht, G. (1984) Selective muscarinic agonists and antagonists in functional tests, in Subtypes of Muscarinic Receptors. Trends Pharmacol. Sci. Supplement, pp 39–44.Google Scholar
  59. O’Donnell, S. R. and Wanstall, J. C. (1976) The contribution of extra-neuronal uptake to the trachea-blood vessel selectivity of betaadrenoceptor stimulants in vitro in guinea pigs. Br. J. Pharmacol. 57, 369 - 373.PubMedGoogle Scholar
  60. Peralta, E. G., Ashkenazi, A., Winslow, J. W., Ramachandran, J., and Capon, D. J. (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334, 434 - 437.PubMedCrossRefGoogle Scholar
  61. Peralta, E. G., Winslow, J. W., Peterson, G. L., Smith, D. H., Ashkenazi, A., Ramachandran, J., Schimerlik, M. I., and Capon, D. J. (1987a) Primary structure and biochemical properties of an M2 muscarinic receptor. Science 236, 600 - 605.CrossRefGoogle Scholar
  62. Peralta, E. G., Ashkenazi, A., Winslow, J. W., Smith, D. H., Ramachandran, J., and Capon, D. J. (1987b) Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J. 6, 3923–3929.Google Scholar
  63. Peterson, G. L., Herron, G. S., Yamaki, M., Fullerton, D. S., and Schimerlik, M. J. (1984) Purification of the muscarinic acetylcholine receptor from porcine atria. Proc. Nat. Acad. Sci. 81, 4993 - 4997.PubMedCrossRefGoogle Scholar
  64. Potter, L. T., Flynn, D. D., Hanchett, H. E., Kalinoski, D. L., LuberNarod, J., and Mash, D. C. (1984) Independent M1 and M2 receptors: Ligands, autoradiography and functions, in Subtypes of Muscarinic Receptors. Trends Pharmacol. Sci. Supplement pp 22–31.Google Scholar
  65. Raiteri, M., Leardi, R., and Marchi, M. (1984) Heterogeneity of pre-synaptic muscarinic receptors regulating neurotransmitter release in rat brain. J. Pharmacol. Exp. Ther. 228, 209 - 214.PubMedGoogle Scholar
  66. Roeske, W. R. and Venter, J. C. (1984) The differential loss (3H)pirenzepine vs (3H)-QNB binding to soluble rat brain muscarinic receptors indicates that pirenzepine binds to an allosteric state of the muscarinic receptor. Biochem. Biophys. Res. Comm. 118, 950 - 957.PubMedCrossRefGoogle Scholar
  67. Rosenberger, L. B., Yamamura, H. I., and Roeske, W. R. (1980) Cardiac muscarinic cholinergic receptor binding is regulated by Na and guanyl nucleotides. J. Biol. Chem. 255, 820 - 823.PubMedGoogle Scholar
  68. Shapiro, R. A., Scherer, N. M., Habecker, B. A., Subers, E. M., and Nathanson, N. M. (1988) Isolation, sequence, and functional expression of the mouse M1 muscarinic acetylcholine receptor gene. J. Biol. Chem. 263, 18397 - 18403.PubMedGoogle Scholar
  69. Snyder, S. H., Chang, K. J., Kuhar, M. J., and Yamamura, H. I. (1975) Biochemical identification of the mammalian muscarinic cholinergic receptor. Fed. Proc. 34, 1915 - 1921.PubMedGoogle Scholar
  70. Stein, R., Pinkas-Kramarski, R., and Sokolovsky, M. (1988) Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover. EMBO J. 7, 3031–3035.PubMedGoogle Scholar
  71. Stockton, J. M., Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. (1983) Modification of the binding properties of muscarinic receptors by gallamine. Mol. Pharmacol. 23, 551 - 557.PubMedGoogle Scholar
  72. Taylor, P. (1985) The Pharmacological Basis of Therapeutics (Gilman, A. G., Goodman, L. S., Rall, T. W., and Murad, F., eds.), Macmillian, New York, pp 244–225.Google Scholar
  73. Waelbroeck, M., Gillard, M., Robberecht, P., and Christophe, J. (1987) Muscarinic receptor heterogeneity in rat central nervous system. I. Binding of four selective antagonists to three muscarinic receptor subclasses: A comparison with M2 cardiac muscarinic receptors of the C type. Mol. Pharmacol. 32, 91 - 99.PubMedGoogle Scholar
  74. Wamsley, J. K., Gehert, D. R., Roeske, W. R., and Yamamura, H. I. (1984) Muscarinic antagonist binding site heterogeneity as evidenced by autoradiography after direct labeling with (3H)-QNB and (3H)pirenzepine. Life Sci. 34, 1395–1402.PubMedCrossRefGoogle Scholar
  75. Watson, M., Roeske, W. R., and Yamamura, H. I. (3H)-Pirenzepine selectively identifies a high-affinity population of muscarinic cholinergic receptors in the rat cerebral cortex. Life Sci. 31, 2019–2023.Google Scholar
  76. Watson, M., Yamamura, H. I., and Roeske, W. R. (1983) A unique regulatory profile and regional distribution of (3H)-pirenzepine binding in the rat provide evidence for distinct Ml and M2 muscarinic receptor subtypes. Life Sci. 32, 3001–3011.PubMedCrossRefGoogle Scholar
  77. Watson, M., Roeske, W. R., Johnson, P. C., and Yamamura, H. I. (1984) (3H)-Pirenzepine identifies putative Ml muscarinic receptors in human stellate ganglia. Brain Res. 290, 179–182.PubMedCrossRefGoogle Scholar
  78. Yamamura, H. I., Kuhar, J. J., Greenberg, D., and Snyder, S. H. (1974) Muscarinic cholinergic receptor binding: Regional distribution in monkey brain. Brain Res. 66, 541–546.CrossRefGoogle Scholar
  79. Yamamura, H. I., Wamsley, J. K., Deshmukh, P., and Roeske, W. R. (1983) Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brainstem and spinal cord of the rat using (3H)-pirenzepine. Eur. J. Pharmacol. 91, 147 - 149.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1989

Authors and Affiliations

  • Barry B. Wolfe

There are no affiliations available

Personalised recommendations