Advertisement

Towards Harmonic Analysis on Homogeneous Spaces of Nilpotent Lie Groups

  • Lawrence Corwin
Part of the Progress in Mathematics book series (PM, volume 82)

Abstract

The work described here is a joint project with Fred Greenleaf.

Keywords

Harmonic Analysis Symmetric Space Homogeneous Space Spectral Decomposition Invariant Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [0]
    Y. Benoist, Analyse harmonique sur les espaces symétriques nilpotents, J. Functional Analysis 59 (1984), 211–253.MathSciNetMATHCrossRefGoogle Scholar
  2. [1]
    Corwin, L., and Greenleaf, F.P., Complex algebraic geometry and calculation of multiplicities for induced representations of nilpotent Lie groups. Trans. Amer. Math. Soc. 305 (1988), 601–622.MathSciNetMATHCrossRefGoogle Scholar
  3. [2]
    Corwin, L. and Greenleaf, F.P., A canonical approach to induced and restricted representations of nilpotent Lie groups. Comm. Pure Appl. Math. 41 (1988), 1051–1088.MathSciNetMATHCrossRefGoogle Scholar
  4. [3]
    Corwin, L. and Greenleaf, F.P., “Representations of Nilpotent Lie Groups and their Applications,” Cambridge Univ. Press, Cambridge (to appear).Google Scholar
  5. [4]
    Corwin, L., Greenleaf, F.P. and Grélaud, G., Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc. 304 (1987), 549–583.MathSciNetMATHCrossRefGoogle Scholar
  6. [5]
    Dixmier, J., “Algebres Enveloppantes,” Gauthier-Villars, Paris, 1976.Google Scholar
  7. [6]
    Grélaud, G., Désintégration centrale des représentations induites d’un groupe résoluble exponentiel, Thèse, Univ. de Poitiers (1984).Google Scholar
  8. [7]
    Lipsman, R., Orbital parameters for induced and restricted representations, Trans. Amer. Math. Soc. (to appear).Google Scholar
  9. [8]
    Pedersen N.V., On the infinitesimal kernel of irreducible representations of nilpotent Lie groups, Bull. Soc. Math. France 112 (1984), 423–467.MathSciNetMATHGoogle Scholar
  10. [9]
    Pukanszky, L., “Leçons sur les représentations des groupes,” Paris, Dunod, 1967.MATHGoogle Scholar
  11. [10]
    Wildberger, N., Quantization and harmonic analysis on nilpotent Lie groups. Thesis, Yale University (1983).Google Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • Lawrence Corwin
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations