Advertisement

Recovery of Acidified and Metal-Contaminated Lakes in Canada

  • Magda Havas
Chapter
Part of the Advances in Environmental Science book series (ENVIRON.SCIENCE, volume 4)

Abstract

Three case studies that deal with the recovery of aquatic ecosystems from acidic stress are presented. These studies include (1) the experimental acidification and partial recovery of Lake 223 in the Experimental Lakes Area (ELA) of northwestern Ontario, (2) the recovery of two severely acidified and metal-contaminated lakes near the now-closed Coniston Smelter in Ontario, and (3) the recovery of moderately acidified lakes in the Sudbury region of Ontario following regional reductions of S02 emissions.

All of these studies indicate that lake water quality improves rapidly once acidic inputs are reduced. Improvements include an increase in pH, a decrease in S04 concentrations, and a decrease in concentrations of trace metals. Rapid recovery is attributed primarily to in situ alkalinity production (bacterial S04 and N03 reduction) and to the natural flushing of lakes. Geological weathering within the drainage basin in areas of base-poor bedrock is not an important source of lake alkalinity.

Improvements in water quality are followed by changes in biota. New species may invade unoccupied niches, and rare species may become more abundant when their natural predators and competitors are eliminated or when their food supply increases. Rapidly reproducing species, such as rotifers and phytoplankton, are among the first to become better established in lakes recovering from acidification. Amphibians and fish become more abundant once the pH is sufficiently high to allow them to reproduce successfully. However, information about biological recovery is still insufficient to enable us to determine to what extent and at what rate the biota do recover naturally following reductions of acidic and trace metal inputs.

Keywords

Lake Trout Littoral Sediment Experimental Lake Area Biological Recovery Alkalinity Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. F., and S. L. Schiff. 1987. Can J Fish Aquat Sci 44: 188–193.CrossRefGoogle Scholar
  2. Bjork, S. 1977. In J. Cams, Jr., K. L. Dickson, and E. E. Herricks, eds. Recovery and restoration of damaged ecosystems, 110–133. University Press of Virginia, Charlottesville.Google Scholar
  3. Brydges, T. 1985. Atmospheric Environment Service, Downsview, Ontario (personal communication).Google Scholar
  4. Caims, J., Jr. 1980. The recovery process in damaged ecosystems, Ann Arbor Science Publ., Ann Arbor, MI. 167 p.Google Scholar
  5. Cairns, J., Jr. K. L. Dickson, and E. E. Herricks, eds. 1977. Recovery and restoration of damaged ecosystems. University Press of Virginia, Charlottesville. 531 p.Google Scholar
  6. Conroy, N., K. Hawley, and W. Keller. 1978. Extensive monitoring of lakes in the Greater Sudbury area, 1974–1976. Ontario Ministry of the Environment Tech. Rep., Rexdale. 40 p plus appendices.Google Scholar
  7. Cook, R. B., C. A. Kelly, D. W. Schindler, and M. A. Turner. 1986. Limnol Oceanogr 31: 134–148.CrossRefGoogle Scholar
  8. Deniseger, J., A. Austin, M. Roch, and M. J. R. Clarks. 1986. Environ Exp Bot 26: 217–226.CrossRefGoogle Scholar
  9. Dicks, G. 1977. In J. Cairns, Jr., K. L. Dickson, and E. E. Herricks, eds. Recovery and restoration of damaged ecosystems, 208 - 240. University Press of Virginia, Charlottesville.Google Scholar
  10. Dillon, P. J., R. A. Reid, and R. Girard. 1986. Water Air Soil Pollut 31: 59–65.CrossRefGoogle Scholar
  11. Edmondson, W. T. 1977. In J. Cairns, Jr., K. L. Dickson, and E. E. Herricks, eds. Recovery and restoration of damaged ecosystems, 102–109. University Press of Virginia, Charlottesville.Google Scholar
  12. Fast, A. W. 1977. In J. Caims, Jr., K. L. Dickson, and E. E. Herricks, eds. Recovery and restoration of damaged ecosystems, 134 - 165. University Press of Virginia, Charlottesville.Google Scholar
  13. Foster, M. S., and R. W. Holmes. 1977. In J. Cairns, Jr., K. L. Dickson, and E. E. Herricks, eds. Recovery and restoration of damaged ecosystems, 166–190. University Press of Virginia, Charlottesville.Google Scholar
  14. Havas, M. 1986. In A. Stern, ed. Air pollution, vol. VI, 351–389. Academic Press, Orlando, FL.Google Scholar
  15. Havas, M., andG. E. Likens. 1985. Can J Zool 63: 1114–1119.CrossRefGoogle Scholar
  16. Herricks, E. E. 1977. In J. Cairns, Jr., K. L. Dickson, and E. E. Herricks, eds. Recovery and restoration of damaged ecosystems, 43–71. University Press of Virginia, Charlottesville.Google Scholar
  17. Hutchinson, T. C. 1987. Unpublished data, University of Toronto, Toronto, Ontario, Canada.Google Scholar
  18. Hutchinson, T. C., and M. Havas. 1986. Water Air Soil Pollut 28: 319–333.Google Scholar
  19. Keller, W., and J. R. Pitblado. 1986. Water Air Soil Pollution 29: 285–296.CrossRefGoogle Scholar
  20. Kelly, C. A., J. W. M. Rudd, R. B. Cook, and D. W. Schindler. 1982. Limnol Oceanogr 27: 868–882.CrossRefGoogle Scholar
  21. Maclsaac, H. J. 1987. Unpublished data, University of Toronto, Toronto, Ontario, Canada.Google Scholar
  22. Maclsaac, H. J., W. Keller, T. C. Hutchinson, and N. D. Yan. 1986. Water Air Soil Pollut 31: 791–797.CrossRefGoogle Scholar
  23. Myslik, G. 1970. Unpublished data, University of Toronto, Toronto, Ontario, Canada.Google Scholar
  24. Nelson-Smith, A. 1977. In J. Cairns, Jr., K. L. Dickson, andE. E. Herricks, eds. Recovery and restoration of damaged ecosystems, 191–207. University Press of Virginia, Charlottesville.Google Scholar
  25. Schiff, R. F., and S. L. Anderson. 1987 Can J Fish Aquat Sci 44: 173–187.CrossRefGoogle Scholar
  26. Schindler, D. W. 1986. Recovery of Canadian lakes from acidification. Proc. Effects of Air Pollution on Terrestrial and Aquatic Ecosystems, Reversibility of Acidification, Grim- stad, Norway 9-11, June 1986. Royal Norwegian Council for Scientific and Industrial Research and the Commission of the European Communities.Google Scholar
  27. Schindler, D. W. 1988. Science 239: 149–157.PubMedCrossRefGoogle Scholar
  28. Schindler, D. W., K. H. Mills, D. F. Malley, D. L. Findlay, J. A. Shearer, I J. Davies, M. A. Turner, G. A. Linsey, and D. R. Cruikshank. 1985. Science 228: 1395–1401.PubMedCrossRefGoogle Scholar
  29. Schindler, D. W., M. A. Turner, M. P. Stainton, and G. A. Linsey. 1986. Science 232: 844–847.PubMedCrossRefGoogle Scholar
  30. Schindler, D. W., R. Wageman, R. B. Cook, T. Ruszcynski, and J. Prokopowich. 1980. Can J Fish Aquat Sci 37: 342–354.CrossRefGoogle Scholar
  31. Warner, S. 1984. INCO, Sudbury, Ontario. Personal communication.Google Scholar
  32. Yung, K. 1987. Unpublished data, University of Toronto, Toronto, Ontario, Canada.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Magda Havas
    • 1
  1. 1.Institute for Environmental Studies and Faculty of ForestryUniversity of TorontoTorontoCanada

Personalised recommendations