Advertisement

Acidic Sulfate Soils

  • Jirapong Prasittikhet
  • Robert P. Gambrell
Chapter
Part of the Advances in Environmental Science book series (ENVIRON.SCIENCE, volume 4)

Abstract

Acidic sulfate soils are formed from potential acidic sulfate soils that are characterized by the accumulation of pyrite (FeS2). Upon drainage of these soils, the pyrite oxidizes to produce sulfuric acid and hence acidic sulfate soils. The acid formed commonly decreases the soil’s pH to less than 4, and sometimes the pH becomes as acid as 2. The acid produced has a major effect on chemical and microbial processes in soils. Substances detrimental to plant growth, such as Al3+, Fe2+, H2S, and CO2 are often generated in amounts toxic to plant growth.

In acidic sulfate soils, the potential for very acidic soil conditions to develop results from natural processes. Often, however, cultural disturbances of these potential acidic sulfate soils, such as drainage for agricultural purposes or other reasons, cause the chemical and microbial processes to occur that result in development of severe acidic conditions. Acidic sulfate soils occur worldwide in most climatic zones but are found primarily in tropical regions. Most acidic sulfate soils are found in coastal areas at low elevations, where they developed from pyrite-containing marine sediments. These soils are a major problem because of their harmful effect on crop production, and because of the large areas affected in regions of the world where additional food production is especially important. Acidic sulfate soils are generally far more acidic than can be generated by even severe acidic precipitation problems. Acidic precipitation is unlikely to affect adversely either acidic sulfate soils or, for different reasons, potential acidic sulfate soils.

Knowledge of acidic sulfate soil chemistry, the problems experienced with such soils, and feasible management practices to mitigate some of the problems should provide information on the type and direction of chemical changes that may occur in poorly buffered soils in other regions of the world as a result of acidic precipitation.

Keywords

Wetland Soil Soil Science Society Acidic Precipitation International Rice Research Institute Pyrite Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abiehandani, C. T., and S. Patnaik. 1955. Internat. Rice Comm. Newsletter 13: 11.Google Scholar
  2. Andriesse, J. P., N. van Breemen, and W. A. Blokhuis. 1973. In H. Dost, ed. Acid sulfate soils, 11–39. Proc. Int. Symp. ILRI. Pub. 18, vol I I, Wageningen, The Netherlands.Google Scholar
  3. Armstrong, W. 1971. Plant Physiol 25: 192–197.CrossRefGoogle Scholar
  4. Benckiser, G., S. Santiago, H. U. Neue, I. Watanabe, and J. C. G. Ottow. 1984. Plant and Soil 79: 305–316.CrossRefGoogle Scholar
  5. Berner, R. A. 1964. J Geol 72: 293–306.CrossRefGoogle Scholar
  6. Berner, R. A. 1970. Am J Sci 268: 1–23.CrossRefGoogle Scholar
  7. Blackwelder, B. W., O. H. Pilkey, and J. D. Howard. 1979. Science 204: 518–520.CrossRefGoogle Scholar
  8. Bloomfield, D., and J. K. Coulter. 1973. Adv Agron 25: 256–326.Google Scholar
  9. Bouma, J. 1983. In L. P. Wilding, N. E. Smeck, and G. F. Hall, eds. Pedogenesis and soil taxonomy. I. Concepts and interactions, 253–281. Elsevier Science Publishers B.V., Amsterdam.CrossRefGoogle Scholar
  10. Brinkman, R., and L. J. Pons. 1973. In H. Dost, ed. Acidic sulfate soils, 169–203. Proc. Int. Symp. ILRI Pub. 18, Vol. I. Wageningen, The Netherlands.Google Scholar
  11. Broadbent, F. E., and M. E. Tusneem. 1971. Soil Sci Am Proc 35: 922.CrossRefGoogle Scholar
  12. Charoenchamratcheep, C., C. J. Smith, S. Satawathananont, and W. H. Patrick, Jr. 1987. Soil Sci Soc Am J 51: 630–634.CrossRefGoogle Scholar
  13. Connell, W. E., and W. H. Patrick, Jr. 1968. Science 159: 86–87.CrossRefGoogle Scholar
  14. Connell, W. E., and W. H. Patrick, Jr. 1969. Soil Sci Soc Am Proc 33: 711–715.CrossRefGoogle Scholar
  15. Dent, D. L., and R. W. Raiswell. 1982. In H. Dost and N. van Breemen, eds. Proc. Bangkok symp. on acid sulfate soils, 73-79. ILRI Pub. 31. Wageningen, The Netherlands.Google Scholar
  16. Dong-Qing, C., W. Jing-Hua, and Z. Xiao-Nian. 1985. In Y. Tian-ren, ed. Physical chemistry of paddy soils, 131–156. Science Press, Beijing.Google Scholar
  17. Engler, R. M., and W. H. Patrick, Jr. 1973. Soil Sci Soc Am Proc 37: 685–688.CrossRefGoogle Scholar
  18. Fanning, D. S. 1978. Soil morphology, genesis, classification, and geography. Dept. of Agron., Univ. of Maryland, College Park.Google Scholar
  19. FAO/UNESCO. 1979. Soil map of the world, scale 1:5,000,000. Vols. 1-X. UNESCO, Paris.Google Scholar
  20. Foy, C. D., W. H. Armiger, L. W. Briggle, and D. A. Reid. 1965. Agron J 57: 413–417.CrossRefGoogle Scholar
  21. Foy, C. D., H. N. Lafever, J. W. Schwartz, and A. L. Fleming. 1974. Agron J 66: 751–758.CrossRefGoogle Scholar
  22. Gambrell, R. P., and W. H. Patrick, Jr. 1978. In D. D. Hook and R. M. M. Crawford, eds. Plant life in anaerobic environments, 375–423. Ann Arbor Science Publishers, Ann Arbor, MI.Google Scholar
  23. Goldhabor, M. B., and I. R. Kaplan. 1974. In E. D. Goldberg, ed. The sea, vol. 5, Marine chemistry, 527 - 655. Wiley Interscience, New York.Google Scholar
  24. Gotoh, S., and W. H. Patrick, Jr. 1972. Soil Sci Soc Am Proc 36: 738.CrossRefGoogle Scholar
  25. Gotoh, S., and W. H. Patrick, Jr. 1974. Soil Sci Soc Am Proc 38: 66.CrossRefGoogle Scholar
  26. Harmsen, K., and N. van Breemen. 1975. Soil Sci Soc Am Proc 39: 1148–1153.CrossRefGoogle Scholar
  27. Howeler, R. H. 1972. J Environ Qual 1: 366.CrossRefGoogle Scholar
  28. Howeler, R. H., and D. R. Bouldin. 1971. Soil Sci Am Proc 35: 202.CrossRefGoogle Scholar
  29. IRRI (International Rice Research Institute). 1965. Annual Report 1965. Los Banos, Philippines. 335 pp.Google Scholar
  30. IRRI (International Rice Research Institute). 1973. “Research Highlights” in Annual Report 1973. Los Banos, Philippines.Google Scholar
  31. Ivarson, K. C., G. J. Ross, and N. M. Miles. 1982. In J. A. Kittrick, D. S. Fanning, and L. R. Hossner, eds.Acid sulfate weathering, 57–76. Spec. Pub. 10. Soil Science Society of America, Madison, WI.Google Scholar
  32. Jakobsen, P., W. H. Patrick, Jr., and B. G. Williams. 1981. Soil Sci 132: 279–287.CrossRefGoogle Scholar
  33. Kawaguchi, K., and K. Kyuma. 1969. Lowland rice soils in Thailand. Nat. Sci. Ser. N-4. Center for Southeast Asian Studies, Kyoto University, Japan. 270 pp.Google Scholar
  34. Kawalec, A. 1973. In H. Dost, ed. Acid sulphate soils, 292–295. Proc. Int. Symp., ILRI Pub. 18, vol. I, Wageningen, The Netherlands.Google Scholar
  35. Khalid, R. A., W. H. Patrick, Jr., and F. J. Peterson. 1976. In Proc. 16th rice tech., 103–104. Working group, Lake Charles, LA.Google Scholar
  36. Komes, A. 1973. Thai J Agric Sci 6: 127–143.Google Scholar
  37. Mahapatra, I. C., and W. H. Patrick, Jr. 1971. In Proc. internat. symp. soilfert. eval., New Delhi 1: 53.Google Scholar
  38. Mitsui, S. 1954. Inorganic nutrition, fertilization, and amelioration for lowland rice. Yokendo, Ltd., Tokyo, Japan.Google Scholar
  39. Moormann, F. R. 1963. Soil Sci 95: 271–275.CrossRefGoogle Scholar
  40. Mortimer, C. H. 1942. J Ecol 30: 147.CrossRefGoogle Scholar
  41. Motomura, S. 1961. Soil Sci Plant Nutr 7: 54–60.Google Scholar
  42. Motomura, S. 1962. Soil Sci Plant Nutr 8: 20–29.Google Scholar
  43. Nhung, M. M., and F. N. Ponnamperuma. 1966. Soil Sci 102: 29–41.CrossRefGoogle Scholar
  44. Nordstrom, D. K. 1982. In J. A. Kittrick, D. S. Fanning, and L. R. Hossner, ed. Acid sulfate weathering, 37–56. Spec. Pub. 10, Soil Science Society of America, Madison, WI.Google Scholar
  45. Pasricha, N. S., and F. N. Ponnamperuma. 1976. Soil Sci Soc Am J 40: 374–380.CrossRefGoogle Scholar
  46. Patrick, W. H., Jr. 1964. In Soil fertility and plant nutrition, 605–608. Trans. 8th. Int. Congr. Soil Sci., vol. IV. Publishing House of the Academy of the Socialist Republic of Romania, Bucharest.Google Scholar
  47. Patrick, W. H., Jr., and R. D. DeLaune. 1972. Soil Sci Soc Am Proc 36: 573.CrossRefGoogle Scholar
  48. Patrick, W. H., Jr., and I. C. Mahapatra. 1968. Adv Agron 20: 323.CrossRefGoogle Scholar
  49. Patrick, W. H., Jr., and D. S. Mikkelsen. 1971. In R. D. Dinauer, ed. Fertilizer technology and use, 2d ed., 187. Soil Science Society of America, Madison, WI.Google Scholar
  50. Patrick, W. H., Jr., D. S. Mikkelsen, and B. R. Wells. 1985. In Fertilizer technology and use, 3d ed., 197–228. Soil Science Society of American, Madison, WI.Google Scholar
  51. Patrick, W. H., Jr., and K. R. Reddy. 1976a. J Environ Qual 5: 469.CrossRefGoogle Scholar
  52. Patrick, W. H., Jr., and K. R. Reddy. 1976b. Soil Sci Soc Am J 40: 678.CrossRefGoogle Scholar
  53. Patrick, W. H., Jr., and K. R. Reddy. 1978. In F. N. Ponnamperuma, ed. Soils and rice, 361–380. International Rice Research Institute, Los Banos, Philippines.Google Scholar
  54. Patrick, W. H., Jr., and R. Wyatt. 1964. Soil Sci Am Proc 28: 647.CrossRefGoogle Scholar
  55. Poelman, J. N. B. 1973. In H. Dost, ed. Acid sulphate soils, 197–207. Proc. Int. Symp. ILRI Pub. 18, vol. I I. Wageningen, The Netherlands.Google Scholar
  56. Ponnamperuma, F. N. 1955. The chemistry of submerged soils in relation to the growth and yield of rice. Ph.D. dissertation. Cornell University, Ithaca, NY.Google Scholar
  57. Ponnamperuma, F. N. 1965. In The mineral nutrition of the rice plant, 295–328. Johns Hopkins University Press, Baltimore.Google Scholar
  58. Ponnamperuma, F. N. 1972. Adv Agron 24: 29–95.CrossRefGoogle Scholar
  59. Ponnamperuma, F. N., T. Attanandana, and G. Beye. 1973. In H. Dost, ed. Acid sulphate soils, 391–406. Proc. Int. Symp. ILRI Pub. 18, vol. I I. Wageningen, The Netherlands.Google Scholar
  60. Pons, L. J. 1973. In H. Dost, ed. Acid sulphate soils, 3–17. Proc. Int. Symp. ILRI Pub. 18, vol. I. Wageningen, The Netherlands.Google Scholar
  61. Pons, L. J., N. van Breemen, and P. M. Driessen. 1982. In J. A. Kittrick, D. S. Fanning, and L. R. Hossner, ed. Acid sulfate weathering, 1–18. Spec. Pub. 10. Soil Science Society of America, Madison, WI.Google Scholar
  62. Pons, L. J., and W. van der Kevie. 1969. Acid sulphate soils in Thailand. Soil Survey Rept., Land Dev. Dept., Bangkok, SSR-81. 69 pp.Google Scholar
  63. Prasittikhet, J. 1987. Metal availability and rice growth under controlled redox potential and pH conditions in acid sulfate soils of Thailand. Ph.D. dissertation, Louisiana State University, Baton Rouge.Google Scholar
  64. Presley, B. J., and I. R. Kaplan. 1968. Geochim Cosmochim Acta 32: 1037–1048.CrossRefGoogle Scholar
  65. Rickard, D. T. 1975. Am J Sci 275: 636–652.CrossRefGoogle Scholar
  66. Roberts, W. M. B., A. L. Walker, and A. S. Buchanan. 1969. Mineral Deposita 4: 18–29.CrossRefGoogle Scholar
  67. Russell, J. E. 1961. Soil conditions and plant growth. John Wiley and Sons, New York.Google Scholar
  68. Singer, P. C., and W. Stumm. 1970. Science 167: 1121–1123.PubMedCrossRefGoogle Scholar
  69. Sombatpanit, S. 1970. Acid Sulfate Soils: Their nature and properties. Unpublished thesis, Royal Agricultural College, Uppsala, India.Google Scholar
  70. Sombatpanit, S., and L. Wangpaiboon. 1973. Study on the lime requirement of an aluminum-rich acid sulfate soil. Paper presented at the 12th Conf. Agric. Biol. Sci., Kasetsart University, Bangkok.Google Scholar
  71. Stumm, W., and J. J. Morgan. 1970. Aquatic chemistry; An introduction emphasizing chemical equilibria in natural waters. Wiley Interscience, New York. 583 pp.Google Scholar
  72. Sweeney, R. E., and I. R. Kaplan. 1973. Econ Geol 68: 618–634.CrossRefGoogle Scholar
  73. Tanaka, A., and S. Yoshida. 1970. Nutritional disorders of the rice plant in Asia. IRRI Tech. Bull. 10, Los Banos, Philippines. 51 pp.Google Scholar
  74. Tian-Ren, Y. 1985. In Y. Tian-Ren, ed. Physical chemistry of paddy soils, 197–217. Science Press, Beijing.Google Scholar
  75. Turner, F. T., and W. H. Patrick, Jr. 1968. Trans. 9th lnternat. Cong. Soil Sci. 4: 53.Google Scholar
  76. Tusneem, M. E., and W. H. Patrick, Jr. 1971. Nitrogen transformations in waterlogged soil. Louisiana Agric. Exp. Sta. Bull. 657, Baton Rouge.Google Scholar
  77. United States Department of Agriculture. 1975. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. USDA Agric. Handbook 436, U.S. Government Printing Office, Washington, DC.Google Scholar
  78. Vamos, R. 1967. Soil Fert Abstr 30: 2438.Google Scholar
  79. van Breemen, N. 1973. In H. Dost, ed. Acid sulfate soils, 66–130. ILRI Pub. 18, vol. I. Wageningen, The Netherlands.Google Scholar
  80. van Breemen, N. 1975. Soil Sci Soc Am Proc 39: 1153–1157.CrossRefGoogle Scholar
  81. van Breemen, N. 1982. In J. A. Kittrick D. S. Fanning, and L. R. Hossner, eds. Acid sulfate weathering, 95–108. Spec. Pub. 10. Soil Science Society of America, Madison, WI.Google Scholar
  82. van Breemen, N., and F. R. Moormann. 1978. In F. N. Ponnamperuma, ed. Soils and rice, 781–800. International Rice Research Institute, Los Banos, Philippines.Google Scholar
  83. van Breemen, N., and L. J. Pons. 1978. In Soils and rice, 739–761. International Rice Research Institute, Los Banos, Philippines.Google Scholar
  84. Waring, S. A., and J. M. Bremner. 1964. Nature 201: 951.CrossRefGoogle Scholar
  85. Xie-Ming, B. 1985. In Y. Tian-ren, ed. Physical chemistry of paddy soils, 69–91. Science Press, Beijing.Google Scholar
  86. Yoshida, S., and T. Tadano. 1978. In G. A. Jung, ed. Crop tolerance to subtropical land conditions, 233–255. Spec. Pub. 32. American Society of Agronomy, Madison, WI.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Jirapong Prasittikhet
    • 1
  • Robert P. Gambrell
    • 2
  1. 1.Division of SoilsDepartment of AgricultureBangkokThailand
  2. 2.Laboratory for Wetland Soils and SedimentsLouisiana State UniversityBaton RougeUSA

Personalised recommendations