Skip to main content

Selection of Microbial Sources of Bioactive Compounds

  • Chapter

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

Soon after penicillin was rediscovered as an antibiotic and named the “yellow magic medicine,” a new field of applied microbiology, i.e., that is, antibiotic screening, was introduced, especially by S.A. Waksman, who discovered streptomycin. A large number of bioactive metabolites have been isolated from various microbial sources, such as actinomycetes, bacteria, fungi, mushrooms, etc., but actinomycetes have proved to be the most important as antibiotic producers. The new antibiotics found in 1980 were derived from actinomycetes (80.4%), bacteria (11.4%), and fungi-mushrooms (8.3%); about 75% of those discovered during 1971–1980 were also from this group of microorganisms (Higashide and Yamamoto, 1982). An efficient way of finding new bioactive metabolites is by the discovery of new microorganisms, and many approaches have been used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Athalye, M., Lacey, J. and Goodfellow, M. 1981. Selective isolation and enumeration of actinomycetes using rifampicin. Journal of Applied Bacteriology 51:289–297.

    CAS  Google Scholar 

  • Cross, T. 1981. Aquatic actinomycetes. A critical survey of the occurrence, growth and role of actinomycetes in aquatic habitats. Journal of Applied Bacteriology 50:397–423.

    PubMed  CAS  Google Scholar 

  • Fredenhagen, A., Tamura, S. Y., Kenny, P. T. M., Komura, H., Naya, Y., Nakanishi, K., Nishiyama, K., Sugiura, M. and Kita, H. 1987. Andrimid, a new peptide antibiotic produced by an intracellular bacterial symbiont isolated from a brown planthopper. Journal of the American Chemical Society 109:4409–4411.

    Article  CAS  Google Scholar 

  • Hagedorn, C. 1976. Influences of soil acidity on Streptomyces populations inhabiting forest soils. Applied and Environmental Microbiology 32:368–375.

    PubMed  CAS  Google Scholar 

  • Higashide, E. and Yamamoto, I. 1982. Recent advances in discovery of new antibiotics (I). In: Okami, Y. and Nara, T. (editors), Microbial Products for Medical use, (II), pp. 128–157. Gakkai Shuppan Center, Tokyo.

    Google Scholar 

  • Horikoshi, K. 1971. Production of alkaline enzymes by alkalophilic microorganisms. Part I. Alkaline protease produced by Bacillus No. 221. Agricultural and Biological Chemistry 35:1407–1414.

    Article  CAS  Google Scholar 

  • Inaoka, Y., Tamaoki, H, Takahashi, S., Enokita, R. and Okazaki, T. 1986. Propioxatins A and B, new enkephalinase B inhibitors. I. Taxonomy, fermentation, isolation and biological properties. Journal of Antibiotics (Tokyo) 39:1368–1377.

    CAS  Google Scholar 

  • Iwami, M., Nakayama, O, Terano, H, Kohsaka, M., Aoki, H. and Imanaka, H. 1987. A new immunomodulator, FR-900494: Taxonomy, fermentation, isolation, and physico-chemical and biological characteristics. Journal of Antibiotics (Tokyo) 40:612–622.

    CAS  Google Scholar 

  • Kawaguchi, H, Naito, T., Nakagawa, S. and Fujisawa, K. 1972. BB-K8, a new semi-synthetic aminoglycoside antibiotic. Journal of Antibiotics (Tokyo) 25:695–708.

    CAS  Google Scholar 

  • Kobayashi, J., Ishibashi, M., Nakamura, H, Ohizumi, Y., Yamasu, T., Sasaki, T. and Hirata, Y. 1986. Amphidinolide-A, a novel antineoplastic macrolide from the marine dinoflagellate Amphidinium sp. Tetrahedron Letters 27:5755–5758.

    Article  CAS  Google Scholar 

  • Lechevalier, M. P. and Lechevalier, H. A. 1970. Chemical composition as a criterion in the classification of aerobic actinomycetes. International Journal of Systematic Bacteriology 20:435–443.

    Article  CAS  Google Scholar 

  • Lingappa, Y. and Lockwood, J. L. 1962. Chitin media for selective isolation and culture of actinomycetes. Phytopathology 52:317–323.

    Google Scholar 

  • Miyashiro, S., Yamanaka, S., Takayama, S. and Shibai, H. 1988. Novel macrocyclic antibiotics: Megovalicins A, B, C, D, G and H. I. Screening of antibiotics-producing myxobacteria and production of megovalicins. Journal of Antibiotics (Tokyo) 41:433–438.

    CAS  Google Scholar 

  • Nakamura, Y., Ishii, K., Ono, E., Ishihara, M., Kohda, T., Yokogawa, Y. and Shibai, H. 1988. A novel naturally occurring carbapenem antibiotic, AB-110-D, produced by Kitasatosporia papulosa nov. sp. Journal of Antibiotics (Tokyo) 41:707–711.

    CAS  Google Scholar 

  • Nolan, R. D. and Cross, T. 1988. Isolation and screening of actinomycetes. 1988. In Goodfellow, M., Williams, S. T. and Mordarski, M. (editors), Actinomycetes in Biotechnology, pp. 1–32. Academic Press, Orlando.

    Google Scholar 

  • Nonomura, H. and Ohara, Y. 1959. Distribution of actinomycetes in the soil. Part 3. Grouping of isolates and their frequency of isolation. Yamanashi Hakkoken 6:77–88.

    Google Scholar 

  • Nonomura, H. and Ohara, Y. 1969. Distribution of actinomycetes in soil (IV). A culture method effective for both preferential isolation and enumeration of Microbispora and Streptosporangium strains in soil (Part I). Journal of Fermentation Technology 47:463–469.

    CAS  Google Scholar 

  • Nonomura, H. 1981. Genera of Actinomycetales and the selective isolation methods. Actinomycetologist 39:3–10.

    Google Scholar 

  • Oda, K., Fukuda, Y., Murao, S., Uchida, K. and Kainosho, M. 1989. A novel proteinase inhibitor, tyrostatin, inhibiting some pepstatin-insensitive carboxyl proteinases. Agricultural and Biological Chemistry 53:405–415.

    Article  CAS  Google Scholar 

  • Okami, Y. and Hotta, K. 1988. Search and discovery of new antibiotics. In Goodfellow, M., Wiliams, S. T. and Mordarski, M. (editors), Actinomycetes in Biotechnology, pp.33–67. Academic Press, Orlando.

    Google Scholar 

  • Okami, Y. and Okazaki, T. 1972. Studies on marine microorgamisms. I. Isolation from the Japan Sea. Journal of Antibiotics (Tokyo) 25:456–460.

    CAS  Google Scholar 

  • Okami, Y., Okazaki T., Kitahara, T. and Umezawa, H. 1976. Studies on marine microorganisms. ▽. A new antibiotic, aplasmomycin, produced by a streptomycete isolated from shallow sea mud. Journal of Antibiotics (Tokyo) 29:1019–1025.

    CAS  Google Scholar 

  • Okazaki, T. and Enokita, R. 1986. Problems in classification and identification of rare actinomycetes. Actinomycetologica 49:15–20.

    Google Scholar 

  • Ōmura, S., Takahashi, Y., Iwai, Y. and Tanaka, H. 1982. Kitasatosporia, a new genus of the order Actinomycetales. Journal of Antibiotics (Tokyo) 35:1013–1019.

    Google Scholar 

  • Ōmura, S., Suzuki, Y., Kitao, C, Takahashi, Y. and Konda, Y. 1975. Isolation of a new sulfur-containing basic substance from a Thermoactinomyces species. Journal of Antibiotics (Tokyo) 28:609–610.

    Google Scholar 

  • Ōmura, S., Murata, M., Hanaki, H., Hinotozawa, K., Ōiwa, R. and Tanaka, H. 1984. Phosalacine, a new herbicidal antibiotic containing phosphinothricin. Fermentation, isolation, biological activity and mechanism of action. Journal of Antibiotics (Tokyo) 37:829–835.

    Google Scholar 

  • Orchard, V. A., Goodfellow, M. and Williams, S. T. 1977. Selective isolation and occurrence of nocardiae in soil. Soil Biology and Biochemistry 9:233–238.

    Article  Google Scholar 

  • Palleroni, N. J. 1980. A chemotactic method for the isolation of Actinoplanaceae. Archives of Microbiology 128:53–55.

    Article  Google Scholar 

  • Takahashi, Y,. Iwai, Y. and Ōmura, S. 1983. Relationship between cell morphology and the types of diaminopimelic acid in Kitasatosporia setalba. Journal of General and Applied Microbiology 29:459–465.

    Article  CAS  Google Scholar 

  • Takahashi, Y., Iwai, Y. and Ōmura, S. 1984a. Two new species of the genus Kitasatosporia, Kitasatosporia phosalacinea sp. nov. and Kitasatosporia griseola sp. nov. Journal of General and Applied Microbiology 30:377–387.

    Article  CAS  Google Scholar 

  • Takahashi, Y., Kuwana, T., Iwai, Y. and Ōmura, S. 1984b. Some characteristics of aerial and submerged spores of Kitasatosporia setalba. Journal of General and Applied Microbiology 30:223–229.

    Article  CAS  Google Scholar 

  • Takahashi, Y., Seki, Y., Tanaka, Y., Ōiwa, R., Iwai, Y. and Ōmura, S. 1990. Vertical distribution of microorganisms in soil. Actinomycetologica 4:1–6.

    Article  Google Scholar 

  • Takahashi, Y., Seki, Y., Iwai, Y. and Ōmura, S. 1991 Taxonomic properties of five Kitasatosporia strains isolated by a new method. Kitasato Archives of Experimental Medicine 64:123–132

    PubMed  CAS  Google Scholar 

  • Tamamura, T., Sawa, T., Isshiki, K., Masuda, T., Homma, Y., Iinuma, H, Naganawa, H, Hamada, M., Takeuchi, T. and Umezawa, H. 1985. Isolation and characterization of terpentecin, a new antitumor antibiotic. Journal of Antibiotics (Tokyo) 38:1664–1669.

    CAS  Google Scholar 

  • Tanba, H, Kawasaki, T., Adachi, K. and Mizobuchi, S. 1985. M 119-a, a new macrolide antibiotic produced by alkalophilic actinomycetes. In: Abstracts Interscience Conference on Antimicrobial Agents and Chemotherapy.

    Google Scholar 

  • Uramoto, M., Ito, Y., Sekiguchi, R., Shin-ya, K., Kusakabe, H. and Isono, K. 1988. A new antifungal antibiotic, cystargin. Journal of Antibiotics (Tokyo) 41:1763–1768.

    CAS  Google Scholar 

  • Wakisaka, Y., Kawamura, Y., Yasuda, Y., Koizumi, K. and Nishimoto, Y. 1982. A selective isolation procedure for Micromonospora. Journal of Antibiotics (Tokyo) 35:822–836.

    CAS  Google Scholar 

  • Weinstein, M. J. Luedemann, G. M., Oden, E. M. and Wagman, G. H. 1963. Gentamicin, a new broad-spectrum antibiotic complex. Antimicrobial Agents and Chemotherapy 1–7.

    Google Scholar 

  • Williams, S. T. and Wellington, E. M. H. 1982. Principles and problems of selective isolation of microbes. In: Bu’lock, J. D., Nisbet, L. J. and Winstanley, D. J. (editors), Bioactive Microbial Products: Search and Discovery, pp. 9–26. Academic Press, London.

    Google Scholar 

  • Yamanaka, S., Kawaguchi, A. and Komagata, K. 1987. Isolation and identification of myxobacteria from soils and plant materials, with special reference to DNA base composition, quinone system, and cellular fatty acid composition, and with a description of a new species, Myxococcus flavescens. Journal of General and Applied Microbiology 33:247–265.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Spring-Verlag New York, Inc.

About this chapter

Cite this chapter

Iwai, Y., Takahashi, Y. (1992). Selection of Microbial Sources of Bioactive Compounds. In: Ōmura, S. (eds) The Search for Bioactive Compounds from Microorganisms. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4412-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4412-7_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8761-2

  • Online ISBN: 978-1-4612-4412-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics