Skip to main content

Abstract

The form of the earth’s surface, reflected by the variation in elevation over space, is very often used as one of the best examples of a naturally fractal phenomenon. The simulated landscapes that are included in Mandelbrot’s now classic texts (Mandelbrot, 1977, 1982), and in the work of many others conducting fractal simulation, are very realistic (e.g., Peitgen and Saupe, 1988). Are the models, however, correct? Can we explore the synthetic mountains of the fractal models, just as we can explore the real mountains on earth, and look for natural structure, form, and process? In this chapter we examine the applicability of fractal methods to natural topography from a geoscience, rather than a mathematical, viewpoint. We consider the question “is the land surface fractal?”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albinet, G., Searby, G., and Stauffer, D., 1986, Fire propagation in a 2-D random medium: J. Phys. 47, 1–7.

    Article  Google Scholar 

  • Aviles, C.A., Scholz, C.H., and Boatwright, J., 1987, Fractal analysis applied to characteristic segments of the San Andreas fault: J. Geophys. Res. 92 (B1), 331–344.

    Article  Google Scholar 

  • Batty, M., and Longley, P., 1986, The fractal simulation of urban structure: Environ. Planning A 18, 1143–1179.

    Article  Google Scholar 

  • Brown, S.R., and Scholz, C.H., 1985, Broad bandwidth study of the topography of natural rock surfaces: J. Geophys. Res. 90, 12,575–12, 582.

    Google Scholar 

  • Burrough, P.A., 1981, Fractal dimensions of landscapes and other environmental data: Nature (London) 294, 240–242.

    Article  Google Scholar 

  • Burrough, P.A., 1983a, The application of fractal ideas to geophysical phenomena: paper presented at a conference organized by the Institute of Mathematics and Its Applications, 8 June 1983.

    Google Scholar 

  • Burrough, P.A., 1983b, Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levels of soil variation: J. Soil Sci. 34, 577–597.

    Article  Google Scholar 

  • Burrough, P.A., 1983c, Multiscale sources of spatial variation in soil. II. A non-Brownian fractal model and its application in soil survey: J. Soil Sci. 34, 599–620.

    Article  Google Scholar 

  • Clarke, K.C., 1986, Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method: Comput. Geosci. 12, 713–722.

    Article  Google Scholar 

  • Clarke, K.C., 1988, Scale-based simulation of topographic relief: Am. Cartog. 15, 173–181.

    Article  Google Scholar 

  • Culling, W.E.H., 1986, Highly erratic spatial variability of soil-pH on Iping Common, West Sussex: Catena 13, 81–89.

    Article  Google Scholar 

  • Culling, W.E.H., and Datko, M., 1987, The fractal geometry of the soil-covered landscape: Earth Surface Processes Landforms 12, 369–385.

    Article  Google Scholar 

  • Eastman, J.R., 1985, Single-pass measurement of the fractal dimension of digitized cartographic lines: paper presented at the annual conference of the Canadian Cartographic Association, 1985.

    Google Scholar 

  • Elassal, A.A., and Caruso, V.M., 1983, USGS digital cartographic standards: Digital Elevation Models, U.S. Geological Survey Circular 895-B.

    Google Scholar 

  • Fox, C.G., and Hayes, D.E., 1985, Quantitative methods for analyzing the roughness of the seafloor: Rev. Geophys. 23(1), 1–48.

    Article  Google Scholar 

  • Gilbert, L.E., 1987, Are topographic data sets fractal?: paper presented at MGUS-87, Redwood City, CA.

    Google Scholar 

  • Goodchild, M.F., 1980, Fractals and the accuracy of geographical measures: Math. Geol. 12, 85–98.

    Article  Google Scholar 

  • Goodchild, M.F., 1982, The fractional Brownian process as a terrain simulation model: Model. Simulation 13, 1133–1137.

    Google Scholar 

  • Goodchild, M.F., and Mark, D.M., 1987, The fractal nature of geographic phenomena: Ann. AAG 77, 265–278.

    Google Scholar 

  • Goodchild, M.F., Klinkenberg, B., Glieca, M., and Hasan, M., 1985, Statistics of hydrologic networks on fractional Brownian surfaces: Model. Simulation 16, 317–323.

    Google Scholar 

  • Hakanson, L., 1978, The length of closed geomorphic lines: Math. Geol. 10, 141–167.

    Article  Google Scholar 

  • Hobson, R.D., 1972, Surface roughness in topography: A quantitative approach: in Spatial Analysis in Geomorphology, R.J. Chorley, (Ed.): Methuen, London, pp. 221–245.

    Google Scholar 

  • Hunt, C.B., 1967, Physiography of the United States: Freeman, San Francisco.

    Google Scholar 

  • Kagan, Y.Y., and Knopoff, L., 1980, Spatial distribution of earthquakes: The two-point correlation function: Geophys. J. R. Astron. Soc. 62, 303–320.

    Google Scholar 

  • Kadanoff, L.P., 1986, Fractals, where’s the physics?: Phys. Today, February, 1986.

    Google Scholar 

  • Kennedy, S.K., and Lin, W.-H., 1986, Fract-A fortran subroutine to calculate the variables necessary to determine the fractal dimension of closed forms: Comput. Geosci. 12, 705–712.

    Article  Google Scholar 

  • Kent, C., and Wong, J., 1982, An index of littoral zone complexity and its measurement: Can. J. Fish Aquatic Sci. 39, 847–853.

    Article  Google Scholar 

  • Klinkenberg, B., 1988, Tests of a fractal model of topography: Ph.D. thesis, University of Western Ontario.

    Google Scholar 

  • Lovejoy, S., 1982, Area-perimeter relation for rain and cloud areas: Science 216, 185–187.

    Article  Google Scholar 

  • Lovejoy, S., and Mandelbrot, B.B., 1985, Fractal properties of rain, and a fractal model: Tellus 37 (A), 209–232.

    Google Scholar 

  • Lovejoy, S., and Schertzer, D., 1985, Generalized scale invariance in the atmosphere and fractal models of rain: Water Resources Res. 21(8), 1233–1250.

    Article  Google Scholar 

  • Lovejoy, S., and Schertzer, D., 1986, Scale invariance, symmetries, fractals, and stochastic simulations of atmospheric phenomena: Bull. Am. Meteorol. Soc. 67, 21–32.

    Article  Google Scholar 

  • Lovejoy, S., and Schertzer, D., 1988, Extreme variability, scaling and fractals in remote sensing: analysis and simulation: in Digital Image Processing in Remote Sensing, J.P. Muler, (Ed.): Taylor & Francis, pp. 177–212.

    Google Scholar 

  • Lovejoy, S., Schertzer, D., and Ladoy, P., 1986, Fractal characterisation of inhomogeneous geophysical measuring networks: Nature (London) 319, 43–44.

    Article  Google Scholar 

  • Lovejoy, S., Schertzer, D. and Tsonis, A.A., 1987, Functional box-counting and multiple elliptical dimensions in rain: Science 235, 1036–1038.

    Article  Google Scholar 

  • Mandelbrot, B.B., 1967, How long is the coast of Britain? Statistical self-similarity and fractional dimension: Science 156, 636–638.

    Article  Google Scholar 

  • Mandelbrot, B.B., 1975, Stochastic models for the Earth’s relief, the shape and the fractal dimension of coastlines, and the number-area rule for islands: Proc. Nal. Acad. Sci. U.S.A. 72, 3825–3828.

    Article  Google Scholar 

  • Mandelbrot, B.B., 1977, Fractals: Form, Chance and Dimension: Freeman, San Francisco.

    Google Scholar 

  • Mandelbrot, B.B., 1982. The Fractal Geometry of Nature: Freeman, San Francisco.

    Google Scholar 

  • Mandelbrot, B.B., 1984, Fractals in physics: Squig clusters, diffusions, fractal measures, and the uni-city of fractal dimensionality: J. Stat. Phys. 34, 895–929.

    Article  Google Scholar 

  • Mark, D.M., 1975, Geomorphometric parameters: A review and evaluation: Geograf. Ann. Ser. A 3, 165–177.

    Article  Google Scholar 

  • Mark, D.M., and Aronson, P.B., 1984, Scale-dependent fractal dimensions of topographic surfaces: An empirical investigation, with applications in geomorphology: Math. Geol. 16, 671–683.

    Article  Google Scholar 

  • Morse, D.R., Lawton, J.H., Dodson, M.M., and Williamson, M.H., 1985, Fractal dimension of vegetation and the distribution of arthropod body lengths: Nature (London) 314, 731–733.

    Article  Google Scholar 

  • Muller, J.-C., 1986, Fractal dimension and inconsistencies in cartographic line representations: Cartog. J. 23, 123–130.

    Google Scholar 

  • Pentland, A.P., 1984, Fractal-based description of natural scenes: IFFE PAMI 6, 661–674.

    Article  Google Scholar 

  • Peitgen, H.-O., and Saupe, D., Eds., 1988, The Science of Fractal Images: Springer-Verlag, Berlin.

    Google Scholar 

  • Richardson, L.F., 1961, The problem of contiguity: An appendix to ‘Statistics of deadly quarrels’: General Sys. Yearbook 6, 139–187.

    Google Scholar 

  • Roy, A., Gravel, G., and Gauthier, C., 1987, Measuring the dimension of surfaces: A review and appraisal of different methods: Proc. Auto-Carto Eight, 68–77.

    Google Scholar 

  • Scholz, C.H., and Aviles, C.A., 1986, The fractal geometry of faults and faulting: Earthquake Source Mechanics (Geophysical Monograph 37), M. Ewing Ser. 6.

    Google Scholar 

  • Shelberg, M.C., Moellering, H., and Lam, N.S., 1982, Measuring the fractal dimensions of empirical cartographic curves: Proc. Auto-Carto Five, 481–490.

    Google Scholar 

  • Shelberg, M.C., Moellering, H., and Lain, N.S., 1983, Measuring the fractal dimensions of surfaces: Proc. Auto-Carto Six, 319–328.

    Google Scholar 

  • Skoda, G., 1987, Fractal dimension of rainbands over hilly terrain: Meteorol. Atmos. Phys. 36, 74–82.

    Article  Google Scholar 

  • Steyn, D.G., and Ayotte, K W, 1985, Application of two-dimension terrain height spectra to mesoscale modeling: J. Atmos. Sci. 42, 2884–2887.

    Article  Google Scholar 

  • Strahler, A.N., 1952, Hypsometric (area-altitude) analysis of erosional topography: Bull. Geol. Soc. Am. 63, 1117–1142.

    Article  Google Scholar 

  • Thornbury, W.D., 1965, Regional Geomorphology of the United States: John Wiley, New York.

    Google Scholar 

  • Woronow, A., 1981, Morphometric consistency with the Hausdorff-Besicovitch dimension: Math. Geol. 13, 201–216.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Klinkenberg, B., Clarke, K.C. (1992). Exploring the Fractal Mountains. In: Palaz, I., Sengupta, S.K. (eds) Automated Pattern Analysis in Petroleum Exploration. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4388-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4388-5_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8751-3

  • Online ISBN: 978-1-4612-4388-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics