Advertisement

Paleoecological Analysis of Lake Acidification Trends in North America and Europe Using Diatoms and Chrysophytes

  • Donald F. Charles
  • Richard W. Battarbee
  • Ingemar Renberg
  • Herman van Dam
  • John P. Smol
Chapter
Part of the Advances in Environmental Science book series (ENVIRON.SCIENCE, volume 4)

Abstract

Analysis of sediment diatom and chrysophyte assemblages is the best technique currently available for inferring past lake water pH trends, and use of this approach is increasing rapidly. Sediment-core-inferred pH data exist for at least 100 lakes in both North America and Europe. This number will approximately double within the next 2 years. The pH inference equations are based on at least 15 calibration data sets for North America and 10 for Europe, involving totals of at least 500 and 300 lakes, respectively.

Paleoecological studies indicate that recent acidification has been caused by acidic deposition in the Adirondack Mountains (New York), northern New England, Ontario, Quebec, and Canadian Atlantic provinces in North America; England, Scotland, and Wales in the United Kingdom; and Norway, Sweden, Finland, The Netherlands, and West Germany in Europe. Inferred pH decreases are commonly as much as 0.5 to 1.5 pH units. No acidification trends were observed in regions currently receiving low deposition of strong acids (e.g., Rocky Mountains and Sierra Nevada in the western United States, northwestern Norway, and northwestern Scotland). Slight or no trends toward decreasing pH were observed in study lakes receiving moderately acidic deposition (upper Midwest and northern Florida, United States). The magnitude of pH decline in lakes studied is greater, on the average, in Europe than in North America. The amount of inferred acidification (increase in H+ concentration) correlates with the amount of S and N loading and the ability of watersheds and lakes to neutralize acidic inputs and is generally consistent with current lake acidification models.

In most cases, the primary cause of recent acidification trends (post-1850) is atmospheric deposition of acidic material, as opposed to land use changes or natural processes, although these may be contributing factors. Acidic loading has decreased in some regions since 1970 (e.g., northeastern United States, United Kingdom). Some lakes have become less acidic in response, but others continue to lose buffering capacity and are becoming more acidic. Many currently acidic lakes were naturally acidic (pH <5.5) prior to the onset of anthropogenic acidification. These lakes are typically small (<10 ha), located at moderately high elevations, have thin or peaty soils, or are located in glacial outwash deposits. Many of these have acidified further recently.

Keywords

Diatom Assemblage Acidic Deposition Acidic Precipitation Lake Acidification Adirondack Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alhonen, P. 1967. Acta Bot Fenn 76: 1–59.Google Scholar
  2. Alhonen, P. 1968. Memo Soc Fauna Flora Fenn 44: 13–20.Google Scholar
  3. Almer, B., W. Dickson, C. Ekstrom, and E. Hornstrom. 1978. In J. O. Nriagu, ed. Sulfur in the environment, Part II. Ecological impacts, 271–311. John Wiley and Sons. New York.Google Scholar
  4. Almer, B., W. Dickson, C. Ekstrom, E. Hornstrom, andU. Miller. 1974. Ambio 3: 30–36.Google Scholar
  5. Altshuller, A. P., and R. A. Linthurst. 1984. The acidic deposition phenomenon and its effects: Critical assessment review papers. EPA/600/8-3/016BF. U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  6. Andersen, S. T. 1966. Paleobotanist 15: 117–127.Google Scholar
  7. Andersen, S. T. 1967. In R. Tiixen, ed. Pflanzensoziologie und palynologie, 106–118. Junk, Dordrecht, Netherlands. Anderson, D. S., R. B. Davis, and F. Berge. 1986a. In J. P. Smol, R. W. Battarbee, R. B. Davis, and J. Meriläinen, eds. Diatoms and lake acidity, 97–113. Junk Dordrecht, Netherlands.Google Scholar
  8. Anderson, N. J., R. W. Battarbee, P. G. Appleby, A. C. Stevenson, F. Oldfield, J. Darley, and G. Glover. 1986b. Palaeolomnological evidence for the acidification of Loch Fleet. Research Paper No. 17, Paleoecology Research Unit, University College London, London.Google Scholar
  9. Arzet, K. 1987. Diatomeen als pH-Indikatoren in subrezenten Sedimenten von Weichwasserseen. Dissertation aus der Abteilung fur Limnologie des Institut für Zoologie der Universität Innsbruck. 266 p.Google Scholar
  10. Arzet, K., Krause-Dellin, D., and. C. Steinberg. 1986b. In J. P. Smol, R. W. Battarbee, R. B. Davis, and J. Meriläinen, eds. Diatoms and lake acidity, 227–250. Junk, Dordrecht, Netherlands.Google Scholar
  11. Arzet, K., C. Steinberg, P. Psenner, andN. Schulz. 1986a. Hydrobiologia 143: 247–254.Google Scholar
  12. Arzet, K., and H. van Dam. 1986. In M. Ricard, ed. Proceedings of the Eighth International Diatom Symposium, 748–749. Koeltz, Koenigstein.Google Scholar
  13. Asman, W. A. M., B. Drukker, and A. J. Janssen. 1988. Atmos Environ 22: 725–735.Google Scholar
  14. Baron, J., S. A. Norton, D. R. Beeson, and R. Herrmann. 1986. Can J Fish Aq Sci 43: 1350–1362.Google Scholar
  15. Barrett, C. F., D. H. F. Atkins, J. N. Cape, J. Crabtree, T. D. Davies, R. G. Derwent, B. E. A. Fisher, D. Fowler, A. S. Kallend, A. Martin, R. A. Scriven, and J. G. Irwin. 1987. Acid deposition in the United Kingdon 1981–1985: A second report of the United Kingdom Review Group on Acid Rain. Warren Spring Laboratory.Google Scholar
  16. Barrett, C. F., D. H. F. Atkins, J. N. Cape, D. Fowler, J. G. Irwin, A. S. Kallend, A. Martin, J. I. Pitman, R. A. Scriven, and A. F. Tuck. 1983. Acid deposition in the United Kingdom: Report of the United Kingdom Review Group on Acid Rain. Warren Spring Laboratory.Google Scholar
  17. Barrie, L. A. 1984. Tellus 36B: 333–355.Google Scholar
  18. Battarbee, R. W. 1984. Phil Trans Royal Soc London, Series B 305: 451–477.Google Scholar
  19. Battarbee, R. W. 1986. In B. Berglund, ed. Handbook ofHolocene palaeoecology and palaeohydrology. John Wiley and Sons, New York. p. 527–570.Google Scholar
  20. Battarbee, R. W., N. J. Anderson, P. G. Appleby, R. G. Flower, S. C. Fritz, E. Y. Haworth, V. J. Jones, A. Kreiser, J. Natkanski, F. Oldfield, S. T. Patrick, N. Richardson, B. Rippey, and A. C. Stevenson. 1988c. Lake acidification in the United Kingdom: Evidence from the analysis of lake sediments. Ensis Press, London. 68 p.Google Scholar
  21. Battarbee, R. W., and D. F. Charles. 1986. Water Air Soil Pollut 30: 347–354.Google Scholar
  22. Battarbee, R. W., and D. F. Charles. 1987. Prog Phys Geog 11: 552–580.Google Scholar
  23. Battarbee, R. W., R. J. Flower, A. C. Stevenson, V. J. Jones, R. Harriman, and P. G. Appleby. 1988a. Nature 332: 530–532.Google Scholar
  24. Battarbee, R. W., R. J. Flower, A. C. Stevenson, and B. Rippey. 1985. Nature 315: 350–352.Google Scholar
  25. Battarbee, R. W., and I. Renberg. 1985. Royal Society Surface Water Acidification Project (SWAP): Palaeolimnology programme. Working Paper No. 12. Paleoecology Research Unit, University College London, London.Google Scholar
  26. Battarbee, R. W., J. P. Smol, and J. Meriläinen. 1986. In J. P. Smol, R. W. Battarbee, R. B. Davis, and J. Merilainen, eds. Diatoms and lake acidity, 5–14. Junk, Dordrecht, Netherlands.Google Scholar
  27. Battarbee, R. W., A. C. Stevenson, B. Rippey, C. Fletcher, J. Natkanski, M. Wik, and R. J. Flower. 1988b. J. Ecol O. (In press.)Google Scholar
  28. Beeson, D. R. 1984. Bull Ecol Soc Amer 65: 135.Google Scholar
  29. Beeson, D. R. 1988. Recent history of three lakes in the Wind River Mountains, Wyoming, based on sediment diatom remains. Report submitted to the U.S. Forest Service, Bridger/Teton National Forest, Jackson, WY (unpubl.).Google Scholar
  30. Berge, F. 1975. pH-forandringer og sedimentasjon av diatomeer i Langtjern. SNSF prosjektetIR 11/75:1–18. Aas-NLH, Norway.Google Scholar
  31. Berge, F. 1976. Kiselalger og pH i noen elver og innsjoer i Agder og Telemark. En sammenlikning me llom arene 1949 og 1975 [Diatoms and pH in some rivers and lakes in Agder and Telemark (Norway): A comparison between the years 1949 and 1975]. SNSF prosjektet, IR18/76:l–36, Aas-NLH, Norway.Google Scholar
  32. Berge, F. 1979. Kiselalger og pH i noen innsjoer i Agder og Hordaland [Diatoms and pH in some lakes in the Agder and Hordaland Counties, Norway]. SNSF prosjektet IR42/79:l–64, Aas-NLH, Norway.Google Scholar
  33. Berge, F. 1985. Relationships of diatom taxa to pH and other environmental factors in Norwegian soft-water lakes. Doctoral dissertation, University of Maine, Orono, ME.Google Scholar
  34. Berglund, B., and N. Maimer. 1971. Geol Foren Stockh Forh 93: 575–586.Google Scholar
  35. Binford, M. W. 1988. In D. F. Charles and D. R. Whitehead, eds. Paleoecological investigation of recent lake acidification. Developments in hydrobiology series. Junk, Dordrecht, Netherlands. (In press. )Google Scholar
  36. Birks, H. J. B. 1987. Methods for pH-calibration and reconstruction from palaeolimno-logical data: Procedures, problems, potential techniques. Proceedings of the Surface Water Acidification Programme (SWAP) Mid-Term Review Conference, Bergen, June 22–26, 1987. Norwegian Academy of Science and Letters, Royal Society, Royal Swedish Academy of Sciences. 370–380.Google Scholar
  37. Bormann, F. H., and G. E. Likens. 1979. Pattern and process in a forested ecosystem. Springer-Verlag, New York.Google Scholar
  38. Brimblecombe, P., and D. H. Stedman. 1982. Nature 298: 460–462.Google Scholar
  39. Brugam, R. B. 1980. Quaternary Research 13: 133–146.Google Scholar
  40. Brugam, R. B. 1983. Hydrobiologia 98: 223–235.Google Scholar
  41. Charles, D. F. 1984. Mitt Int Ver Theor Angew Limnol 22: 559–566.Google Scholar
  42. Charles, D. F. 1985. Ecology 66: 994–1011.Google Scholar
  43. Charles, D. F. 1986. In J. P. Smol, R. W. Battarbee, R. B. Davis, and J. Meriläinen, eds. Diatoms and lake acidity, 35–44. Junk, Dordrecht, Netherlands.Google Scholar
  44. Charles, D. F., M. W. Binford, B. D. Fry, E. Furlong, R. A. Hites, M. J. Mitchell, S. A. Norton, M. J. Patterson, J. P. Smol, A. J. Uutala, J. R. White, D. R. Whitehead, and R. J. Wise. 1989. In D. F. Charles and D. R. Whitehead, eds. Paleoecological investigation of recent lake acidification. Developments in hydrobiology. Junk, Dordrecht, Netherlands. (In press. )Google Scholar
  45. Charles, D. F. and S. A. Norton. 1986. Paleolimnological evidence for trends in atmospheric deposition of acids and metals. Acid deposition: Long-term trends, 335–435. National Academy Press, Washington, DC.Google Scholar
  46. Charles, D. F., and J. P. Smol. 1988. Limnol Oceanog 33: 1451–1462.Google Scholar
  47. Charles, D. F., and D. R. Whitehead. 1986a. Hydrobiologia 143: 13–20.Google Scholar
  48. Charles, D. F., and D. R. Whitehead. 1986b. Paleoecological investigation of recent lake acidification: Methods and project description. EPRIEA-4906. Electric Power Research Institute, Palo Alto, CA. 228 p.Google Scholar
  49. Charles, D. F., D. R. Whitehead, D. R. Engstrom, B. D. Fry, R. A. Hites, S. A. Norton, J. S. Owens, L. A. Roll, S. C. Schindler, J. P. Smol, A. J. Uutala, J. R. White, and R. J. Wise. 1987. Biogeochemistry 3: 267–296.Google Scholar
  50. Cholnoky, B.J. 1968. Die ökologie derdiatomeen in binnengewässern. J. Cramer, Lehre, Germany.Google Scholar
  51. Christie, C. E., and J. P. Smol. 1986. Hydrobiologia 143: 355–360.Google Scholar
  52. Christie, C. E., J. P. Smol, P. Huttunen, and J. Meriläinen. 1988. Hydrobiologia 161: 237–243.Google Scholar
  53. Cleve, P. T. 1891. Acta Soc Fauna Flora Fenn 8: 1–68.Google Scholar
  54. Clymo, R. S. 1963. Ann Bot 27: 309–324.Google Scholar
  55. Colingsworth, R. F., M. H. Hohn, and G. B. Collins. 1967. Papers of the Michigan Academy of Science, Arts, and Letters 52: 19–30.Google Scholar
  56. Conger, P. S. 1939. Am J Sci 237: 324–340.Google Scholar
  57. Crabtree, K. 1969. Mitteilungen, Int Ver Theor Angew Limnol 17: 165–171.Google Scholar
  58. Crocker, R. L., and J. Major. 1955. J Ecol 43: 427–448.Google Scholar
  59. Davidson, G. A. 1984. Paleolimnological reconstruction of the acidification history of an experimentally acidified lake. M.Sc. Thesis, The University of Manitoba. 186 p.Google Scholar
  60. Davis, R. B. 1987. Quaternary Sci Reviews 6: 147–163.Google Scholar
  61. Davis, R. B., and D. S. Anderson. 1985. Hydrobiologia 120: 69–87.Google Scholar
  62. Davis, R. B., D. S. Anderson, and F. Berge. 1985. Nature 316: 436–438.Google Scholar
  63. Davis, R. B., D. S. Anderson, D. F. Charles, and J. N. Galloway. 1988. In W. J. Adams, G. A. Chapman, and W. G. Landis, eds. Aquatic toxicology and hazard assessment: 10th vol., ASTM STP 971, 89 - 111. American Society for Testing and Materials, Philadelphia.Google Scholar
  64. Davis, R. B., and F. Berge. 1980. In D. Drabl0s, and A. Tollan, eds. Ecological impact of acid precipitation, 270–271. SNSF Project, Oslo, Norway.Google Scholar
  65. Davis, R. B., S. A. Norton, D. F. Brakke, F. Berge, and C. T. Hess. 1980. In D. Drabl0s and A. Tollan, eds. Ecological impact of acid precipitation, 274–275. SNSF Project, Oslo, Norway.Google Scholar
  66. Davis, R. B., S. A. Norton, C. T. Hess, and D. Brakke. 1983. Hydrobiologia 103: 113–123.Google Scholar
  67. Davis, R. B., S. A. Norton, J. S. Kahl, M. C. Whiting, J. Ford, and J. P. Smol. 1989. In D. F. Charles and D. R. Whitehead, eds. Paleoecological invvestigation of recent lake acidification. Junk, Dordrecht, Netherlands. (In press. )Google Scholar
  68. Davis, R. B., and J. P. Smol. 1986. In J. P. Smol, R. W. Battarbee, R. B. Davis, and J. Merilainen, eds. Diatoms and lake acidity, 291–300. Junk, Dordrecht, Netherlands. Davis, R. B., and P. M. Stokes. 1986. Water Air Soil Pollut 30:311–318.Google Scholar
  69. Delorme, L. D., H. C. Duthie, S. R. Esterby, S. M. Smith, andN. S. Harper. 1986. Archiv für Hydrobiol 108: 1–22.Google Scholar
  70. Delorme, L. D., S. R. Esterby, and H. Duthie. 1983. Int Rev gesamten Hydrobiol 69: 41–55.Google Scholar
  71. Del Prete, A., and J. N. Galloway. 1983. Temporal trends in the pH of Woods, Sagamore and Panther lakes as determined by an analysis of diatom populations. The Integrated Lake-Watershed Acidification Study: Proceedings of the ILWAS Annual Review Conference. EPRIEA-2827, Electric Power Research Institute, Palo Alto, CA.Google Scholar
  72. Del Prete, A., and C. Schofield. 1981. Archiv Hydrobiol 91: 332–340.Google Scholar
  73. Dickman, M., and J. Fortescue. 1984. Verh Int Verein Limnol 22: 1345–1356.Google Scholar
  74. Dickman, M., H. G. Thode, S. Rao, and R. Anderson. 1988. Environ Pollut 49: 265–288.PubMedGoogle Scholar
  75. Dickman, M. D., S. Dixit, J. Fortescue, B. Barlow, and J. Terasmae. 1984. Water Air Soil Google Scholar
  76. Pollut 21:375–386.Google Scholar
  77. Dickman, M. D., and H. G. Thode. 1985. Water Air Soil Pollut 26: 233–253.Google Scholar
  78. Dickman, M. D., H. van Dam, B. van Geel, A. G. Klink, and A. van der Wijk. 1987.Google Scholar
  79. Archiv Hydrobiol 109:377–408.Google Scholar
  80. Dickson, W. 1980. In D. Drabl0s and A. Tollan, eds. Ecological impact of acid precipitation, 75–83. SNSF Project, Oslo, Norway.Google Scholar
  81. Digerfeldt, G. 1972. Folia Limnol Scand 16: 1–104.Google Scholar
  82. Digerfeldt, G. 1975. Feol Foren Stockh Forh 97: 13–28.Google Scholar
  83. Digerfeldt, G. 1977. Regional vegetation history and paleolimnology. The Flandrian development of Lake Flarken, Report 13. Department of Quaternary Geology, University of Lund, Sweden.Google Scholar
  84. Dillon, P. J., andR. D. Evans. 1982. Hydrobiologia 91: 121–130.Google Scholar
  85. Dixit, A. S., S. S. Dixit, and R. D. Evans. 1988c. J Paleolimnol 1: 23–38.Google Scholar
  86. Dixit, S. S. 1983. The utility of sedimentary diatoms as a measure of historical lake pH. M.Sc. Thesis, Brock University, Ontario.Google Scholar
  87. Dixit, S. S. 1986a. Can J Bot 64: 1129–1133.Google Scholar
  88. Dixit, S. S. 1986b. Algal microfossils and geochemical reconstructions of Sudbury lakes: A test of the paleo-indicator potential of diatoms and chrysophytes. Ph.D. Thesis, Queen’s University, Kingston, Ontario. 190 p.Google Scholar
  89. Dixit, S. S., and M. D. Dickman. 1986. Hydrobiologia 131: 133–143.Google Scholar
  90. Dixit, S. S., A. S. Dixit, and R. D. Evans. 1987a. Sci Total Environ 67: 53–67.Google Scholar
  91. Dixit, S. S., A. S. Dixit, and R. D. Evans. 1987b. Paleolimnological study of LRTAP network lakes, Quebec region. Report prepared for Department of Supply and Services, Canada. Trent Aquatic Research Centre, Trent University, Peterborough, Ontario. 121 pages (unpubl.).Google Scholar
  92. Dixit, S. S., A. S. Dixit, and R. D. Evans. 1988a. Can J Fish Aq Sci 45: 1411–1421.Google Scholar
  93. Dixit, S. S., A. S. Dixit, andR. D. Evans. 1988b. Hydrobiologia. 169: 135–148.Google Scholar
  94. Dixit, S. S., A. S. Dixit, and R. D. Evans. 1988c. Water Air Soil Pollut 38: 97–104.Google Scholar
  95. Dixit, S. S., and R. D. Evans. 1986. Can J Fish Aq Sci 43: 1836–1845.Google Scholar
  96. Dixit, S. S., J. P. Smol, R. B. Davis, and D. S. Anderson. 1989. In D. F. Charles and D. R. Whitehead, eds. Paleoecological investigation of recent lake acidification. Developments in hydrobiology. Junk, Dordrecht, Netherlands. (In press. )Google Scholar
  97. Driscoll, C. T., J. P. Baker, J. J. Bisogni, C. L. Schofield. 1984. In O. P. Bricker, ed. Geological aspects of acid deposition, 55–75. Butterworth, Boston.Google Scholar
  98. Eilers, J. M., D. F. Brakke, D. H. Landers, and P. E. Kellar 1988. Verh Internat Verein Limnol 23: 144–151.Google Scholar
  99. Elner, J. K, and S. Ray. 1987. Water Air Soil Pollut 32: 17–29.Google Scholar
  100. EMEP/CCC. 1984. Summary report from the chemical coordinating centre for the second phase of the co-operative program for monitoring and evaluation of long-range transmission of air-pollutants in Europe (EMEP). Norwegian Institute for Air Research ( NILU ), Lillestrϕm.Google Scholar
  101. Esterby, S. R., and A. H. El-Shaarawi. 1981a. J Appl Stat 30: 277–285.Google Scholar
  102. Esterby, S. R., and A. H. El-Shaarawi. 1981b. J Hydrobiol 53: 17–30.Google Scholar
  103. Evans, G. H. 1970. New Phytol 69: 821–874.Google Scholar
  104. Evans, G. H., and R. Walker. 1979. New Phytol 78: 221–236.Google Scholar
  105. Florin, M.-B. 1977. Striae 5: 1–60.Google Scholar
  106. Flower, R. J. 1986. In J. P. Smol, R. W. Battarbee, R. B. Davis, and J. Meriläinen, eds. Diatoms and lake acidity, 45 - 54. Junk, Dordrecht, Netherlands.Google Scholar
  107. Flower, R. J. 1987. Hydrobiologia 143: 93–104.Google Scholar
  108. Flower, R. J., and R. W. Battarbee. 1983. Nature 305: 130–133.Google Scholar
  109. Flower, R. J., R. W. Battarbee, and P. G. Appleby. 1987. J Ecol 75: 797–824.Google Scholar
  110. Flower, R. J., R. W. Battarbee, J. Natkanski, B. Rippey, and P. G. Appleby. 1988. J Appl Ecol 25: 715–724.Google Scholar
  111. Foged, N. 1969. Dan Geol Foren 19: 237–256.Google Scholar
  112. Foged, N. 1972. Medd Grϕnl 194: 1–67.Google Scholar
  113. Ford, J. 1986. In J. P. Smol, R. W. Battarbee, R. B. Davis, and J. Meriläinen, eds. Diatoms and lake acidity, 131 - 148. Junk, Dordrecht, Netherlands.Google Scholar
  114. Ford, M. S. 1984. The influence of lithology on ecosystem development in New England: A comparative paleoecological study. Doctoral dissertation, University of Minnesota, Minneapolis.Google Scholar
  115. Ford, M. S. 1989. A 10,000-year history of natural ecosystem acidification. Ecological Monographs. (In press.)Google Scholar
  116. Fortescue, J. A. C. 1984. Interdisciplinary research for an environmental component (acid rain) in regional geochemical surveys (Wawa area). Algoma District, Ontario Geological Survey Map 80 713, Geochemical Series, compiled 1983.Google Scholar
  117. Frey, D. G. 1969. Mitt Int Ver Theor Agnew Limnol 17: 7–18.Google Scholar
  118. Fritz, S. C., and R. E. Carlson. 1982. Water Air Soil Pollut 17: 151–163.Google Scholar
  119. Galloway, J. N., C. L. Schofield, N. E. Peters, G. R. Hendrey, andE. R. Altwicker. 1983. Can J Fish Aq Sci 40: 799–806.Google Scholar
  120. Gasse, F. 1986. In J. P. Smol, ed. Diatoms and lake acidity, 149 - 168. Junk, Dordrecht, Netherlands.Google Scholar
  121. Gasse, F., andF. Tekaia. 1983. Hydrobiologia 103: 85–90.Google Scholar
  122. Gibson, J. H., J. N. Galloway, C. Schofield, W. McFee, R. Johnson, S. McCorley, N. Dise, and D. Herzog. (1984). Rocky Mountain acidification study. FWS/OBS-80/40. U.S. Fish and Wildlife Service, Division of Biological Services Eastern Energy and Land Use Team. 137 p.Google Scholar
  123. Gibson, K. N., J. P. Smol, and J. Ford. 1987. Can J Fish Aq Sci 44: 1584–1588.Google Scholar
  124. Gorham, E., S. J. Eisenreich, J. Ford, and M. V. Santelmann. 1985. In W. Stumm, ed. Chemical processes in lakes, 339 - 363. Wiley-Interscience, New York.Google Scholar
  125. Gorham, E., P. M. Vitousek, and W. A. Reiners. 1979. Annu Rev Ecol Syst 10: 53–84.Google Scholar
  126. Harriman, R., and D. E. Wells. 1985. J Water Pollut Control 84: 215–222.Google Scholar
  127. Hartmann, H., andC. Steinberg. 1987. Hydrobiologia 143: 87–91.Google Scholar
  128. Haworth, E. Y. 1969. J Ecol 57: 429–439.Google Scholar
  129. Haworth, E. Y. 1972. Geol Soc Am Bull 83: 157–172.Google Scholar
  130. Holdren, G. R., Jr., T. M. Brunelle, G. Matisoff, and M. Wahlen. 1984. Nature 311: 245–248.Google Scholar
  131. Holmes, R. W. 1986. Calibration of diatom-pH-alkalinity methodology for the interpretation of the sedimentory record in Emerald Lake Integrated Watershed Study. Final Report, California Air Resources Board, Contract A4-118-32 (pp. 1–80 ). Marine Science Institute, University of California, Santa Barbara.Google Scholar
  132. Hudon, C., H. C. Duthie, S. M. Smith, andS. A. Ditner. 1986. Hydrobiologia 140: 49–65.Google Scholar
  133. Hultberg, H., and I. Andersson. 1982. Water Air Soil Pollut 18: 311–331.Google Scholar
  134. Hustedt, F. 1927. Die kieselalgen. Rabenhorsts’ kryptogamen-flora von Deutschland, Osterreich und der Schweiz. Band 7. Geest und Portig, Leipzig, Germany.Google Scholar
  135. Hustedt, F. 1939. Arch Hydrobiol Supplement 16: 274–394.Google Scholar
  136. Huttunen, P., and J. Meriläinen. 1983. Hydrobiologia 103: 91–97.Google Scholar
  137. Huttunen, P., and J. Meriläinen. 1986a. In. P. Smol, R. W. Battarbee, R. B. Davis, and J. Meriläinen, eds. Diatoms and lake acidity, 201–211. Junk, Dordrecht, Netherlands.Google Scholar
  138. Huttunen, P., and J. Meriläinen. 1986b. In H. Simola, ed. Proceedings of the Finnish- Soviet Symposium on Methods in Paleoecology and the Nordic Meeting ofDiatomologists, 47–54. Karelian Institute, Joensuu, Finland.Google Scholar
  139. Huttunen, P., and J. Meriliänen. 1986c. In H. Simola, ed. Proceedings of the Finnish- Soviet Symposium on Methods in Paleoecology and the Nordic Meeting of Diatomologists, 41–46. Karelian Institute, Joensuu, Finland.Google Scholar
  140. Iversen, J. 1958. Uppsala Universitets Arsskrift 6: 210–215.Google Scholar
  141. Johannessen, M. 1980. In D. Drablos and A. Tollan, eds. Ecological impacts of acid precipitation, 222–223. SNSF project, Oslo.Google Scholar
  142. Johnson, A. H., D. F. Charles, and S. B. Anderson. 1987. Environment 29: 4–5.Google Scholar
  143. Johnson, N. M. C. T. Driscoll, J. S. Eaton, G. E. Likens, and W. H. McDowell. 1981. Geochim Cosmochim Acta 45: 1421–1437.Google Scholar
  144. Jones, V. J., A. C. Stevenson, and R. W. Battarbee. 1986. Nature 322: 157–158.Google Scholar
  145. Jones, V. J., A. C. Stevenson, and R. W. Battarbee. 1988. Acidification of lakes in Galloway southwest Scotland: A diatom and pollen study of the post-glacial history of the Round Loch of Glenhead. Paleoecology Research Unit, University College London.Google Scholar
  146. Jϕrgensen, E. K. 1948. K Dan Vidensk Selsk Biol Skr 5 (2): 1–140.Google Scholar
  147. Kingston, J. C., and R. Kreis, Jr. 1987. Wisconsin DNR lake acidification study: Final report to the Wisconsin Department of Natural Resources, (unpubl.).Google Scholar
  148. Kingston, J. C., R. G. Kreis, Jr., R. B. Cook, K. E. Camburn, S. A. Norton, R. A. Hites, L. A. Roll, E. Furlong, M. J. Mitchell, S. C. Schindler, B. D. Fry, L. Shane, and G.Google Scholar
  149. King. 1989. In D. F. Charles and D. R. Whitehead, eds. Paleoecological investigation of recent lake acidification. Developments in hydrobiology. Junk, Dordrecht, Netherlands. (In press. )Google Scholar
  150. Kolbe, R. W. 1932. Ergeb Biol 8: 221–348.Google Scholar
  151. Kristiansen, J. 1986. Br Phycol J 21: 425–436.Google Scholar
  152. Landers, D. H., W. S. Overton, R. A. Linthurst, and D. F. Brakke. 1988. Environ Sci Technol 22: 128–135.PubMedGoogle Scholar
  153. Leuven, R. S. E. W. 1988. Impact of acidification on aquatic ecosystems in the Netherlands. Ph.D. thesis. Catholic University, Nijmegen, Netherlands.Google Scholar
  154. Lillie, R. A., and J. W. Mason. 1983. Limnological characteristics of Wisconsin lakes. Technical Bulletin No. 138. Wisconsin Department of Natural Resources, Madison, WI.Google Scholar
  155. Livingstone, D. A., K. Bryan, Jr., and R. G. Leaky. 1958. Limnol Oceanog 3: 192–214.Google Scholar
  156. Lowe, R. L. 1974. Environmental requirements and pollution tolerance of freshwater diatoms. EPA/670/4-74/005. U.S. Environment Protection Agency, Washington, DC.Google Scholar
  157. Lundqvist, G. 1925. Sver Geol Unders Arsb 330: 1–129.Google Scholar
  158. Martin, C. W., D. S. Noel, and C. A. Federer. 1984. J Environ Qual 13 (2): 204–210.Google Scholar
  159. McKee, P. M., W. J. Snodgrass, D. R. Hart, H. C. Duthie, J. H. McAndrews, and W. Keller. 1987. Can J Fish Aq Sci 44: 390–398.Google Scholar
  160. Melack, J. M., S. D. Cooper, R. W. Holmes, J. O. Sickman, K. Kratz, P. Hopkins, H. Hardenbergh, M. Thieme, and L. Meeker. 1987. Chemical and biological survey of lakes and streams located in the Emerald Lake watershed, Sequoia National Park. Final Report to the California Air Resources Board, Contract A3-096–32.Google Scholar
  161. Meriläinen, J. 1967. Ann Bot Fenn 4: 51–58.Google Scholar
  162. Miller, U. 1973. Statens Naturvardsverk Publikationer 7: 43–60.Google Scholar
  163. Miller, U. 1986. Striae (Uppsala) 24: 9–14.Google Scholar
  164. Ministry of Agriculture. 1982. A Swedish study prepared for the 1982 Stockholm conference on the acidification of the environment. Ministry of Agriculture, Stockholm, Sweden. National Research Council. 1986 Acid deposition: Long-term trends. National Academy Press, Washington, DC.Google Scholar
  165. Neal, C., P. Whitehead, and A. Jenkins. 1988. Nature 334: 109–110.Google Scholar
  166. Nilsson, S. I., H. G. Miller, and J. D. Miller. 1982. Oikos 39: 40–49.Google Scholar
  167. Norton, S. A., R. B. Davis, and D. S. Anderson. 1985. The distribution and extent of acid and metal precipitation in Northern New England. Final report. U.S. Fish and Wildlife Service Grant No. 14-16-0009-75-040. University of Maine at Orono.Google Scholar
  168. Norton, S. A., R. B. Davis, andD. F. Brakke. 1981. Responses of northern New England lakes to atmospheric inputs of acids and heavy metals. Completion report project A-048-ME. Land and Water Resources Center, University of Maine at Orono.Google Scholar
  169. Norton, S. A., and J. S. Kahl. 1987. Geochemical analysis of sediment cores, Wind River Mountains, Wyoming. Report submitted to U.S. Forest Service, Bridger/Teton National Forest, Jackson, WY.Google Scholar
  170. Norton, V. C., and S. J. Herrmann. 19805014. Trans Am Micros Soc 99: 416–425.Google Scholar
  171. Nygaard, G. 1956. In K. Berg and I. C. Petersen, eds. Studies on the humic acid, Lake Gribsϕ. Folia Limnol Scand 8: 32–94.Google Scholar
  172. Odén S. 1968. The acidification of air precipitation and its consequences in the natural environment. Energy Committee Bulletin, 1, Swedish Natural Sciences Research Council, Stockholm.Google Scholar
  173. Oehlert, G. W. 1984. Error barsfor paleolimnologically inferredpH histories: A first pass. Technical Report Number 267, Series 2. Department of Statistics, Princeton University, Princeton, NJ.Google Scholar
  174. Oehlert, G. W. 1988. Can J Stat 16: 51–60.Google Scholar
  175. Oksanen, J., E. Laara, P. Huttunen, and J. Merilainen. 1988. J Paleolimnol 1: 39–49.Google Scholar
  176. Oliver, B. G., E. M. Thurman, and R. L. Malcolm. 1983. Geochim Cosmochim Acta 47: 2031–2035.Google Scholar
  177. Patrick, R. 1943. Proc Acad Nat Sci Phila 95: 53–110.Google Scholar
  178. Patrick, R. 1954. J Protozool 1: 34–37.Google Scholar
  179. Patrick, R. 1977. In D. Werner, ed. The biology of diatoms, 284-332. Botanical Monographs, vol. 13. Blackwell Scientific Publications, Oxford, England.Google Scholar
  180. Patrick, R., V. P. Binetti, and S. G. Halterman. 1981. Science 211: 446–448.PubMedGoogle Scholar
  181. Patrick, R., and C. W. Reimer. 1966. The diatoms of the United States, vol. 1. Monograph Number 13. Academy of Natural Sciences, Philadelphia.Google Scholar
  182. Patrick, R., and C. W. Reimer. 1975. The diatoms of the United States, vol. 2, part 1. Monograph Number 13. Academy of Natural Sciences, Philadelphia.Google Scholar
  183. Pennington, W. 1981. Hydrobiologia 79: 197–219.Google Scholar
  184. Pennington, W. 1984. Freshwater Biol Assoc, Ann Rep 52: 28–46.Google Scholar
  185. Pennington, W., E. Y. Haworth, A. P. Bonny, and J. P. Lishman. 1972. Philos Trans R Soc London Ser B Biol Sci 264: 191–294.Google Scholar
  186. Pollman, C. D., and D. E. Canfield, Jr. 1989. In D. F. Charles, ed. Acidic deposition and aquatic ecosystems: Regional case studies. Springer-Verlag, New York. (In press. )Google Scholar
  187. Rawlence, D. J. 1988. J Paleolimnol 1: 51 - 60.Google Scholar
  188. Reed, S. 1982. The late-glacial and postglacial diatoms of Heart Lake and Upper Wallface Pond in the Adirondack Mountains, New York. Masters Thesis, Indiana University, Bloomington.Google Scholar
  189. Rehakova, Z. 1983. Hydrobiologia 103: 24–245.Google Scholar
  190. Renberg, I. 1976. Early Norrland 9: 113–159.Google Scholar
  191. Renberg, I. 1978. Early Norrland 11: 63–92.Google Scholar
  192. Renberg, I., R. Hellberg, and M. Nilsson. 1985. Ecol Bull 37: 219–223.Google Scholar
  193. Renberg, I., andT. Hellberg. 1982. Ambio 11: 30–33.Google Scholar
  194. Renberg, I., and J. E. Wallin. 1985. In F. Andersson and B. Olsson, eds. Lake Gardsjon: An acid forest lake and its catchment. Ecol Bull 37: 47–52.Google Scholar
  195. Renberg, I., andM. Wik. 1985. Ambio 14: 161–163.Google Scholar
  196. Rhodes, T. E. 1985. The diatom stratigraphy of an acidic lake. Master’s thesis, University of Massachusetts, Amhurst.Google Scholar
  197. Rochester, H. 1978. Late-glacial and postglacial diatom assemblages of Berry Pond, Massachusetts, in relation to watershed ecosystem development. Ph.D. dissertation, Indiana University, Bloomington.Google Scholar
  198. Rosenqvist, I. T. 1978. Sci Tot Environ 10:39–49,Google Scholar
  199. Round, F. E. 1957. New Phytol 56: 98–126.Google Scholar
  200. Round, F. E. 1961. New Phytol 60: 43–59.Google Scholar
  201. Ryan, D. F., and D. M. Kahler. 1987. Limnol Oceanog 32: 751–757.Google Scholar
  202. Salomaa, R., and P. Alhonen. 1983. Hydrobiologia 103: 295–301.Google Scholar
  203. Schofield, C. L. 1976. Acidification of Adirondack lakes by atmospheric precipitation: Extent and magnitude of the problem. Final report. Project F-28-R. New York State Department of Environmental Conservation, Albany.Google Scholar
  204. Schwela, D. 1983. Staub-Reinhaltung derLuft 43: 135–139.Google Scholar
  205. Scruton, D. A., and J. K. Elner. 1986. Paleolimnological investigation of freshwater lakeGoogle Scholar
  206. sediments in insular Newfoundland. Part 1: Relationships between diatom sub-fossils inGoogle Scholar
  207. surface sediments and contemporary pH from thirty-four lakes. Canadian TechnicalGoogle Scholar
  208. Report of Fisheries and Aquatic Sciences No. 1521. Science Branch, Department ofGoogle Scholar
  209. Fisheries and Oceans, St. John’s, Newfoundland. 50 p.Google Scholar
  210. Scruton, D. A., J. K. Elner, and G. D. Howell. 1987a. Paleolimnological investigation of freshwater lake sediments in insular Newfoundland. Part 2: Downcore diatom stratigraphies and historical pH profiles for seven lakes. Canadian Technical Report of Fisheries and Aquatic Sciences No. 1521. Science Branch, Department of Fisheries and Oceans, St. Johns, Newfoundland. 67 p.Google Scholar
  211. Scruton, D. A., J. K. Elner, and M. Rybak. 1987b. In R. Perry, R. M. Harrison, J. N. B. Bell, and J. N. Lester, eds. Acid rain: Scientific and technical advances. Selper Ltd., London.Google Scholar
  212. Sherman, J. W. 1976. Post-pleistocene diatom assemblages in New England lake sediments. Ph.D. dissertation, University of Delaware, Newark.Google Scholar
  213. Sherman, J. W. 1985. An ecosystem approach to aquatic ecology: Mirror Lake and its environment. 366–382. Springer-Verlag, New York.Google Scholar
  214. Simola, H., K. Kenttamies, andO. Sandman. 1985. AqFenn 15 (2): 245–255.Google Scholar
  215. Smol, J. P. 1980. Can J Bot 58: 458–465.Google Scholar
  216. Smol, J. P. 1983. Can J Bot 61: 2195–2204.Google Scholar
  217. Smol, J. P. 1986. In J. P. Smol, R. W. Battarbee, R. B. Davis, and J. Merilainen, eds. Diatoms and lake acidity, 275 - 287. Junk, Dordrecht, Netherlands.Google Scholar
  218. Smol, J. P. 1988. Palaeogeog Paleoclimatol Palaeocol 62: 287–297.Google Scholar
  219. Smol, J. P., R. W. Battarbee, R. B. Davis, and J. Meriläinen. 1986. Diatoms and lake acidity. Junk, Dordrecht, Netherlands.Google Scholar
  220. Smol, J. P., and M. M. Boucherle. 1985. Arch Hydrobiol 103: 25–49.Google Scholar
  221. Smol, J. P., D. F. Charles, and D. R. Whitehead. 1984a. Can J Bot 62 (5): 911–923.Google Scholar
  222. Smol, J. P., D. F. Charles, and D. R. Whitehead. 1984b. Nature 307: 628–630.Google Scholar
  223. Smol, J. P., and S. S. Dixit. 1989. In D. F. Charles and D. F. Whitehead, eds. Paleoecological investigation of recent lake acidification. Developments in Hydrobiology. Junk, Dordrecht, Netherlands. (In press. )Google Scholar
  224. Somers, K. M., and H. H. Harvey. 1984. Can J Fish Aq Sci 41: 20–29.Google Scholar
  225. Sreenivasa, M. R., and H. C. Duthie. 1973. Can J Bot 51: 1599–1609.Google Scholar
  226. Steinberg, C., K. Arzet, andD. Krause-Dellin. 1984. Naturwissenschaften 71: 631–634.Google Scholar
  227. Steinberg, C., andH. Hartmann. 1986. Naturwissenschaften 73: 37–39.Google Scholar
  228. Stevenson, A. C., H. J. B. Birks, R. J. Flower, and R. W. Battarbee. 1988. Diatom-based pH reconstruction of lake acidification using canonical correspondence analysis. (Submitted.)Google Scholar
  229. Stevenson, A. C., S. C. Fritz, S. T. Patrick, B. Rippey, P. G. Appleby, F. Oldfield, J. Darley, S. R. Higgitt, R. W. Battarbee, and R. J. Raven. 1987. Paleoecological evaluation of the recent acidification of Welsh lakes. 6. LlynDulyn, Gwynedd. Research Paper No. 22. Paleoecology Research Unit, Department of Geography, University College London.Google Scholar
  230. Stuart, S. 1984. Hydrology and aquatic chemistry of monitor lake watersheds in the Wind River Mountains, Wyoming. Report submitted to the U.S. Forest Service, Bridger/Teton National Forest, Jackson, WY.Google Scholar
  231. Sullivan, T. J., C. T. Driscoll, S. A. Gherini, R. K. Munson, R. B. Cook, D. F. Charles, and C. P. Yatsko. 1989. Nature. 338: 408–410.Google Scholar
  232. Sweets, P. R. 1983. Differential deposition of diatom frustules in Jellison Hill Pond, Maine. Master’s thesis, University of Maine at Orono. 156 p.Google Scholar
  233. Sweets, P. R., R. W. Bienert, T. L. Crisman, and M. W. Binford. 1989. In D. F. Charles and D. R. Whitehead, eds. Paleoecological investigation of recent lake acidification. Developments in Hydrobiology. Junk, Dordrecht, Netherlands. (In press. )Google Scholar
  234. Taylor, M. C. 1986. Surficial sedimentary diatoms-limnological relationships in Canadian Shield Lakes. Master’s thesis. Department of Biology, University of Waterloo, Ontario. 159 p.Google Scholar
  235. Taylor, M. C., H. C. Duthie, and S. M. Smith. 1986. Errors associated with diatominferred indices for predicting pH in Canadian Shield lakes. 9th Diatom Symposium. Biopress, Bristol, UK.Google Scholar
  236. Taylor, M. C., H. C. Duthie, and S. M. Smith. 1987. J Phycol 23: 673–676.Google Scholar
  237. Ter Braak, C. J. F. 1986. Ecology 67: 1167–1179.Google Scholar
  238. Ter Braak, C. J. F., and H. van Dam. 1988. Inferring pH from diatoms: A comparison of old and new calibration methods. Hydrobiologia. (In press.)Google Scholar
  239. Tolonen, K. 1967. Ann Bot Fenn 4: 219–416.Google Scholar
  240. Tolonen, K. 1972. Early Norrland 1: 53–77.Google Scholar
  241. Tolonen, K. 1980. Ann Bot Fenn 17: 394–405.Google Scholar
  242. Tolonen, K., and T. Jaakkola. 1983. Ann Bot Fenn 20: 57–78.Google Scholar
  243. Tolonen, K., M. Liukkonen, R. Harjula, and A. Patila. 1986. In J. P. Smol, R. W. Battarbee, R. B. Davis, and S. Merilainen, eds. Diatoms and lake acidity, 169–199. Junk, Dordrecht, Netherlands.Google Scholar
  244. Tynni, R. 1972. Aq Fenn 1972: 70–82.Google Scholar
  245. Van Dam, H. 1987. Acidification of moorland pools: A process in time. Ph.D. thesis. Agricultural University, Wageningen, Netherlands, 175 p.Google Scholar
  246. Van Dam, H. 1988. Freshwater Biol. (In press.)Google Scholar
  247. Van Dam, H. 1989a. In Proceedings of the COST 612 workshop on effects of land use in catchments on the acidity and ecology of natural surface waters. University of Wales, Institute of Science and Technology (UWIST), Cardiff, Wales, April 11 - 13, 1988. (In press.)Google Scholar
  248. Van Dam, H. 1989b. Impact of acidification on diatoms, macrophytes and chemistry of soft-water lakes and pools in Denmark, the Netherlands, Belgium, and West Germany. Research Institute for Nature Management, Leersum, the Netherlands. (In press.)Google Scholar
  249. Van Dam, H., G. Suurmond, and C. J. F. Ter Braak. 1981. Hydrobiologia 83: 425–459.Google Scholar
  250. Van Dam, H., B. van Geel, A. van der Wijk, J. F. M. Geelen, R. van der Heijden, and M. D. Dickman. 1988. Rev Paleobot Palynol 55: 273–316.Google Scholar
  251. Vaughan, H. H., J. K. Underwood, J. G. Ogden, III. 1982. Water Air Soil Pollut 18: 353–361.Google Scholar
  252. Vitt, D. H., and S. Bayley. 1984. Can J Bot 62: 1485–1500.Google Scholar
  253. Walker, R. 1978. New Phytol 81: 791–804.Google Scholar
  254. Walker, I. R., and C. G. Paterson. 1986. Hydrobiologia 134: 265–272.Google Scholar
  255. Watanabe, T., and I. Yasuda. 1982. Jap J Limnol 43: 237–245.Google Scholar
  256. Whitehead, D. R., D. F. Charles, S. E. Reed, S. T. Jackson, and M. C. Sheehan. 1986. In J. P. Smol, R. W. Battarbee, R. B. Davis, and J. Meriläinen, eds. Diatoms and lake acidity, 251–274. Junk, Dordrecht, Netherlands.Google Scholar
  257. Winkler, M. G. 1985. Diatom evidence of environmental changes in wetlands: Cape Cod National Seashore. Part 1. Prehistoric and historic trends in acidity of the outer cape ponds. Technical report to the North Atlantic Regional Office, National Park Service, Boston. 97 p.Google Scholar
  258. Winkler, M. G. 1988. Ecol Monogr 58: 197–214.Google Scholar
  259. Wright, H. E., Jr. 1981. Fire regimes and ecosystem properties. U.S. Forest Service General Technical Report WO-26, pp. 421–444. U.S. Forest Service, Washington, D.C.Google Scholar
  260. Wright, R. F. 1983. Predicting acidification of North American lakes. Report 4/1983. Norwegian Institute for Water Research, Oslo. 165 p.Google Scholar
  261. Wright, R. F. 1984. Changes in the chemistry of Lake Hovvatn, Norway, following liming and reacidification. Report 6/1984. Norwegian Institute for Water Research, Oslo. 68 p.Google Scholar
  262. Yan, N. 1983. Can J Fish Aq Sci 40: 621–626.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Donald F. Charles
    • 1
  • Richard W. Battarbee
    • 2
  • Ingemar Renberg
    • 3
  • Herman van Dam
    • 4
  • John P. Smol
    • 5
  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA
  2. 2.Palaeoecology Research Unit, Department of GeographyUniversity College LondonLondonUK
  3. 3.Department of Ecological BotanyUmeå UniversityUmeåSweden
  4. 4.Research Institute for Nature ManagementLeersumThe Netherlands
  5. 5.Department of BiologyQueen’s UniversityKingstonCanada

Personalised recommendations