Skip to main content

The Auditory Nerve: Peripheral Innervation, Cell Body Morphology, and Central Projections

  • Chapter
The Mammalian Auditory Pathway: Neuroanatomy

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 1))

Abstract

In mammals, all known auditory information enters the brain by way of the cochlear division of the vestibulocochlear nerve, hereafter referred to as the auditory nerve. Primary neurons, whose cell bodies reside in the spiral ganglion of the cochlea, send peripheral processes out to the organ of Corti to contact the acoustic receptor cells; the central processes or axons bundle together to form the auditory nerve. The terminus of the auditory nerve is the cochlear nucleus. In this way, primary neurons convey the output of the receptors to neurons of the cochlear nucleus. There arc two types of receptors, inner hair cells and outer hair cells (Retzius 1884; Ramón y Cajal 1909), two populations of primary neurons (Munzer 1931; Spoendlin 1973), and many neuron classes in the cochlear nucleus (Lorente de Nó 1933; Osen 1969; Brawer, Morest, and Kane 1974). In turn, the cells of the cochlear nucleus give rise to all central auditory pathways. In a general way, the role of the cochlear nucleus is to receive incoming auditory nerve discharges, to preserve or transform the signals, and to distribute outgoing activity to higher brain centers. In order to understand the earliest stages of stimulus coding in the auditory system, we need to know (1) the nature of the signals conveyed by auditory nerve fibers, (2) their source in the periphery, and (3) their destination in the brain. This report shall review the progress that has been made along these lines of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JC (1983) Cytology of periolivary cells and the organization of their projections. J Comp Neurol 215: 275–289.

    PubMed  CAS  Google Scholar 

  • Alving BM, Cowan WM (1971) Some quantitative observations on the cochlear division of the eighth nerve in the squirrel monkey (Saimiri sciureus). Brain Res 25: 229–239.

    PubMed  CAS  Google Scholar 

  • Anniko M, Arnesen AR (1988) Cochlear nerve topography and fiber spectrum in the pigmented mouse. Arch Otorhinolaryngol 245: 155–159.

    PubMed  CAS  Google Scholar 

  • Arnesen AE, Osen KK (1978) The cochlear nerve in the cat: Topography, cochleotopy, and fiber spectrum. J Comp Neurol 178: 661–678.

    PubMed  CAS  Google Scholar 

  • Arnesen AE, Osen KK, Mugnaini E (1978) Temporal and spatial sequence of anterograde degeneration in the cochlear nerve fibers of the cat. A light microscopic study. J Comp Neurol 178: 679–696.

    PubMed  CAS  Google Scholar 

  • Berglund AM, Brown MC (1989) Axonal trajectories of type-II spiral ganglion cells from various cochlear regions in mice. Soc Neurosci Abstr 15: 742.

    Google Scholar 

  • Berglund AM, Ryugo DK (1986) A monoclonal antibody labels type II cells of the spiral ganglion. Brain Res 383: 327–332.

    PubMed  CAS  Google Scholar 

  • Berglund AM, Ryugo DK (1987) Hair cell innervation by spiral ganglion neurons in the mouse. J Comp Neurol 255: 560–570.

    PubMed  CAS  Google Scholar 

  • Berglund AM, Ryugo DK (1987) Hair cell innervation by spiral ganglion neurons in the mouse. J Comp Neurol 255: 560–570.

    PubMed  CAS  Google Scholar 

  • Bohne BA, Kenworthy A, Carr CD (1982) Density of myelinated nerve fibers in the chinchilla cochlea. J Acoust Soc Am 72: 102–107.

    PubMed  CAS  Google Scholar 

  • Borg E (1972) Acoustic middle ear reflexes: A sensory-control system. Acta Otolaryngol (Stockh) Suppl 304: 1–34.

    CAS  Google Scholar 

  • Borg E (1973) On the neuronal organization of the acoustic middle ear reflex. A physiological and anatomical study. Brain Res 49: 101–123.

    PubMed  CAS  Google Scholar 

  • Bourk TR, Mielcarz JP, Norris BE (1981) Tonotopic organization of the anter- oventral cochlear nucleus of the cat. Hear Res 4: 215–241.

    PubMed  CAS  Google Scholar 

  • Brawer JR, Morest DK (1975) Relations between auditory nerve endings and cell types in the cat’s anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J Comp Neurol 160: 491–506.

    PubMed  CAS  Google Scholar 

  • Brawer JR, Morest DK, Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155: 251–300.

    PubMed  CAS  Google Scholar 

  • Bredberg G (1968) Cellular pattern and nerve supply of the human organ ofCorti. Acta Otolaryngol (Suppl 236 ) 1–135.

    Google Scholar 

  • Brown MC (1987a) Morphology oflabeled afferent fibers in the guinea pig cochlea. J Comp Neurol 260: 591–604.

    PubMed  CAS  Google Scholar 

  • Brown MC (1987b) Morphology oflabeled efferent fibers in the guinea pig cochlea. J Comp Neurol 260: 591–604.

    PubMed  CAS  Google Scholar 

  • Brown MC, Berglund, AM, Kiang NYS, Ryugo DK (1988a) Central trajectories of type II spiral ganglion neurons. J Comp Neurol 278: 581–590.

    PubMed  CAS  Google Scholar 

  • Brown MC, Ledwith JV (1990) Projections of thin (type-II) and thick (type-I) auditory-nerve fibers into the cochlear nucleus of the mouse. Hear Res 49: 105–118.

    PubMed  CAS  Google Scholar 

  • Brown MC, Liberman MC, Benson TE, Ryugo DK (1988b) Brainstem branches from olivocochlear axons in cats and rodents. J Comp Neurol 278: 591–603.

    PubMed  CAS  Google Scholar 

  • Brown MC, Nuttall AL (1984) Efferent control of cochlear inner hair cell responses in the guinea-pig. J Physiol (Lond) 354: 625–646.

    CAS  Google Scholar 

  • Bruns V, Schmieszek E (1980) Cochlear innervation in the greater horseshoe bat: Demonstration of an acoustic fovea. Hear Res 3: 27–43.

    PubMed  CAS  Google Scholar 

  • Burda H (1984) Guinea pig cochlear hair cell density; Its relation to frequency discrimination. Brain Res 14: 315–317.

    CAS  Google Scholar 

  • Cant NB, Morest DK (1979) The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neuroscience 4: 1925–1945.

    PubMed  CAS  Google Scholar 

  • Cohen ES (1972) Synaptic Organization of the Caudal Cochlear Nucleus of the Cat. Doctoral Thesis, Harvard University, Cambridge, MA.

    Google Scholar 

  • Covey E, Jones DR, Casseday JH (1984) Projections from the superior olivary complex to the cochlear nucleus in the tree shrew. J Comp Neurol 226: 289–305.

    PubMed  CAS  Google Scholar 

  • Dallos P (1971) On the limitations of cochlear microphonic measurements. J Acoust Soc Am 49: 1141–1154.

    Google Scholar 

  • Dunn RA (1975) A comparison of Golgi-impregnated innervation patterns and fine structural synaptic morphology in the cochlea of the cat. Doctoral Thesis, Harvard University, Cambridge, MA.

    Google Scholar 

  • Ehret G (1979) Quantitative analysis of nerve fibre densities in the cochlea of the house mouse (Mus musculus). J Comp Neurol 193: 73–88.

    Google Scholar 

  • Ehret G (1983) Peripheral anatomy and physiology II. In: Willott JF (ed) The Auditory Psychobiology of the Mouse. Springfield, IL: Charles C Thomas, pp. 169–200.

    Google Scholar 

  • Ehret G, Frankenreiter M (1977) Quantitative analysis of cochlear structures in the house mouse in relation to mechanisms of acoustic information processing. J Comp Physiol 122: 65–85.

    Google Scholar 

  • Engström H, Wersäll J (1958) Structure and innervation of the inner ear sensory epithelia. Int Rev Cytol 7: 535–585.

    Google Scholar 

  • Evans EF (1972) The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J Physiol 226: 263–287.

    PubMed  CAS  Google Scholar 

  • Evans EF, Palmer AR (1980) Relationship between the dynamic range of cochlear nerve fibers and their spontaneous activity. Exp Brain Res 40: 115–118.

    PubMed  CAS  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fekete DM, Rouiller EM, Liberman MC, Ryugo DK (1984) The central projections of intracellularly labeled auditory nerve fibers in cats. J Comp Neurol 229: 432–450.

    PubMed  CAS  Google Scholar 

  • Feldman ML, Harrison JM (1969) The projection of the acoustic nerve to the ventral cochlear nucleus of the rat. A Golgi study. J Comp Neurol 137: 267–294.

    PubMed  CAS  Google Scholar 

  • Firbas W (1972) Uber anatomische Anpassungen des Hörogans an die Aufnahme hoher Frequenzen. Mschr Ohr hk Laryngol-Rhinol (Vienna) 106: 105–156.

    CAS  Google Scholar 

  • Gacek RR, Rasmussen GL (1961) Fiber analysis of the statoacoustic nerve of guinea pig, cat and monkey. Anat Ree 139: 455–463.

    CAS  Google Scholar 

  • Gambetti P, Antilio-Gambetti L, Papasozomenos S (1982) Bodian’s silver method stains neurofilament polypeptides. Science 213: 1521–1522.

    Google Scholar 

  • Gentschev T, Sotelo C (1973) Degenerative patterns in the ventral cochlear nucleus of the rat after primary deafferentation. An ultrastructural study. Brain Res 62: 37–60.

    PubMed  CAS  Google Scholar 

  • Gifford ML, Guinan JJ (1987) Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear Res 29: 179–194.

    PubMed  CAS  Google Scholar 

  • Ginzberg RD, Morest DK (1983) A study of cochlear innervation in the young cat with the Golgi method. Hearing Res 10: 227–246.

    CAS  Google Scholar 

  • Godement P, Vanselow J, Thanos S, Bonhoeffer F (1987) A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development 101: 697–713.

    PubMed  CAS  Google Scholar 

  • Godfrey, DA, Kiang NYS, Norris BE (1975) Single unit activity in the poster- oventral cochlear nucleus of the cat. J Comp Neurol 162: 247–268.

    PubMed  CAS  Google Scholar 

  • Gray EG, Guillery RW (1966) Synaptic morphology in the normal and degenerating nervous system. Int Rev Cytol 19: 111–182.

    PubMed  CAS  Google Scholar 

  • Guild SR, Crowe SJ, Bunch CC, Polvogt LM (1931) Correlations of differences in the density of innervation of the organ of Corti with differences in the acuity of hearing, including evidence as to the location in the human cochlea of the receptors for certain tones. Acta Otolaryngol (Stockh) 15: 269–308.

    Google Scholar 

  • Guinan JJ, Warr WB, Norris BE (1983) Differential olivocochlear projections from lateral vs medial zones of the superior olivary complex. J Comp Neurol 221: 358–370.

    PubMed  Google Scholar 

  • Haber S (1988) Tracing intrinsic fiber connections in postmortem human brain with WGA-HRP. J Neurosci Methods 23: 15–22.

    PubMed  CAS  Google Scholar 

  • Harrison JM, Irving R (1966) Ascending connections of the anterior ventral cochlear nucleus in the rat. J Comp Neurol 126: 51–64.

    PubMed  CAS  Google Scholar 

  • Held H (1926) Die Cochlea der Säuger und der Vögel, ihre Entwicklung und ihr Bau. In: Bethe A, v Bergman G, Ellinger A (ed) Handbuch der Normalen und Pathologischen Physiologie, Vol. XI. Berlin: J Springer, pp. 467–534.

    Google Scholar 

  • Ibata Y, Pappas GD (1976) The fine structure of synapses in relation to the large spherical neurons in the anterior ventral cochlear (sic) of the cat. J Neurocytol 5: 395–406.

    PubMed  CAS  Google Scholar 

  • Innocenti GM, Fiori L, Caminiti R (1977) Exuberant projection into the corpus callosum from the visual cortex of newborn cats. Neurosci Lett 4: 237–242.

    PubMed  CAS  Google Scholar 

  • Irving R, Harrison JM (1967) The superior olivary complex and audition: A comparative study. J Comp Neurol 130: 77–86.

    PubMed  CAS  Google Scholar 

  • Ishii D, Balough Jr. K (1968) Distribution of efferent nerve endings in the organ of Corti. Their graphic reconstruction in cochleae by localization of acetyl-cholinasterase activity. Acta Otolaryngol 66: 282–288.

    PubMed  CAS  Google Scholar 

  • Jackson H, Parks TN (1982) Functional synapse elimination in the developing avian cochlear nucleus with simultaneous reduction in cochlear nerve axon branching. J Neurosci 2: 1736–1743.

    PubMed  CAS  Google Scholar 

  • Johnstone BM, Pattuzzi R, Yates GK (1986) Basilar membrane measurements and the traveling wave. Hear Res 22: 147–153.

    PubMed  CAS  Google Scholar 

  • Kageyama GH, Meyer RL (1987) Dense HRP filling in pre-fixed brain tissue for light and electron microscopy. J Histochem Cytochem 35: 1127–1136.

    PubMed  CAS  Google Scholar 

  • Kawase K, Liberman MC (1991) Spatial organization of the spiral ganglion according to spontaneous discharge rate. Assn Res Otolaryngol Abst p. 17.

    Google Scholar 

  • Keithley EM, Feldman ML (1979) Spiral ganglion cell counts in an age-graded series of rat cochleas. J Comp Neurol 188: 429–442.

    PubMed  CAS  Google Scholar 

  • Keithley EM, Feldman ML (1982) Hair cell counts in an age-graded series of rat cochleas. Hear Res 8: 249–262.

    PubMed  CAS  Google Scholar 

  • Keithley EM, Feldman ML (1983) The spiral ganglion and hair cells of the Bronx waltzer mice. Hear Res 12: 381–391.

    PubMed  CAS  Google Scholar 

  • Keithley EM, Schreiber RC (1987) Frequency map of the spiral ganglion in the cat. J Acoust Soc Am 81: 1036–1042.

    PubMed  CAS  Google Scholar 

  • Kellerhals B, Engström H, Ades HW (1967) Die Morphologie des Ganglion spirale Cochleae. Acta Otolaryngol Supp 226: 6–33.

    Google Scholar 

  • Khanna SM, Leonard DGB (1982) Basilar membrane tuning in the cat cochlea. Science 215: 305–306.

    PubMed  CAS  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas LC, Clark LF (1965) Discharge Patterns of Single Fibers in the Cats Auditory Nerve. Cambridge: MIT Press.

    Google Scholar 

  • Kiang NYS, Rho JM, Northup CC, Liberman MC, Ryugo DK (1982) Hair-cell innervation by spiral ganglion cells in adult cats. Science 217: 175–177.

    PubMed  CAS  Google Scholar 

  • Kiang NYS, Keithley EM, Liberman MC (1983) The impact of auditory nerve experiments on cochlear implant design. Ann NY Acad Sei 405: 114–121.

    CAS  Google Scholar 

  • Kiang NYS, Liberman MC, Gage JS, Northrup CC, Dodds LW, Oliver ME (1984) Afferent innervation of the mammalian cochlea. In: Bolis L, Keynes RD, Maddrell HP (eds) Comparative Physiology of Sensory Systems. Cambridge: Cambridge University Press, pp. 143–161.

    Google Scholar 

  • Kiang NYS, Liberman MC, Sewell WF, Guinan J J (1986) Single unit clues to cochlear mechanisms. Hear Res 22: 171–182.

    PubMed  CAS  Google Scholar 

  • Kim DO, Molnar CE (1979) A population study of cochlear nerve fibres: Comparison of spatial distributions of average rate and phase-locking measures of responses to single tones. J Neurophysiol 42: 16–30.

    PubMed  CAS  Google Scholar 

  • Kimura RS (1975) The ultrastructure of the organ of Corti. Int Rev Cytol 42: 173–222.

    PubMed  CAS  Google Scholar 

  • Kimura RS (1986) An electron microscopic study of cochlear nerve fibers followed serially from spiral ganglion to organ of Corti. Ear Res Jpn 17: 4–7.

    Google Scholar 

  • Kimura RS, Bongiorno CL, Iverson NA (1987) Synapses and ephapses in the spiral ganglion. Acta Otolaryngol Suppl 438: 3–18.

    Google Scholar 

  • Kohllöffel LUE (1975) A study of neurone activity in the spiral ganglion of the cat’s basal turn. Arch Oto Rhino Laryngol 209: 179–202.

    Google Scholar 

  • Leake PA, Snyder RL (1989) Topographic organization of the central projections of the spiral ganglion in cats. J Comp Neurol 281: 612–629.

    PubMed  CAS  Google Scholar 

  • Lenn NY, Reese TS (1966) The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am J Anat 118: 375–389.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 53: 442–455.

    Google Scholar 

  • Liberman MC (1980a) Morphological differences among radial afferent fibers in the cat cochlea: An electron microscopic study of serial sections. Hear Res 3: 45–63.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1980b) Efferent synapses in the inner hair cell area of the cat cochlea: An electron microscopic study of serial sections. Hear Res 3: 189–204.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1982a) Single-neuron labeling in the cat auditory nerve. Science 216: 1239–1241.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1982b) The cochlear frequency map for the cat: Labelling auditory- nerve fibers of known characteristic frequency. J Acoust Soc Am 72: 1441–1449.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1990) Effects of chronic cochlear de-efferentation on auditory- nerve response. Hear Res 49: 209–224.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Kiang NYS (1978) Acoustic trauma in cats: Cochlear pathology and auditory-nerve activity. Acta Otolaryngol Suppl 358: 1–63.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Kiang NYS (1984) Single-neuron labeling and chronic cochlear pathology. Stereocilia damage and alterations in rate- and phase-level functions. Hear Res 16: 75–90.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Oliver ME (1984) Morphometry of intracellular labeled neurons of the auditory nerve: Correlations with functional properties. J Comp Neurol 223: 163–176.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: Quantitative analysis with light and electron microscopy. J Comp Neurol 301: 443–460.

    PubMed  CAS  Google Scholar 

  • Lorente de No R (1933) Anatomy of the eighth nerve. III. General plan of structure of the primary cochlear nuclei. Laryngoscope 43: 327–350.

    Google Scholar 

  • Lorente de No R (1937) The sensory endings in the cochlea. Laryngoscope (St. Louis) 47: 373–377.

    Google Scholar 

  • Masterton RB, Thompson GC, Bechtold JK, RoBards MJ (1975) Neuroanatom- ical basis of binaural phase-difference analysis for sound localization: A comparative study. J Comp Physiol Psych 89: 379–386.

    CAS  Google Scholar 

  • McConnell SK, Ghosh A, Shatz CJ (1989) Subplate neurons pioneer the first axon pathway for the cerebral cortex. Science 245: 978–982.

    PubMed  CAS  Google Scholar 

  • Morrison D, Schindler RA, Wersäll J (1975) A quantitative analysis of the afferent innervation of the organ of Corti in guinea pig. Acta Otolaryngol 79: 11–23.

    PubMed  CAS  Google Scholar 

  • Moskowitz N, Liu JC (1972) Central projections of the spiral ganglion of the squirrel monkey. J Comp Neurol 144: 335–344.

    PubMed  CAS  Google Scholar 

  • Munzer FT (1931) Uber markhaltige Ganglienzellen. Z Mikrosk Anat Forsch 24: 286–361.

    Google Scholar 

  • Nadol JB (1981) Reciprocal synapses at the base of outer hair cells in the organ of Corti of man. Ann Oto Rhinol Laryngol 90: 12–17.

    Google Scholar 

  • Nadol JB (1983a) Serial section reconstruction of the neural poles of hair cells in the human organ of Corti. I. Inner hair cells. Laryngoscope 93: 599–614.

    PubMed  Google Scholar 

  • Nadol JB (1983b) Serial section reconstruction of the neural poles of hair cells in the human organ of Corti. II. Outer hair cells. Laryngoscope 93: 780–791.

    PubMed  Google Scholar 

  • Nadol JB (1988a) Comparative anatomy of the cochlea and auditory nerve in mammals. Hear Res 34: 253–266.

    PubMed  Google Scholar 

  • Nadol JB (1988b) Innervation densities of inner and outer hair cells of the human organ of Corti. ORL 50: 363–370.

    Google Scholar 

  • Natout MAY, Terr LI, Linthicum Jr FH, House WF (1987) Topography of vestibulocochlear nerve fibers in the posterior cranial fossa. Laryngoscope 97: 954–958.

    PubMed  CAS  Google Scholar 

  • Noda Y, Pirsig W (1974) Anatomical projection of the cochlea to the cochlear nuclei of the guinea pig. Arch Otorhinolaryngol 208: 107–120.

    PubMed  CAS  Google Scholar 

  • Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136: 453–484.

    PubMed  CAS  Google Scholar 

  • Osen KK (1970) Course and termination of the primary afferents in the cochlear nuclei of the cat. Arch Ital Biol 108: 21–51.

    PubMed  CAS  Google Scholar 

  • Ota CY, Kimura RS (1980) Ultrastructural study of the human spiral ganglion. Acta Otolaryngol 89: 53–62.

    PubMed  CAS  Google Scholar 

  • Perkins RE, Morest DK (1975) A study of cochlear innervation patterns in cats and rats with the Golgi method and Nomarski optics. J Comp Neurol 63: 129–158.

    Google Scholar 

  • Polyak SL, McHugh G, Judd DK (1946) The Human Ear in Anatomical Transparencies. Elmsford, NY: Sonotone.

    Google Scholar 

  • Ramón-Moliner E (1970) The Golgi-Cox technique. In: Nauta WJH, Ebbesson SOE (eds) Contemporary Research Methods in Neuroanatomy. New York, NY: Springer-Verlag, pp. 32–55.

    Google Scholar 

  • Ramón y Cajal S (1909) Histologie du Système nerveux de l’Homme et des Vertébrés, Vol 1. Madrid: Instituto Ramón y Cajal, pp. 774–838.

    Google Scholar 

  • Ramprashad F, Money KE, Landolt JP, Laufer J (1978) A neuroanatomical study of the cochlea of the little brown bat ( Myotis lucifugus ). J Comp Neurol 178: 347–363.

    PubMed  CAS  Google Scholar 

  • Ramprashad F, Landolt JP, Money KE, Clark D, Laufer J (1979) A morphometric study of the cochlea of the little brown bat (Myotis lucifugus) J Morphol 160: 345–368.

    PubMed  CAS  Google Scholar 

  • Rasmussen GL (1940) Studies of the VIIIth cranial nerve of man. Laryngoscope 50: 67–83.

    Google Scholar 

  • Rasmussen GL (1946) The olivary peduncle and other fiber connections of the superior olivary complex. J Comp Neurol 84: 141–219.

    PubMed  CAS  Google Scholar 

  • Retzius G (1884) Das Gehörorgan der Wirbeltiere. I I. Das Gehörorgan der Reptilien, derr Vögel und der Säugetiere. Stockholm: Samson and Wallin.

    Google Scholar 

  • Retzius G (1892) Die Endigungsweise des Gehörnerven. Biolog Untersuchungen, Neue Folfe, I II. Leipzig: Vogel.

    Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49: 1218–1231.

    PubMed  Google Scholar 

  • Rhode WS, Oertel D, Smith PH (1983) Physiological response properties of cells labeled intracellular with horseradish peroxidase in cat ventral cochlear nucleus. J Comp Neurol 213: 448–463.

    PubMed  CAS  Google Scholar 

  • Ritz LA, Brownell WE (1982) Single unit analysis of the posteroventral cochlear nucleus of the decerebrate cat. Neuroscience 7: 1995–2010.

    PubMed  CAS  Google Scholar 

  • Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurons in the guinea pig spiral ganglion. Hear Res 15: 113–121.

    PubMed  CAS  Google Scholar 

  • Robertson D, Cody AR, Bredberg G, Johnstone BM (1980) Response properties of spiral ganglion neurons in cochleas damaged by direct mechanical trauma. J Acoust Soc Am 67: 1295–1303.

    PubMed  CAS  Google Scholar 

  • Romand R, Hafidi A, Despres G (1987) Immunocytochemical localization of neurofilament protein subunits in the spiral ganglion of the adult rat. Brain Res 462: 167–173.

    Google Scholar 

  • Rose JE, Galambos R, Hughes JR (1959) Microelectrode studies of the cochlear nuclei of the cat. Bull Johns Hopkins Hospital 104: 211–251.

    CAS  Google Scholar 

  • Rouiller EM, Cronin-Schreiber R, Fekete DM, Ryugo DK (1986) The central projections of intracellularly labeled auditory nerve fibers in cats: An analysis of terminal morphology. J Comp Neurol 249: 261–278.

    PubMed  CAS  Google Scholar 

  • Rouiller EM, Ryugo DK (1984) Intracellular marking of physiologically characterized neurons in the ventral cochlear nucleus of the cat. J Comp Neurol 225: 167–186.

    PubMed  CAS  Google Scholar 

  • Rüssel IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol 284: 261–290.

    Google Scholar 

  • Ryan AF, Schwartz IR, Helfert RH, Keithley EM, Wang ZX (1987) Selective retrograde labeling of lateral olivocochlear neurons in the brainstem based on preferential uptake of 3H-D-aspartic acid in the cochlea. J Comp Neurol 255: 606–616.

    PubMed  CAS  Google Scholar 

  • Ryugo DK, Fekete DM (1982) Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: A study of the endbulbs of Held. J Comp Neurol 210: 239–257.

    PubMed  CAS  Google Scholar 

  • Ryugo DK, Rouiller EM (1988) The central projections of intracellularly labeled auditory nerve fibers in cats: Morphometric correlations with physiological properties. J Comp Neurol 271: 130–142.

    PubMed  CAS  Google Scholar 

  • Ryugo DK, Sento S (1991) Synaptic connections of the auditory nerve in cats: Relationship between endbulbs of Held and spherical bushy cells. J Comp Neurol 305: 35–48.

    PubMed  CAS  Google Scholar 

  • Ryugo DK, Sento S (1991) Synaptic connections of the auditory nerve in cats: Relationship between endbulbs of Held and spherical bushy cells. J Comp Neurol 305: 35–48.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory nerve fibers in cats: Tone-burst stimulation. J Acoust Soc Am 56: 1835–1847.

    PubMed  CAS  Google Scholar 

  • Sando I (1965) The anatomical interrelationships of the cochlear nerve fibers. Acta Otolaryngol 59: 417–436.

    Google Scholar 

  • Schalk TB, Sachs MB (1980) Nonlinearities in auditory-nerve fiber responses to bandlimited noise. J Acoust Soc Am 67: 903–913.

    PubMed  CAS  Google Scholar 

  • Schuknecht HF (1953) Techniques for study of cochlear function and pathology in experimental animals. Arch Oto-Laryngol 58: 377–397.

    CAS  Google Scholar 

  • Schuknecht HF (1960) Neuroanatomical correlates of auditory sensitivity and pitch discrimination in the cat. In: Rasmussen GL, Windle WF (eds) Neural Mechanisms of the Auditory and Vestibular Systems. Springfield, IL: Charles C Thomas, pp. 76–90.

    Google Scholar 

  • Sento S, Ryugo DK (1989) Endbulbs of Held and spherical bushy cells in cats: Morphological correlates with physiological properties. J Comp Neurol 280: 553–562.

    PubMed  CAS  Google Scholar 

  • Simmons DD, Liberman MC (1988) Afferent innervation of outer hair cells in adult cats: I. Light microscopic analysis of fibers labeled with horseradish peroxidase. J Comp Neurol 270: 132–144.

    PubMed  CAS  Google Scholar 

  • Smith CA (1961) Innervation pattern of the cochlea. The internal hair cell. Ann Otol Rhinol Laryngol 70: 1–24.

    Google Scholar 

  • Smith CA (1975) Innervation of the cochlea of the guinea pig by use of the Golgi stain. Ann Otol Rhinol Laryngol 84: 443–458.

    PubMed  CAS  Google Scholar 

  • Smith CA, Rasmussen GL (1963) Recent observation on the olivocochlear bundle. Ann Otol Rhinol Laryngol 72: 489–497.

    PubMed  CAS  Google Scholar 

  • Smith CA, Sjöstrand FS (1961) Structure of the nerve endings on the external hair cells of the guinea pig cochlea as studied by serial section. J Ultrastruct Res 5: 523–556.

    PubMed  CAS  Google Scholar 

  • Spangler KM, Cant NB, Henkel CK, Farley GR, Warr WB (1987) Descending projections from the superior olivary complex to the cochlear nucleus of the cat. J Comp Neurol 259: 452–465.

    PubMed  CAS  Google Scholar 

  • Spirou GA, May BJ, Ryugo DK (1989) 3-Dimensional frequency mapping in the cat dorsal cochlear nucleus. Soc Neurosci Abst 15: 744.

    Google Scholar 

  • Spoendlin H (1969) Innervation patterns in the organ of Corti of the cat. Acta Otolaryngol (Stockh) 67: 239–254.

    CAS  Google Scholar 

  • Spoendlin H (1971) Degeneration behavior of the cochlear nerve. Arch Klin Exp Ohr- Nas- Kehlk Heilk 200: 275–291.

    CAS  Google Scholar 

  • Spoendlin H (1972) Innervation densities of the cochlea. Acta Otolaryngol 73: 235–248.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1973) The innervation of the cochlea receptor. In: Moller AR (ed) Mechanisms in Hearing. New York: Academic Press, pp. 185–229.

    Google Scholar 

  • Spoendlin H (1975) Retrograde degeneration of the cochlear nerve. Acta Otolaryngol 79: 266–275.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1979) Neural connections of the outer hair cell system. Acta Otolaryngol 87: 381–387.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1981) Differentiation of cochlear afferent neurons. Acta Otolaryngol 91: 451–456.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1982) The innervation of the outer hair cell system. Am J Otol 3: 274–278.

    PubMed  CAS  Google Scholar 

  • Spoendlin H, Schrott A (1988) The spiral ganglion and the innervation of the human organ of Corti. Acta Otolaryngol (Stockh) 105: 403–410.

    CAS  Google Scholar 

  • Stanfield BB, O’Leary DDM (1985) The transient corticospinal projections from the occipital cortex during the postnatal development of the rat. J Comp Neurol 238: 236–248.

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Watanabe A, Osada M (1963) Cytological and electron microscopic studies on the spiral ganglion cells of adult guinea pigs and rabbits. Arch Histol Jap 24: 9–33.

    PubMed  CAS  Google Scholar 

  • Tolbert LP, Morest DK (1982) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Electron microscopy. Neuroscience 7: 3053–3067.

    PubMed  CAS  Google Scholar 

  • Valverde F (1970) The Golgi method: A tool for comparative structural analyses. In: Nauta WJH, Ebbesson SOE (eds) Contemporary Research Methods in Neuroanatomy. New York: Springer-Verlag, pp. 12–31.

    Google Scholar 

  • von Ebner B (1903) Die Endigung des Schneckennerven im Cortischen Organe. Kölliker’s Handbuch der Gewebelehre des Menschen, III. Leipzig: Engelmann, pp. 944–960.

    Google Scholar 

  • Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brainstem: Their location, morphology, and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161: 159–182.

    PubMed  CAS  Google Scholar 

  • Warr WB, Guinan JJ (1979) Efferent innervation of the organ of Corti: Two separate systems. Brain Res 173: 152–155.

    PubMed  CAS  Google Scholar 

  • Webster DB (1971) Projection of the cochlea to cochlear nuclei in Merriam’s kangaroo rat. J Comp Neurol 143: 323–340.

    PubMed  CAS  Google Scholar 

  • White JS, Warr WB (1983) The dual origins of the olivocochlear bundle in the albino rat. J Comp Neurol 219: 203–214.

    PubMed  CAS  Google Scholar 

  • Wiederhold ML (1970) Variations in the effects of electrical stimulation of the crossed olivocochlear bundle on cat single auditory-nerve-fiber responses to tone bursts. J Acoust Soc Am 48: 966–977.

    PubMed  CAS  Google Scholar 

  • Wiederhold ML, Kiang NYS (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48: 950–965.

    PubMed  CAS  Google Scholar 

  • Wright DD, Spirou GA, May BJ, Ryugo DK (1991) Frequency representation in the dorsal cochlear nucleus of cats. Assn Res Otolaryngol Abst p. 140.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ryugo, D.K. (1992). The Auditory Nerve: Peripheral Innervation, Cell Body Morphology, and Central Projections. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Mammalian Auditory Pathway: Neuroanatomy. Springer Handbook of Auditory Research, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4416-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4416-5_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97800-0

  • Online ISBN: 978-1-4612-4416-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics