Skip to main content

Abstract

In this overview, various applications and variations of counting in structural complexity theory are discussed. The ability of exact counting is shown to be closely related with the ability of nondeterministic complementation. Relations between counting classes and classes requiring unique or few accepting computations are revealed. Further, approximate counting and relativized results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Allender. Invertible Functions. Ph.D. thesis, Georgia Tech., 1985.

    Google Scholar 

  2. D. Angluin. On counting problems and the polynomial-time hierarchy. Theor. Comput. Sci. 12 (1980): 161–173.

    Article  MathSciNet  MATH  Google Scholar 

  3. T.P. Baker, J. Gill, and R.M. Solovay. Relativizations of the P=?NP question. SIAM J. Comput. 4 (1975): 431–442.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.L. Balcázar, R.V. Book, and U. Schöning. The polynomial-time hierarchy and sparse oracles. Joun. of the Assoc. Comput. Mach. 33 (1986): 603–617.

    Article  MATH  Google Scholar 

  5. Y.M. Barzdin. Complexity of programs to determine whether natural numbers not greater than n belong to a recursively enumerable set. Soviet Math. Dokl. 9 (1968): 1251–1254.

    MATH  Google Scholar 

  6. A. Bertoni, M. Goldwurm, and M. Sabatini. Computing the counting function of context-free languages. Symp. Theor. Aspects Computer Science, Lecture Notes in Computer Science 247, 169–179, Springer-Verlag, 1987.

    Google Scholar 

  7. R.B. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs? Inform. Proc. Letters 25 (1987): 27–32.

    Article  MathSciNet  Google Scholar 

  8. J. Cai and L.A. Hemachandra. Enumerative counting is hard. Proc. 3rd Structure in Complexity Theory Conf., 194–203, IEEE, 1988.

    Google Scholar 

  9. J. Cai and L.A. Hemachandra. On the power of parity. Symp. Theor. Aspects of Comput. Sci., Lecture Notes in Computer Science, Springer-Verlag, 1989, to appear.

    Google Scholar 

  10. M. Furst, J.B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17 (1984): 13–27.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Gill. Computational complexity of probabilistic complexity classes. SIAM Journ. Comput. 6 (1977): 675–695.

    Article  MathSciNet  MATH  Google Scholar 

  12. A.V. Goldberg and M. Sipser. Compression and ranking. 17th ACM Symp. Theory Comput. 440–448, 1985.

    Google Scholar 

  13. L.M. Goldschlager and I. Parberry. On the construction of parallel computers from various bases of boolean functions. Theor. Comput. Sci. 43 (1986): 43–58.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Goldsmith, D. Joseph, and P. Young. Using self-reducibility to characterize polynomial time. Tech. Report 87-11-11, Computer Science Dept., Univ. of Washington, Seattle, 1987.

    Google Scholar 

  15. S. Grollmann and A.L. Selman. Complexity measures for public-key crypto-systems. 25th Symp. Found. Comput. Sci., 495–503, IEEE, 1984.

    Google Scholar 

  16. J. Hartmanis, N. Immerman and V. Sewelson. Sparse sets in NP-P: EXPTIME versus NEXPTIME. 15th ACM Symp. Theory Comput., 382–391, 1983.

    Google Scholar 

  17. J.T. Hastad. Computational limitations for small-depth circuits. Ph.D. thesis, MIT Press, Cambridge, MA., 1987.

    Google Scholar 

  18. L.A. Hemachandra. Counting in Structural Complexity Theory. Ph.D. thesis, Cornell University, 1987.

    Google Scholar 

  19. L.A. Hemachandra. On ranking. Proc. 2nd Structure in Complexity Theory Conf., 103–117, IEEE, 1987.

    Google Scholar 

  20. L.A. Hemachandra. The strong exponential hierarchy collapses. 19th ACM Symp. Theory Comput., 110–122, 1987.

    Google Scholar 

  21. L. A. Hemachandra. On parity and near-testability: P ANT A with probability 1. Tech. Report 87-11-11, Comput. Sci. Dept., Univ. of Washington, Seattle, 1987.

    Google Scholar 

  22. D.T. Huynh. The complexity of ranking. Proc. 3rd Structure in Complexity Theory Conf., 204–212, IEEE, 1988.

    Google Scholar 

  23. N. Immerman. Nondeterministic space is closed under complement. Proc. 3rd Struct. Complexity Theory Conf., 112–115, IEEE, 1988.

    Google Scholar 

  24. M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci. 43 (1986): 169–188.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Kadin. PNP[logn] and sparse Turing complete sets for NP. Proc. 2nd Struc. in Complexity Theory Conf., 33–40, IEEE, 1987.

    Google Scholar 

  26. R.M. Karp and R.J. Lipton. Some connections between nonuniform and uniform complexity classes. Proc. 12th ACM Symp. Theory of Comput Sci., 302–309, 1980.

    Google Scholar 

  27. K. Ko. Relativized polynomial time hierarchies having exactly k levels. Proc. 3rd Structure in Complexity Theory, 251, IEEE, 1988.

    Google Scholar 

  28. J. Köbler, U. Schöning, and J. Torán. On counting and approximation. Proc. Colloq. Trees in Algebra and Programming 1988, Lecture Notes in Computer Science 299, 40–51, Springer-Verlag, 1988.

    Google Scholar 

  29. J. Köbler, U. Schöning, and J. Torán. Turing machines with few accepting paths, manuscript, 1988.

    Google Scholar 

  30. M.W. Krentel. The complexity of optimization problems. 18th ACM Symp. Theory Comput., 69–76, 1986.

    Google Scholar 

  31. C. Lautemann. BPP and the polynomial hierarchy. Inform. Proc. Letters 14 (1983): 215–217.

    Article  MathSciNet  Google Scholar 

  32. T.J. Long. Strong nondeterministic polynomial-time reducibilities. Theor. Comput. Sci. 21 (1982): 1–25.

    Article  MATH  Google Scholar 

  33. T.J. Long and A.L. Selman. Relativizing complexity classes with sparse sets. Journ. of the Assoc. Comput. Mach. 33 (1986): 618–628.

    Article  MathSciNet  Google Scholar 

  34. M. Li and P. Vitányi. Applications of Kolmogorov Complexity in the Theory of Computation. In A. Selman, editor Complexity Theory Retrospective, pages 147–203, Springer-Verlag, 1990.

    Google Scholar 

  35. S.A. Mahaney. Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis. Journ. Comput. Syst. Sci. 25 (1982): 130–143.

    Article  MathSciNet  MATH  Google Scholar 

  36. S.A. Mahaney and J. Hartmanis. An essay about research on sparse NP complete sets. Math. Found. Computer Science 1980, Lecture Notes in Computer Science 88, 40–57, Springer-Verlag, 1980.

    Google Scholar 

  37. R. Mathon. A note on the graph isomorphism counting problem. Inform. Proc. Lett. 8 (1979): 131–132.

    Article  MathSciNet  MATH  Google Scholar 

  38. C.H. Papadimitriou and S.K. Zachos. Two remarks on the power of counting. 6th GI Conf. on Theor. Comput. Sci., Lecture Notes in Computer Science 145, 269–276, Springer-Verlag, 1983.

    Google Scholar 

  39. M. Piotrów. On the complexity of counting. Symp. Math. Found. Comput. Sci., Lecture Notes in Compuyter Science 324, 472–482, Springer-Verlag, 1988.

    Google Scholar 

  40. U. Schöning. A low and a high hierarchy within NP. Journ. Comput. Syst. Sci. 27 (1983): 14–28.

    Article  MATH  Google Scholar 

  41. U. Schöning. Graph isomorphism is in the low hierarchy. 4th Symp. Theor. Aspects of Comput. Sci., Lecture Notes in Computer Science 247, 114–124, Springer-Verlag, 1987.

    Google Scholar 

  42. U. Schöning and K.W. Wagner. Collapsing oracle hierarchies, census functions, and logarithmically many queries. Symp. Theor. Aspects Computer Science 1988, Lecture Notes in Computer Science 294, 91–97, Springer-Verlag, 1988.

    Google Scholar 

  43. J. Simon. On the difference between one and many. Intern. Conf. Automata, Lang., Progr. 1977, Lecture Notes in Computer Science 52, 480–491, Springer-Verlag 1977.

    Google Scholar 

  44. A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidely mixing Markov chains. Internal Report CSR-241-87, Department of Computer Science, University of Edinburgh, 1987.

    Google Scholar 

  45. M. Sipser. A complexity theoretic approach to randomness. Proc. 15th ACM Symp. Theory of Comput. Sci. 1983, 330–335.

    Google Scholar 

  46. L. J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci. 3 (1977): 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  47. L.J. Stockmeyer. On approximation algorithms for #P. SIAM Journ. Comput. 14 (1985): 849–861.

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Szelepcsényi. The method of forcing for nondeterministic automata. Bulletin EATCS 33 (1987): 96–99.

    MATH  Google Scholar 

  49. S. Toda. ∑2SPACE(n) is closed under complement. Journ. Comput. Syst. Sci. 35 (1987): 145–152.

    Article  MathSciNet  MATH  Google Scholar 

  50. On the computational power of PP and ⨁P. 30th Symp. Found. Comput. Sci., 514–519, IEEE, 1989.

    Google Scholar 

  51. J. Torán. Structural Properties of the Counting Hierarchies. Doctoral dissertation, Facultat d’Informatica, UPC Barcelona, Jan. 1988.

    Google Scholar 

  52. J. Torán. An oracle characterization of the counting hierarchy. Proc. 3rd Struct. Complexity Theory Conf., 213–223, IEEE, 1988.

    Google Scholar 

  53. L.G. Valiant. The relative complexity of checking and evaluating. Inform. Proc. Lett. 5 (1976): 20–23.

    Article  MathSciNet  MATH  Google Scholar 

  54. L.G. Valiant. The complexity of computing the permanent. Theor. Comput Sci. 8 (1979): 181–201.

    Article  MathSciNet  Google Scholar 

  55. L.G. Valiant. The complexity of reliability and enumerability problems. SIAM Journ. Computings 8 (1979): 410–421.

    Article  MathSciNet  MATH  Google Scholar 

  56. L.G. Valiant and V.V. Vazirani. NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47 (1986): 85–93.

    Article  MathSciNet  MATH  Google Scholar 

  57. K.W. Wagner. Some observations on the connection between counting and recursion. Theor. Comput. Sci. 47 (1986): 131–147.

    Article  MATH  Google Scholar 

  58. K.W. Wagner. The complexity of combinatorial problems with succinct input representation. Acta Inform. 23 (1986): 325–356.

    Article  MathSciNet  MATH  Google Scholar 

  59. C. Wrathall. Complete sets and the polynomial-time hierarchy. Theor. Comput. Sci. 3 (1977): 23–33.

    Article  MathSciNet  MATH  Google Scholar 

  60. A. Yao. Separating the polynomial-time hierarchy by oracles. 26th Proc. Found. Comput. Sci., 1–10, IEEE, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Schöning, U. (1990). The Power of Counting. In: Selman, A.L. (eds) Complexity Theory Retrospective. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4478-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4478-3_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8793-3

  • Online ISBN: 978-1-4612-4478-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics