Advertisement

Orthonormal Bases

  • Thomas Banchoff
  • John Wermer
Part of the Undergraduate Texts in Mathematics book series (UTM)

Abstract

Let V be a vector space. Let B1, ..., B n be a basis of V. To each vector X, we let correspond a set of scalars x1, ..., x n called the coordinates of X relative to the basis B1, ..., B n , by putting:
$$ X\;{\rm{ = }}\;{x_1}{B_1}\;{\rm{ + }}\;{x_2}{B_2}\;{\rm{ + }}\; \cdots \;{\rm{ + }}\;{x_n}{B_n}. $$

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Thomas Banchoff
    • 1
  • John Wermer
    • 1
  1. 1.Department of MathematicsBrown UniversityProvidenceUSA

Personalised recommendations