Skip to main content

The Structure of Complete Degrees

  • Chapter
Complexity Theory Retrospective

Abstract

The notion of NP-completeness has cut across many fields and has provided a means of identifying deep and unexpected commonalities. Problems from areas as diverse as combinatorics, logic, and operations research turn out to be NP-complete and thus computationally equivalent in the sense discussed in the next paragraph. PSPACE-completeness, NEXP-completeness, and completeness for other complexity classes have likewise been used to show commonalities in a variety of other problems. This paper surveys investigations into how strong these commonalities are.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Allender. Isomorphisms and 1-L reductions. Journal of Computer and System Sciences, 36: 336–350, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Balcázar, R. Book, and U. Schöning. The polynomial-time hierarchy and sparse oracles. Journal of the ACM, 33: 603–617, 1986.

    Article  MATH  Google Scholar 

  3. C. Bennett. Time space tradeoffs for reversible computation. SIAM Journal on Computing, 1989. To appear.

    Google Scholar 

  4. L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell University, 1977.

    Google Scholar 

  5. P. Berman. Relationship between density and deterministic complexity of NP-complete languages. In Proceedings of the 5th International Colloquium on Automata, Languages, and Programming,, pages 63–71, Springer-Verlag, 1978. Lecture Notes in Computer Science No. 62.

    Google Scholar 

  6. T. Baker, J. Gill, and R. Solovay. Relativizations of the P =? NP question. SIAM Journal on Computing, 4: 431–442, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Berman and J. Hartmanis. On isomorphism and density of NP and other complete sets. SIAM Journal on Computing, 1: 305–322, 1977.

    Article  MathSciNet  Google Scholar 

  8. G. Cantor. Contributions to the Founding of the Theory of Transfinite Numbers. Dover Publications, 1955.

    Google Scholar 

  9. N. Cutland. Computability: An Introduction to Recursive Function Theory. Cambridge University Press, 1980.

    MATH  Google Scholar 

  10. M. Dowd. On isomorphism. 1978. Unpublished manuscript.

    Google Scholar 

  11. M. Dowd. Isomorphism of Complete Sets. Technical Report LCSR-TR-34, Laboratory for Computer Science Research, Busch Campus, Rutgers University, 1982.

    Google Scholar 

  12. M. Davis and E. Weyuker. Computability, Complexity, and Languages. Academic Press, 1983.

    MATH  Google Scholar 

  13. S. Fenner. A Complexity Theoretic Failure of the Cantor-Bernstein Theorem. Technical Report 89-007, Department of Computer Science, University of Chicago, 1989.

    Google Scholar 

  14. S. Fenner, S. Kurtz, and J. Royer. Every polynomial-time 1- degree collapses iff P = PSPACE. In Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science, pages 624–629, 1989.

    Google Scholar 

  15. S. Fortune. A note on sparse complete sets. SIAM Journal on Computing, 431–433, 1979.

    Google Scholar 

  16. K. Ganesan. Complete Problems, Creative Sets and Isomorphism Conjectures. PhD thesis, Boston University, 1989.

    Google Scholar 

  17. K. Ganesan and S. Homer. Complete problems and strong polynomial reducibilities. In Proceedings of STACS’89, pages 240–250, 1989. Lecture Notes in Computer Science No. 349.

    Google Scholar 

  18. GJ79]M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman and Company, 1979.

    Google Scholar 

  19. J. Geske, D. Huyhn, and J. Seiferas. A note on almost- everywhere-complex sets and separating deterministic-time-complexity classes. Information and Computation, 1989. To appear.

    Google Scholar 

  20. J. Goldsmith and D. Joseph. Three results on the polynomial isomorphism of complete sets. In Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science, pages 390–397, 1986.

    Google Scholar 

  21. J. Goldsmith. Polynomial Isomorphisms and Near-Testable Sets. PhD thesis, University of Wisconsin at Madison, 1988. Available as: Technical Report Number 816, Computer Sciences Department, University of Wisconsin at Madison.

    Google Scholar 

  22. J. Grollmann and A. Selman. Complexity measures for public- key cryptosystems. In Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer Science, pages 495–503, 1984.

    Google Scholar 

  23. J. Grollmann and A. Selman. Complexity measures for public- key cryptosystems. SIAM Journal on Computing, 17: 309–335, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Hartmanis. Feasible Computations and Provable Complexity Properties. Society for Industrial and Applied Mathematics, 1978.

    Google Scholar 

  25. J. Hartmanis. On log-tape isomorphisms of complete sets. Theoretical Computer Science, 273–286, 1978.

    Google Scholar 

  26. J. Hartmanis and L. Hemachandra. One-way functions, robustness, and the non-isomorphism of NP-complete sets. In Proceedings of the 2nd Annual IEEE Structure in Complexity Theory Conference, 1987.

    Google Scholar 

  27. J. Hartmanis, N. Immerman, and S. Mahaney. One-way log- tape reductions. In Proceedings of the 19th Annual IEEE Symposium on Foundations of Computer Science, pages 65–72, 1981.

    Google Scholar 

  28. S. Homer and A. Selman. Oracles for structural properties. In Proceedings of the 4th Annual IEEE Structure in Complexity Theory Conference, pages 3–14, 1989.

    Chapter  Google Scholar 

  29. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.

    MATH  Google Scholar 

  30. C. Jockusch, Jr. Degrees of generic sets. In F. R. Drake and S. S. Wainer, editors, Recursion Theory: Its Generalizations and Applications, pages 110–139, Cambridge University Press, 1980.

    Chapter  Google Scholar 

  31. D. Joseph and P. Young. Some remarks on witness functions for polynomial reducibilities in NP. Theoretical Computer Science, 39: 225–237, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  32. K. Ko, T. Long, and D. Du. A note on one-way functions and polynomial-time isomorphisms. Theoretical Computer Science, 47: 263–276, 1987.

    Article  MathSciNet  Google Scholar 

  33. S. Kurtz, S. Mahaney, and J. Royer. Noncollapsing Degrees. Technical Report 87-001, Department of Computer Science, University of Chicago, 1987.

    Google Scholar 

  34. S. Kurtz, S. Mahaney, and J. Royer. Progress on collapsing degrees. In Proceedings of the 2nd Annual IEEE Structure in Complexity Theory Conference, pages 126–131, 1987.

    Google Scholar 

  35. S. Kurtz, S. Mahaney, and J. Royer. Collapsing degrees. Journal of Computer and System Sciences, 37: 247–268, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Kurtz, S. Mahaney, and J. Royer. The isomorphism conjecture fails relative to a random oracle. In Proceedings of the 21st annual ACM Symposium on Theory of Computing, pages 157–166, 1989

    Google Scholar 

  37. K. Ko. On some natural complete operators. Theoretical Computer Science, 37: 1–30, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Kozen. Indexings of subrecursive classes. Theoretical Computer Science, 11: 277–301, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Kurtz. A relativized failure of the Berman-Hartmanis conjecture. 1983. Unpublished manuscript.

    Google Scholar 

  40. S. Kurtz. The Isomorphism Conjecture Fails Relative to a Generic Oracle. Technical Report 88-018, Department of Computer Science, University of Chicago, 1988.

    Google Scholar 

  41. T. Long. One-way functions, isomorphisms, and complete sets. Abstracts of the AMS, 9: 125, 1988.

    Google Scholar 

  42. T. Long and A. Selman. Relativizing complexity classes with sparse oracles. Journal of the ACM, 33: 618–627, 1986.

    Article  MathSciNet  Google Scholar 

  43. S. Mahaney. On the number of p-isomorphism classes of NP- complete sets. In Proceedings of the 22th Annual IEEE Symposium on Foundations of Computer Science, pages 271–278, 1981.

    Google Scholar 

  44. S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis. Journal of Computer and System Sciences, 25: 130–143, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Mahaney. The isomorphism conjecture and sparse sets. In J. Hartmanis, editor, Computational Complexity Theory, American Mathematical Society, 1989.

    Google Scholar 

  46. G. Moore. Zermelo’s Axiom of Choice: Its Origins, Development, and Influence. Springer-Verlag, 1982.

    MATH  Google Scholar 

  47. A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squaring requires exponential time. In Proceedings of the 13th Annual IEEE Symposium on Switching and Automata Theory, pages 125–129, 1972.

    Chapter  Google Scholar 

  48. M. Machtey, K. Winklmann, and P. Young. Simple Godel numberings. SIAM Journal on Computing, 7:39–60, 1978.

    Article  MathSciNet  Google Scholar 

  49. M. Machtey and P. Young. An Introduction to the General Theory of Algorithms. North-Holland, 1978.

    MATH  Google Scholar 

  50. S. Mahaney and P. Young. Reductions among polynomial iso-morphism types. Theoretical Computer Science, 39: 207–224, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Myhill. Creative sets. Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, 1: 97–108, 1955.

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Myhill. Recursive digraphs, splinters and cylinders. Mathematische Annalen, 138: 211–218, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  53. E. Post. Recursively enumerable sets of positive integers and their decision problems. Bulletin of the AMS, 50: 284–316, 1944.

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Royer and J. Case. Intensional Subrecursion and Complexity Theory. Technical Report 87-007, Department of Computer Science, University of Chicago, 1987.

    Google Scholar 

  55. H. Rogers. Godel numberings of the partial recursive functions. Journal of Symbolic Logic, 23: 331–341, 1958.

    Article  MathSciNet  Google Scholar 

  56. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967. Reprinted. MIT Press. 1987.

    Google Scholar 

  57. D. Russo. Optimal approximations of complete sets. In Proceedings of the Structure in Complexity Theory Conference, pages 311–324, Springer-Verlag, 1986.

    Google Scholar 

  58. C. Schnorr. Optimal enumerations and optimal Godei numberings. Mathematical Systems Theory, 8: 182–191, 1975.

    Article  MathSciNet  Google Scholar 

  59. O. Watanabe. On one-one polynomial time equivalence relations. Theoretical Computer Science, 38: 157–165, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  60. O. Watanabe. A note on p-isomorphism conjecture. 1988. Un-published manuscript.

    Google Scholar 

  61. P. Young. Linear orderings under one-one reducibility. Journal of Symbolic Logic, 31: 70–85, 1966.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Kurtz, S.A., Mahaney, S.R., Royer, J.S. (1990). The Structure of Complete Degrees. In: Selman, A.L. (eds) Complexity Theory Retrospective. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4478-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4478-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8793-3

  • Online ISBN: 978-1-4612-4478-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics