Towards Harmonic Analysis on Homogeneous Spaces of Nilpotent Lie Groups

  • Lawrence Corwin
Part of the Progress in Mathematics book series (PM, volume 82)

Abstract

The work described here is a joint project with Fred Greenleaf.

Keywords

CORWIN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [0]
    Y. Benoist, Analyse harmonique sur les espaces symétriques nilpotents, J. Functional Analysis 59 (1984), 211–253.MathSciNetMATHCrossRefGoogle Scholar
  2. [1]
    Corwin, L., and Greenleaf, F.P., Complex algebraic geometry and calculation of multiplicities for induced representations of nilpotent Lie groups. Trans. Amer. Math. Soc. 305 (1988), 601–622.MathSciNetMATHCrossRefGoogle Scholar
  3. [2]
    Corwin, L. and Greenleaf, F.P., A canonical approach to induced and restricted representations of nilpotent Lie groups. Comm. Pure Appl. Math. 41 (1988), 1051–1088.MathSciNetMATHCrossRefGoogle Scholar
  4. [3]
    Corwin, L. and Greenleaf, F.P., “Representations of Nilpotent Lie Groups and their Applications,” Cambridge Univ. Press, Cambridge (to appear).Google Scholar
  5. [4]
    Corwin, L., Greenleaf, F.P. and Grélaud, G., Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc. 304 (1987), 549–583.MathSciNetMATHCrossRefGoogle Scholar
  6. [5]
    Dixmier, J., “Algebres Enveloppantes,” Gauthier-Villars, Paris, 1976.Google Scholar
  7. [6]
    Grélaud, G., Désintégration centrale des représentations induites d’un groupe résoluble exponentiel, Thèse, Univ. de Poitiers (1984).Google Scholar
  8. [7]
    Lipsman, R., Orbital parameters for induced and restricted representations, Trans. Amer. Math. Soc. (to appear).Google Scholar
  9. [8]
    Pedersen N.V., On the infinitesimal kernel of irreducible representations of nilpotent Lie groups, Bull. Soc. Math. France 112 (1984), 423–467.MathSciNetMATHGoogle Scholar
  10. [9]
    Pukanszky, L., “Leçons sur les représentations des groupes,” Paris, Dunod, 1967.MATHGoogle Scholar
  11. [10]
    Wildberger, N., Quantization and harmonic analysis on nilpotent Lie groups. Thesis, Yale University (1983).Google Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • Lawrence Corwin
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations