Antitumor Agents

  • Kanki Komiyama
  • Shinji Funayama
Part of the Brock/Springer Series in Contemporary Bioscience book series (BROCK/SPRINGER)

Abstract

Until now many antitumor substances have been discovered, including synthetic substances, natural products of higher plant origin, and antitumor antibiotics. These antitumor antibiotics have played an important role in the development of antitumor agents.

Keywords

Leukemia MeOH Doxorubicin Inositol Decantation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alley, M. C., Scudiero, D. A. Monks, A., Hursey, M. L., Czerwinski, M. J., Fine, D. L., Abbott, B. J., Mayo, J. G., Shoemaker, R. H. and Boyd, M. R. 1988. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Research 48:589–601.PubMedGoogle Scholar
  2. Bartus, H. R., Mirabelli, C. K., Auerbach, J. I., Shatzman, A. R., Taylor, D. P., Johnson, R. K., Rosenberg, M. and Crooke, S. T. 1984. Improved genetically modified Escherichia coli strain for prescreening antineoplastic agents. Antimicrobial Agents and Chemotherapy 25:622–625.PubMedGoogle Scholar
  3. Bush, J. A., Long, B. H., Catino, J. J. and Bradner, W. T. 1987. Production and biological activity of rebeccamycin, a novel antitumor agent. Journal of Antibiotics (Tokyo) 40:668–678.Google Scholar
  4. Cantino, J. J., Francher, D. M. and Schuring, J. E. 1986. Evaluation of cis-diammine-dichloroplatinum (II) combined with metoclopramide or sodium thiosulfate on L1210 leukemia in vitro and in vivo. Cancer Chemotherapy and Pharmacology 18:1–4.CrossRefGoogle Scholar
  5. Cantino, J. J., Francher, D. M., Edinger, K. J. and Stringfellow, D. A. 1985. A microtiter cytotoxicity assay useful for the discovery of fermentation-derived antitumor agents. Cancer Chemotherapy and Pharmacology 15:240–243.Google Scholar
  6. Driscoll, J. S. 1984. The preclinical new drug research program of the national cancer institute. Cancer Treatment Reports 68:63–76.PubMedGoogle Scholar
  7. Elespuru, R. K. and Yarmolinsky, M. B. 1979. A colorimetric assay of lysogenic induction designed for screening potential carcinogenic and carcinostatic agents. Enviromental Mutagenesis 1:55–78.CrossRefGoogle Scholar
  8. Finlay, G. J., Baguley, B. C. and Wilson, W. R. 1984. A semiautomated microculture method for investigating growth inhibitory effects of cytotoxic compounds on exponentially growing carcinoma cells. Analytical Biochemistry 139:272–277.PubMedCrossRefGoogle Scholar
  9. Fry, D. W., Theodore, J. B. and Jackson, R. C. 1984. Studies on the biochemical mechanism of the novel antitumor agent, CI-920. Cancer Chemotherapy and Pharmacology 13:171–175.PubMedCrossRefGoogle Scholar
  10. Funaishi, K., Kawamura, K., Sugiura, Y., Nakahori, N., Yoshida, E., Okanishi, M., Umezawa, I., Funayama, S. and Komiyama, K. 1987. Kazusamycin B, a novel antitumor antibiotic. Journal of Antibiotics (Tokyo) 40:778–785.Google Scholar
  11. Funayama, S., Okada, K., Oka, H., Tomisaka, S., Miyano, T., Komiyama, K. and Umezawa, I. 1985a. Structure of awamycin, a novel antitumor ansamycin antibiotic. Journal of Antibiotics (Tokyo) 38:1284–1286.Google Scholar
  12. Funayama, S., Okada, K., Komiyama, K. and Umezawa, I. 1985b. Structures of trienomycins A, B and C. Novel cytocidal ansamycinantibiotics. Journal of Antibiotics (Tokyo) 38:1677–1683.Google Scholar
  13. Funayama, S., Anraku, Y., Mita, A., Yang, Z.-B., Shibata, K., Komiyama, K., Umezawa, I. and Ōmura, S. 1988. Structure-activity relationship of a novel antitumor ansamycin antibiotic trienomycin A and related compounds. Journal of Antibiotics (Tokyo) 41:1223–1230.Google Scholar
  14. Funayama, S., Eda, S., Komiyama, K., Ōmura, S. and Tokunaga, T. 1989a. Structure of phenazinomycin, a novel antitumor antibiotic. Tetrahedron Letters 30:3151–3154.CrossRefGoogle Scholar
  15. Funayama, S., Anraku, Y., Mita, A., Komiyama, K. and Ōmura, S. 1989b. Structural study of isoflavonoids possessing antioxidant activity isolated from the fermentation broth of Streptomyces sp. Journal of Antibiotics (Tokyo) 42:1350–1355.Google Scholar
  16. Fuska, J., Vesely, P., Ivanikaja, L. and Fuska, A. 1975. In vitro screening of cytotoxic substances using different tumor cells. In: Hellmann, K. and Connors, T. A. (editors), Chemotherapy 7, pp. 327–333. Plenum Press, New York.Google Scholar
  17. Gause, G. 1975. Recent experience with microbial systems and cancer cellls in vitro in the screening for antitumor antibiotics. In: Hellmann, K. and Connors, T. A. (editors), Chemotherapy 7, pp. 299–302. Plenum Press, New York.Google Scholar
  18. Gause, G. F., Laiko, A. V. and Selesneva, T. I. 1976. Yeast mutants with distorted cell membranes as test in the screening for antitumor antibiotics. Cancer Treatment Reports 60:637–638.PubMedGoogle Scholar
  19. Geran, R. I., Greenberg, N. H., Macdonald., M. M., Schumacher, A. M. and Abbott, B. J. 1972. Protocols for screening chemical agents and natural products against animal tumors and other biological systems (3rd Edition). Cancer Chemotherapy Reports 3:1–88.Google Scholar
  20. Goldin, A. 1967. Preclinical methodology for the selection of Anticancer agents. In: Busch, H. (editor), Methods in Cancer Research, Vol. IV, pp. 193–255. Academic Press, New York.Google Scholar
  21. Hanka, L. J., Bhuyan, B. K., Martin, D. G., Neil, G. L. and Douros, J. D. 1978. A multiend point in vitro system for detection of new antitumor drugs. Antibiotics and Chemotherapy(Basel) 23:26–32.Google Scholar
  22. Hara, M., Takahashi, I., Yoshida, M., Asano, K., Kawamoto, I., Morimoto, M. and Nakano, H. 1989. Leinamycin, a new antitumor antibiotic from Streptomyces; producing organism, fermentation and isolation. Journal of Antibiotics(Tokyo) 42:1768–1774Google Scholar
  23. Hara, M., Mokudai, T., Kobayashi, E., Gomi, K. and Nakano, H. 1990. The kapurimycins, new antitumor antibiotics produced by Streptomeces. Producing organism, fermentation, isolation and biological activities. Journal of Antibiotics (Tokyo) 43:1513–1518.Google Scholar
  24. Hata, T. 1971. Cancer chemotherapy: Studies on anticancer agents particularly anticancer antibiotics. Kitasato Archives of Experimental Medicine 44:135–154.PubMedGoogle Scholar
  25. Hayakawa, Y., Iwakiri, T., Imamura, K., Seto, H. and Otake, N. 1985a. Studies on the isotetracenone antibiotics I. Capoamycin, a new antitumor antibiotic. Journal of Antibiotics (Tokyo) 38:957–959.Google Scholar
  26. Hayakawa, Y., Iwakiri, T., Imamura, K., Seto, H. and Otake, N. 1985b. Studies on the isotetracenone antibiotics II. Kerriamycins, A, B and C, new antitumor antibiotics. Journal of Antibiotics (Tokyo) 38:960–963.Google Scholar
  27. Hori, Y., Hino, M., Kawai, Y., Kiyoto, S., Terano, H., Kohsaka, M., Aoki, H., Hashimoto, M. and Imanaka, H. 1986. A new antitumor antibiotic, chromoxymycin. II. Production, isolation, characterization and antitumor activity. Journal of Antibiotics (Tokyo) 39:12–16.Google Scholar
  28. Hsu, Y., Hirota, A., Shima, S., Nakagawa, M., Adachi, T., Nozaki, H. and Nakayama, M. 1989. Myrocin C, a new diterpene antitumor antibiotic from Myrothecium verrucaria. II. Physicochemical properties and structure determination. Journal of Antibiotics (Tokyo) 42:223–229.Google Scholar
  29. Hu, J., Xue, Y., Xie, M., Zhang, R., Otani, T., Minami, Y., Yamada, Y. and Marunaka, T. 1988. A new macromolecular antitumor antibiotic, C-1027. I. Discovery, taxonomy of producing organism, fermentation and biological activity. Journal of Antibiotics (Tokyo) 41:1575–1579.Google Scholar
  30. Hurley, T. R., Bunge, R. H., Willmer, N. E., Hokanson, G. C. and French, J. C. 1986. PD124,895 and PD124,966, two new antitumor antibiotics. Journal of Antibiotics (Tokyo) 39:1651–1656.Google Scholar
  31. Ichimura, M., Muroi, K., Asano, K., Kawamoto, I., Tomita, F., Morimoto, M. and Nakano, H. 1988. DC89-A1, A new antitumor antibiotic from Streptomyces. Journal of Antibiotics (Tokyo) 41:1285–1288.Google Scholar
  32. Ichimura, M., Ogawa, T., Takahashi, K., Kobayashi, E., Kawamoto, I., Yasuzawa, T., Takahashi, I. and Nakano, H. 1990. Duocarmycin SA, a new antitumor antibiotic from Streptomyces sp. Journal of Antibiotics (Tokyo) 43:1037–1038.Google Scholar
  33. Imai, S., Furihata, K., Hayakawa, Y., Noguchi, T. and Seto, H., 1989. Lavanducyanin, a new antitumor substance produced by Streptomyces sp. Journal of Antibiotics (Tokyo) 42:1196–1197.Google Scholar
  34. Imamura, K., Odagawa, A., Tanabe, K., Hayakawa, Y. and Otake, N. 1984. Akrobomycin, a new anthracycline antibiotic. Journal of Antibiotics (Tokyo) 37:83–84.Google Scholar
  35. Ishii, S., Nagasawa, M., Kariya, Y., Itoh, O., Yamamoto, H., Inouye, S. and Kondo, S. 1989. Antitumor activity of ankinomycin. Journal of Antibiotics (Tokyo) 42:1518–1519.Google Scholar
  36. Ishizeki, S., Ohtushika, M., Irinoda, K., Kukita, K., Nagaoka, K. and Nakashima, T. 1987. Azinomycins A and B, new antitumor antibiotics. III. Antitumor activity. Journal of Antibiotics (Tokyo) 40:60–65.Google Scholar
  37. Ishizuka, M., Masuda, T., Kanbayashi, N., Fukasawa, S., Takeuchi, T., Aoyagi, T. and Umezawa, H. 1980. Effect of bestatin on mouse immune system and experimental murine tumors. Journal of Antibiotics (Tokyo) 33:642–652.Google Scholar
  38. Ishizuka, M., Masuda, T., Nakabayashi, N., Watanabe, Y., Matsuzaki, M., Sawazaki, Y., Ohkura, A., Takeuchi, T. and Umezawa, H. 1982. Antitumor effect of forphencinol, a low molecular weight immunomodifier, on murine transplantable tumors and microbial infections. Journal of Antibiotics (Tokyo) 35:1049–1054.Google Scholar
  39. Itoh, J., Watabe, H., Ishii, S., Gomi, S., Nagasawa, M., Yamamoto, H., Shomura, T., Sezaki, M. and Kondo, S. 1988. Sibanomicin, a new pyrrolo[1,4]-benzodiazepine antitumor antibiotic produced by a Micromonospora sp. Journal of Antibiotics (Tokyo) 41:1281–128Google Scholar
  40. Iwami, M., Nakayama, O., Okuhara, M., Terano, H. and Kohsaka, M. 1989a. New antitumor antibiotic, FR-900462. I. Taxonomy of the producing strain. Journal of Antibiotics (Tokyo) 42:680–685.Google Scholar
  41. Iwami, M., Nakayama, O., Okuhara, M., Terano, H. and Kohsaka, M. 1989b. New antitumor antibiotic, FR-900462. II. Production, isolation, characterization and biological activity. Journal of Antibiotics (Tokyo) 42:686–690.Google Scholar
  42. Kitahara, M., Ishii, K., Kawaharada, H., Watanabe, K., Suga, T., Hirata, T. and Nakamura, S. 1985. 7-Hydroxyguanine, a novel antimetabolite from a strain of Streptomyces purpurascens. II. Physicochemical properties and structure determination. Journal of Antibiotics (Tokyo) 38:977–980.Google Scholar
  43. Kiyoto, S., Shibata, T., Kawai, Y., Hori, Y., Nakayama, O, Terano, H., Kohsaka, M., Aoki, H. and Imanaka, H. 1984. New antitumor antibiotic, FR-900405. III. Mechanism of action of FR-900405. Journal of Antibiotics (Tokyo) 38:955–956.Google Scholar
  44. Kiyoto, S., Murai, H., Tsurumi, Y., Terano, H., Kohsaka, M., Takase, S., Uchida, I., Hashimoto, M., Aoki, H. and Imanaka, H. 1987. WF-3405, A novel antitumor antibiotic. Taxonomy, isolation, structure elucidation and biological properties. Journal of Antibiotics (Tokyo) 40:290–295.Google Scholar
  45. Koenuma, M., Kinashi, H. and Otake, N. 1974, An improved screening method for antiphage antibiotics and isolation of sarkomycin and its relatives. Journal of Antibiotics (Tokyo) 27:801–804.Google Scholar
  46. Komiyama, K., Funayama, S., Anraku, Y., Mita, A., Takahashi, Y. and Ōmura, S. 1989. Isolation of isoflabonoids possessing antioxidant activity from the fermentation broth of Streptomyces sp. Journal of Antibiotics (Tokyo) 42:1344–1349.Google Scholar
  47. Komiyama, K., Okada, K., Oka, H., Tomisaka, S., Miyano, T., Funayama, S. and Umezawa, I. 1985. Structural study of a new antitumor antibiotic, kazusamycin. Journal Antibiotics (Tokyo) 38:220–223.Google Scholar
  48. Komiyama, K., Hirokawa, Y., Yamaguchi, H., Funayama, S., Masuda, K., Anraku, Y., Umezawa, I. and Ōmura, S. 1987. Antitumor activity of trienomycin A on murine tumors. Journal Antibiotics (Tokyo) 40:1768–1772.Google Scholar
  49. Konishi, M., Ohkuma, H., Naruse, N. and Kawaguchi, H. 1984. Chicamycin, a new antitumor antibiotic. II. Structure determination of chicamycins A and B. Journal of Antibiotics (Tokyo) 37:200–206.Google Scholar
  50. Konishi, M., Sugawara, K., Kofu, F., Nishiyama, Y., Tomita, K., Miyaki, T. and Kawaguchi, H. 1986. Elsamicins, new antitumor antibiotics related to chartreusin. I. Production, isolation, characterization and antitumor activity. Journal of Antibiotics (Tokyo) 39:784–791.Google Scholar
  51. Kurasawa, S., Takeuchi, T. and Umezawa, H. 1975a. Studies on glyoxalase inhibitor. Isolation of a new active agent, MS-3, from a mushroom culture. Agricultural and Biological Chemistry 39:2003–2008.CrossRefGoogle Scholar
  52. Kurasawa, S., Naganawa, H., Takeuchi, T. and Umezawa, H. 1975b. The structure of MS-3: A glyoxalase I inhibitor produced by a mushroom. Agricultural and Biological Chemistry 39:2009–2014.CrossRefGoogle Scholar
  53. Lam, K. S., Hesler, G. A., Mattei, J. M., Mamber, S. W., Forenza, S. and Tomita, K. 1990. Himastatin, a new antitumor antibiotic from Streptomyces hygroscopicus. I. Taxonomy of procucing organism, fermentation and biological activity. Journal of Antibiotics (Tokyo) 43:956–960.Google Scholar
  54. Lee, M. D., Manning, J. K., Williams, D. R., Kuck, N. A., Testa, R. T. and Borders, D. B. 1989. Calicheamicins, a novel family of antitumor antibiotics. 3. Isolation, purification and characterization of calichemicins 1Br, 1Br, 2I, 3I, I, 1I and 1I. Journal of Antibiotics (Tokyo) 42:1070–1087.Google Scholar
  55. Leet, J. E., Schroeder, D. R., Krishnan, B. S. and Matson, J. A. 1990. Himastatin, a new antitumor antibiotic from Streptomyces hygroscopicus. II. Isolation and characterization.Journal of Antibiotics (Tokyo) 43:961–966.Google Scholar
  56. LePage, G. A., Worth, L. S. and Kimball, A. P. 1976. Enhancement of the antitumor activity of arabinofuranosyladenine by 2’-deoxy-conformycin. Cancer Research 36:1481–1485.PubMedGoogle Scholar
  57. Maiese, W. M., Lechevalier, M. P., Lechevalier, H. A., Korshalla, J., Kuck, N., Fantini, A., Wildey, M. J., Thomas, J. and Greenstein, M. 1989. Calicheamicins, a novel family of antitumor antibiotics: Taxonomy, fermentation and biological properties. Journal of Antibiotics (Tokyo) 42:558–563.Google Scholar
  58. Maiese, W. M., Laveda, D. P., Korshalla, J., Kuck, N., Fantini, A., Wildey, M. J., Thomas, J. and Greenstein, M. 1990. LL-D49194 antibiotics, a novel family of antitumor angents: Taxonomy, fermentation and biological properties. Journal of Antibiotics (Tokyo) 43:253–258.Google Scholar
  59. Matson, J. A. and Bush, J. A. 1989. Sandramycin, a novel antitumor antibiotic produced by Nocardioides sp. Production, isolation, characterization and biological propertiers.Journal of Antibiotics (Tokyo) 42:1763–1767.Google Scholar
  60. Matson, J. A., Rose, W. C, Bush, J. A., Myllymaki, R., Bradner, W. T. and Doyle, T. W. 1989a. Antitumor activity of chrysomycins M and V. Journal of Antibiotics (Tokyo) 42:1446–1448.Google Scholar
  61. Matson, J. A., Claridge, C, Bush, J. A., Titus, J., Bradner, W. T., Doyle, T. W., Horan, A. C. and Patel, M. 1989b. AT2433-A1, AT2433-A2, AT2433-B1, and AT2433-B2. Novel antitumor antibiotic compounds produced by Actinomadura melliaura. Taxonomy, fermentation, isolation and biological propertiers. Journal of Antibiotics (Tokyo) 42:1547–1555.Google Scholar
  62. Mirabelli, C. K., Bartus, H., Bartus, J. O. L., Johnson, R., Mong, S. M., Sung, C. P. and Crooke, S. T. 1985. Application of a tissue culture microtiter test for the detection of cytotoxic agents from natural products. Journal of Antibiotics (Tokyo) 38:758–766.Google Scholar
  63. Mirand, A. E. 1966. Erythropoietic response of animals infected with various strains of Friend virus. National Cancer Institute Monograph 22:483–503.PubMedGoogle Scholar
  64. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65:55–63PubMedCrossRefGoogle Scholar
  65. Nakagawa, M., Hsu, Y., Hirota, A., Shima, S. and Nakayama, M. 1989. Myrocin C, a new diterpene antitumor antibiotic from Myrothecium verrucaria. I. Taxonomy of the producing strain, fermentation, isolation and biological properties. Journal of Antibiotics (Tokyo) 42:218–222.Google Scholar
  66. Nakamura, S., Yajima, T., Hamada, M., Nishimura, T., Ishizuka, M., Takeuchi, T., Tanaka, N. and Umezawa, H. 1967. A new antitumor antibiotic, phenomycin. Journal of Antibiotics (Tokyo) Series A 20:210–216.Google Scholar
  67. Nishii, M., Inagaki, J., Nohara, F., Isono, K., Kusakabe, H., Kobayashi, K., Sakurai, T., Koshimura, S., Sethi, S. K. and McCloskey, J. A. 1985. A new antitumor antibiotic, guanine 7-N-oxide produced by Streptomyces sp. Journal of Antibiotics (Tokyo) 38:1440–1443.Google Scholar
  68. Nishimura, M., Nakada, H., Nakajima, H., Hori, Y., Ezaki, M., Goto, T. and Okuhara, M. 1989a. A new antitumor antibiotic, FR900840. I. Discovery, identification, isolation and characterization. Journal of Antibiotics (Tokyo) 42:542–548.Google Scholar
  69. Nishimura, M., Nakada, H., Takasee, S., Katayama, A., Goto, T., Tanaka, H. and Hashimoto, M. 1989b. A new antitumor antibiotic, FR900840. II. Structural elucidation of FR900840. Journal of Antibiotics (Tokyo) 42:549–552.Google Scholar
  70. Nishimura, M., Nakada, H., Kawamura, I., Mizota, T., Shimomura, K., Nakahara, K., Goto, T., Yamaguchi, I. and Okuhara, M. 1989c. A new antitumor antibiotic, FR900840. II. Antitumor activity against experimental tumors. Journal of Antibiotics (Tokyo) 42:553–557.Google Scholar
  71. Nishioka, H., Sawa, T., Hamada, M., Shimura, N., Imoto, M. and Umezawa, K. 1990. Inhibition of phosphatidylinositol kinase by toyokamaycin. Journal of Antibiotics (Tokyo) 43:1586–1589.Google Scholar
  72. Nomoto, H., Katsumata, S., Takahashi, K., Funayama, S., Komiyama K., Umezawa, I. and Ōmura, S. 1989. Structural studies on minor components of trienomycin group antibiotics trienomycins D and E. Journal of Antibiotics (Tokyo) 42:79–481.Google Scholar
  73. Ogawa, T., Ichimura, M., Katsumata, S., Morimoto, M. and Takahashi, K. 1989. New antitumor antibiotics, duocarmycins B1 and B2. Journal of Antibiotics (Tokyo) 42:1299–1301.Google Scholar
  74. Ohba, K., Watabe, H., Sasaki, T., Takeuchi, Y., Kodama, Y., Nakazawa, T., Yamamoto, H., Shomura, T., Sezaki, M. and Kondo, S. 1988. Pyrindamycins A and B, new antitumor antibiotics. Journal of Antibiotics (Tokyo) 41:1515–1519.Google Scholar
  75. Oka, M., Ohkuma, H., Kamei, H., Konishi, M., Oki, T. and Kawaguchi, H. 1988. Glidobactins D, E, F, G and H; Minor Components of the antitumor antibiotic glidobactin. Journal of Antibiotics (Tokyo) 41:1906–1909.Google Scholar
  76. Okabe, T., Nomoto, K., Funabashi, H., Okuda, S., Suzuki, H. and Tanaka, N. 1985. Lactoquinomycin, a novel anticancer antibiotic II. Physicochemical properties and structure assignment. Journal of Antibiotics (Tokyo) 38:1333–1336.Google Scholar
  77. Oku, T., Imanishi, J. and Kishida, T. 1982. Assessment of antitumor cell effect of human leucocyte interferon in combination with anticancer agents by a convenient assay system in monolayer cell culture. Japanese Journal of Cancer Research 73:667–674.Google Scholar
  78. Ōmura, S., Eda, S., Funayama, S., Komiyama, K., Takahashi, Y. and Woodruff, H. B. 1989. Studies on a novel antitumor antibiotic, phenazinomycin: Taxonomy, fermentation, isolation, and physicochemical and biological activity. Journal of Antibiotics (Tokyo) 42:1037–1042.Google Scholar
  79. Onoda, T., Iimura, H., Sasaki, Y., Hanada, M., Isshiki, K., Naganawa, H., Takeuchi, T., Tatsuta, K., and Umezawa, K. 1989. Isolation of a novel tyrosine kinase inhibitor, lavendustin A, from Streptomyces griseolavendus. Journal of Natural Products 52:1252–1257.PubMedCrossRefGoogle Scholar
  80. Otani, T., Munami, Y., Marunaka, T., Zhang, R. and Xie, M. 1988. A new macromolecular antitumor antibiotic, C-1027. II. Isolation and physico-chemical properties. Journal of Antibiotics (Tokyo) 41:1580–1585.Google Scholar
  81. Ozaka, T., Suzuki, K., Sasamata, M., Tanaka, K., Kobori, M., Kadota, S., Nagai, K., Saito, T., Watanabe, S. and Iwanami, M. 1989a. Novel antitumor antibiotic phospholine. 1. Production, isolation and characterization. Journal of Antibiotics (Tokyo) 43:1331–1338.Google Scholar
  82. Ozaka, T., Tanaka, K., Sasamata, M., Kaniwa, H., Shimizu, M., Matsumoto, H. and Iwanami, M. 1989b. Novel antitumor antibiotic phospholine. 2. Structure determination. Journal of Antibiotics (Tokyo) 42:1339–1343.Google Scholar
  83. Pienta, R. J., Bernstein, E. H. and Groupe, V. 1963. Experiences with virus-induced Rous sarcoma as a model in experimental therapy. Cancer Chemotherapy Report 31:25–39.Google Scholar
  84. Salmon, S. E., Hamburger, A. W., Soehnlen, B., Durie, B. G. M., Alberts, D. S. and Moon, T. E. 1978. Quantitation of differential sensitivity of human-tumor stem cells to anticancer drugs. New England Journal of Medicine 298:1321–1327.PubMedCrossRefGoogle Scholar
  85. Sato, H., Goto, M. and Kuroki, T. 1967. Culture of rat ascites hepatoma cells in agar medium and screening for anticancer substances. Japanese Cancer Association GANN Monograph 2:127–140.Google Scholar
  86. Sato, Y., Watabe, H., Nakazawa, T., Shomura, T., Yamamoto, H., Sezaki, M. and Kondo, S. 1989. Ankinomycin, a potent antitumor antibiotic. Journal of Antibiotics (Tokyo) 42:149–152.Google Scholar
  87. Shimomura, K., Hirai, O., Mizota, T., Matsumoto, S., Mori, J., Shibayama, F. and Kikuchi, H. 1987. A new antitumor antibiotic, FR-900482. III. Antitumor activity in transplantable experimental tumors. Journal of Antibiotics (Tokyo) 40:600–606.Google Scholar
  88. Shimosaka, A., Kawai, H., Hayakawa, Y., Komeshima, N., Nakagawa, M., Seto, H. and Otake, N. 1987. Arugomycin, a new anthracycline antibiotic. III. Biological antivities of arugomycin and its analogues obtained by chemical degradation and modification. Journal of Antibiotics (Tokyo) 40:1283–1291.Google Scholar
  89. Shoemaker, R. H. 1986. New approaches to antitumor drug screening: The human tumor colony forming assay. Cancer Treatment Reports 70:9–12.PubMedGoogle Scholar
  90. Sidwell, R. W., Dixon, G. J., Compton, P. and Schabel, F. M., Jr. 1969. The effect of treatment with a combination of 6-mercapto-purine and porfiromycin on an established Friend leukemia virus infection. Cancer Research 29:497–502.PubMedGoogle Scholar
  91. Smith, A. B., III, Wood, J. L., Wong, W., Gould, A. E., Rizzo, C. J., Funayama, S. and Omura, S. 1990. (+)-Trienomycins A, B and C: Relative and absolute stereochemistry. Journal of the American Chemical Society 112:7425–7426.CrossRefGoogle Scholar
  92. Smitka, T. A., Bunge, R. H., Wilton, J. H., Hokanson, G. C. and French, J. C. 1986. PD116,152, A new phenazine antitumor antibiotic. Structure and antitumor anctivity. Journal of Antibiotics (Tokyo) 39:800–803.Google Scholar
  93. Steinberg, D. A., Peterson, G. A., White, R. J. and Maiese, W. M. 1985. The stimulation of bioluminescence in Photobacterium leiognathi as a potential prescreen for antitumor agents. Journal of Antibiotic (Tokyo) 38:1401–1407.Google Scholar
  94. Sugawara, K., Ohbayashi, M., Shimizu, K., Hatori, M., Kamei, H., Konishi, M., Oki, T. and Kawaguchi, H. 1988. BMY-28438 (3,7-dihydroxytropolone), a new antitumor antibiotic active against B16 melanoma. I. Production, isolation, structure and biological activity. Journal of Antibiotics (Tokyo) 41:862–868.Google Scholar
  95. Sugiura, K. 1959. Effects of compounds on the Friend mouse virus leukemia. Gann 50:251–264.PubMedGoogle Scholar
  96. Suzuki, H., Tahara, M., Takahashi, M., Matsumura, F., Okabe, T., Shimazu, A., Hirata, A., Yamaki, H., Yamaguchi, H., Tanaka, N. and Nishimura, T. 1990. Resorthiomycin, a novel antitumor antibiotic. I. Taxonomy, isolation and biological activity. Journal of Antibiotics (Tokyo) 43:129–134.Google Scholar
  97. Tahara, M., Okabe, T., Furihata, K., Tanaka, N., Yamaguchi, H., Nishimura, T. and Suzuki, H. 1990a. Resorthiomycin, a novel antitumor antibiotic. II. Physicochemical properties and structure elucidation. Journal of Antibiotics (Tokyo) 43:135–137.Google Scholar
  98. Tahara, M., Tomida, A., Nishimura, T., Yamaguchi, H. and Suzuki, H. 1990b. Resorthiomycin, a novel antitumor antibiotic. III. Potentiation of antitumor drugs and its mechanism of action. Journal of Antibiotics (Tokyo) 43:138–142.Google Scholar
  99. Takahashi, K., Takahashi, I., Morimoto, M. and Tomita, F. 1986. DC-86-M, A novel antitumor antibiotic. II. Structure determination and biological activities. Journal of Antibiotics (Tokyo) 39:624–628.Google Scholar
  100. Takahashi, A., Nakamura, H., Ikeda, D., Naganawa, H., Kameyama, T., Kurasawa, S., Okami, Y. and Takeuchi, T. 1988a. Thrazarine, a new antitumor antibiotic. II. Physicochemical properties and structure determination. Journal of Antibiotics (Tokyo) 41:1568–1574.Google Scholar
  101. Takahashi, I., Takahashi, K., Asano, K., Kawamoto, I., Yasuzawa, T., Ashizawa, T., Tomita, F. and Nakano, H. 1988b. DC92-B, A new antitumor antibiotic from Actinomadura. Journal of Antibiotics (Tokyo) 41:1151–11531.Google Scholar
  102. Takahashi, I., Takahashi, K., Ichimura, M., Morimoto, M., Asano, K., Kawamoto, I., Tomita, F. and Nakano, H. 1988c. Duocarmycin A, A new antitumor antibiotic from Streptomyces. Journal of Antibiotics (Tokyo) 41:1915–1917.Google Scholar
  103. Takeuchi, M., Sato, Y. and Nitta, K. 1984. An in vitro screening method for antitumor and/or antitumorigenic substances involving the transformation of chick embryo fibroblasts infected with rous sarcoma virus. Journal of Antibiotics (Tokyo) 37:235–238.Google Scholar
  104. Takeuchi, T., Chimura, H., Hamada, M., Umezawa, H., Yoshioka, O., Oguchi, N., Takahashi, Y. and Matsuda, A. 1975. A glyoxalase I inhibitor of a new structural type produced by Streptomyces. Journal of Antibiotics (Tokyo) 28:737–742.Google Scholar
  105. Tanaka, H., Kawakami, T., Yang, Z., Komiyama, K. and Omura, S. 1989. Potentiation of cytotoxicity and antitumor activity of adenosin analogs by the adenosine deaminase inhibitor adecypenol. Journal of Antibiotics (Tokyo) 42:1722–1724.Google Scholar
  106. Terano, H., Takase, S., Hosoda, J. and Kohsaka, M. 1989. A new antitumor antibiotic, FR-66979. Journal of Antibiotics (Tokyo) 42:145–148.Google Scholar
  107. Tsuruo, T., Oh-hara, T., Iida, H., Tsukagoshi, S., Sato, Z., Matsuda, I., Iwasaki, S., Shimizu, F., Sasagawa, K., Fukami, M., Fukuda, K. and Arakawa, M. 1986. Rhizoxin, a macrocyclic lactoneantibiotic, as a new antitumor agent against human and murine tumor cells and their vincristine-resistant sublines. Cancer Research 46:381–385.PubMedGoogle Scholar
  108. Uchida, T., Imoto, M., Watanabe, Y., Miura, K., Dobashi, T., Matsuda, N., Sawa, T., Naganawa, H., Hamada, M., Takeuhi, T. and Umezawa, H. 1985. Saquayamycins, new aquayamycin-group antibiotics. Journal of Antibiotics (Tokyo) 38:1171–1181.Google Scholar
  109. Uehara, Y., Hori, M., Takeuchi, T. and Umezawa, H. 1985. Screening of agents which convert transformed morphology of Rous sarcoma virus-infected rat kidney cells to ‘normal morphology’: Identification of an active agent as herbimycin and its inhibition of intracellular src kinase. Japanese Journal of Cancer Research 76:672–675PubMedGoogle Scholar
  110. Umezawa, H., Imoto, M., Sawa, T., Isshiki, K., Matsuda, N., Uchida, T., Iimura, H., Hamada, M., and Takeuchi, T. 1986. Studies on a new epidermal growth factor-receptor kinase inhibitor, Erbstatin, produced by MH435-hF3. Journal of Antibiotics (Tokyo) 39:170–173.Google Scholar
  111. Umezawa, I., Funayama, S., Okada, K., Iwasaki, K., Satoh, J., Masuda, K. and Komiyama, K. 1985a. Studies on a novel cytocidal antibiotic, trienomycin A. Taxonomy, fermentation, isolation, physicochemical and biological characteristics. Journal of Antibiotics (Tokyo) 38:699–705.Google Scholar
  112. Umezawa, I., Tronquet, C, Funayama, S., Okada, K. and Komiyama, K. 1985b. A novel antibiotic, sohbumycin. Taxonomy, fermentation, isolation, physicochemical and biological characteristics. Journal of Antibiotics (Tokyo) 38:967–971.Google Scholar
  113. Woo P. W. K., Dion H. W., Lange M. S., Dahl L. F., Durham L. J. 1974. A novel adenosine and Ara-A deaminase inhibitor, (R)-3-(2-deoxy-&B-D-erythro-pentotura-nosyl)-3,6,7,8-tetrahydroimidazo [4,5-d] [1,3] diazepin-8-01. Journal of Heterocyclic Chemistry 11:641–643.CrossRefGoogle Scholar
  114. Yamashita, Y., Saitoh, Y., Ando, K., Takahashi, K., Ohno, H. and Nakano, H. 1990. Saintopin, a new antitumor antibiotic with topoisomerase II dependent DNA cleavage activity, from Paecilomyces. Journal Antibiotics (Tokyo) 43:1344–1346.Google Scholar
  115. Yamamoto, I., Nakagawa, M., Hayakawa, Y., Adachi, K. and Kobayashi, E. 1987. Hydroxychlorothricin, a new antitumor antibiotic. Journal of Antibiotics (Tokyo) 40:1452–1454.Google Scholar
  116. Yamato, M., Iinuma, H., Naganawa, H., Yamagishi, Y., Hamada, M., Masuda, T., Umezawa, H., Abe, Y. and Hori M. 1986. Isolation andproperties of valanimycin, a new azoxy antibiotic. Journal of Antibiotics (Tokyo) 39:184–191.Google Scholar
  117. Yasuzawa, T., Saitoh, Y. and Sano, H. 1990. Structures of the novel anthraquinone antitumor antibiotics, DC92-B and DC92-D. Journal of Antibiotics (Tokyo) 43:485–491.Google Scholar
  118. Yoshida, E., Komiyama, K., Naito, K., Watanabe, Y., Takamiya, K., Okura, A., Funaishi, K., Kawamura, K., Funayama, S. and Umezawa, I. 1987. Antitumor effect of kazusamycin B on experimental tumors. Journal of Antibiotics (Tokyo) 40:1596–1604.Google Scholar
  119. Yoshida, M., Hara, M., Saitoh, Y. and Sano, H. 1990. The kapurimycins, new antitumor antibiotics produced by Streptomyces. Physicochemical properties and structure determination. Journal of Antibiotics (Tokyo) 43:1519–1523.Google Scholar
  120. Zhen, Y., Ming, X., Yu, B., Otani, T., Saito, H. and Yamada, Y. 1989. A new macromolecular antitumor antibiotic, C-1027. III. Antitumor activity. Journal of Antibiotics (Tokyo) 42:1294–1298.Google Scholar

Copyright information

© Spring-Verlag New York, Inc. 1992

Authors and Affiliations

  • Kanki Komiyama
  • Shinji Funayama

There are no affiliations available

Personalised recommendations