Cerebral Asymmetry, Interhemispheric Interaction and Handedness: Second Thoughts About Comparative Laterality Research with Nonhuman Primates, About a Theory and Some Preliminary Results

  • Bruno Preilowski
Part of the Recent Research in Psychology book series (PSYCHOLOGY)


The ultimate aim of comparative work on laterality is to contribute to an understanding of functional and structural lateral cerebral asymmetries in man and the principles underlying it. Off hand, nonhuman primates appear to be very suitable subjects for this type of research; our fellow primates are capable of learning and performing highly complex tasks, and some of the species which have been studied appear to use their brains and hands very much like humans. Nevertheless, I feel forced to conclude that in doing comparative research with nonhuman primates we have not yet made any significant contribution to the solution of the riddle of cerebral asymmetry.


Nonhuman Primate Finger Movement Transfer Learning Laterality Research Original Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annett, M. (1985). Left, right, hand and brain: The right shift theory. London: Lawrence Erlbaum and Associates.Google Scholar
  2. Brinkman, J., & Kuypers, H. G. J. M. (1972). Split-brain monkeys: cerebral control of ipsilateral and contralateral arm, hand and finger movements. Science, 176, 536–538.PubMedCrossRefGoogle Scholar
  3. Burešová, O., Bureš, J., & Nadel, L. (1972). The reversible split-brain and interhemispheric communication. In J. Cernacek & F. Podivinsky (Eds.), Cerebral interhemispheric relations (pp. 227–233). Bratislava: Publishing House of the Slovak Academy of Sciences.Google Scholar
  4. Di Stefano, M., Morelli, M., Marzi, C. A., & Berlucchi, G. (1980). Hemispheric control of unilateral and bilateral movements of proximal and distal parts of the arm as inferred from simple reaction time to lateralized light stimuli in man. Experimental Brain Research, 38, 197–204.CrossRefGoogle Scholar
  5. Engele, H. C. (1988). Split-brain und lateralität: Ein intermanueller Vergleich motorischer Leistungen bei intakten und callosotomierten Rhesusaffen (Macaca mulatta). (Dissertation Universität Tübingen) Frankfurt/M.: Peter Lang.Google Scholar
  6. Hodos, W., & Campbell, C. B. G. (1969). Scala naturae: Why there is no theory in comparative psychology. Psychological Review, 76, 337–350.CrossRefGoogle Scholar
  7. Ingle, D. J. (1968). Interocular integration of visual learning in the goldfish. Brain, Behavior, and Evolution, 1, 58–85.CrossRefGoogle Scholar
  8. Kučera, P., & Wiesendanger, M. (1985). Do ipsilateral corticospinal fibers participate in the functional recovery following unilateral pyramidal lesions in monkeys? Brain Research, 348, 297–303.PubMedCrossRefGoogle Scholar
  9. Levy, J. (1977). The mammalian brain and the adaptive advantage of cerebral asymmetry. Annals of the New York Academy of Sciences, 299, 264–272.PubMedCrossRefGoogle Scholar
  10. MacNeilage, P. F., Studdert-Kennedy, M. G., & Lindblom, B. (1987). Primate handedness reconsidered. Behavioral and Brain Sciences, 10, 247–303.CrossRefGoogle Scholar
  11. Palmers, C., & Zeier, H. (1974). Hemispheric dominance and transfer in the pigeon. Brain Research, 76, 537–541.PubMedCrossRefGoogle Scholar
  12. Preilowski, B. (1972, June). Is there a specialization of the cerebral hemispheres in nonhuman primates ? Paper presented at the NATO Advanced Study Institute on Comparative Biology of Primates, Torino (Italy).Google Scholar
  13. Preilowski, B. (1975). Bilateral motor interaction: Perceptual-motor performance of partial and complete “split-brain” patients. In K. J. Zülch, O. Creutzfeldt, & G. C. Galbraith (Eds.), Cerebral localization (pp.115–132). Berlin: Springer-Verlag.Google Scholar
  14. Preilowski, B. (1977a). Projekt “Zerebrale Asymmetrie” Arbeitsbericht Nr. 2, DFG Pr 117/3, Konstanz: Universität Konstanz.Google Scholar
  15. Preilowski, B. (1977b, March). Lack of intermanual transfer of a fine sensory-motor skill in normal rhesus monkeys. European Brain and Behaviour Workshop on Callosal Functions, Rotterdam (Netherlands).Google Scholar
  16. Preilowski, B. (1978). On the biological basis of human laterality: Problems with “grand schemes” and handedness. Behavioral and Brain Sciences, 1, 312–313.CrossRefGoogle Scholar
  17. Preilowski, B. (1979). Performance differences between hands and lack of transfer of finger posture and sensory-motor skill in intact rhesus monkeys: possible model for the origin of cerebral asymmetry. Neuroscience Letters, 3, S89.Google Scholar
  18. Preilowski, B. (1983). Is there a cerebral hemispheric specialization in nonhuman primates?. In P. K. Seth (Ed.), Perspectives in primate biology (pp. 109–117). New Delhi: T & T Publishers.Google Scholar
  19. Preilowski, B. (1987). The role of corollary discharges, the corpus callosum, and the supplementary cortices in bimanual coordination. Behavioral and Brain Sciences, 10, 322–323.CrossRefGoogle Scholar
  20. Preilowski, B., & Reger, M. (1987). Intermanueller Lerntransfer einer proximalen sensomotorischen Regelungsaufgabe bei Rhesusaffen (Macaca mulatto). In F. G. Barth & E.A. Seyfarth (Hg.), Verhandlungen der Deutschen Zoologischen Gesellschaft, 80 (p.322). (Jahresversammlung 1987 in Ulm. S. 322). Stuttgart: Gustav Fischer Verlag.Google Scholar
  21. Preilowski, B., Reger, M., & Engele, H. C. (1986). Handedness and cerebral asymmetry in nonhuman primates. In D. M. Taub & F. A. King (Eds.), Current perspectives in primate biology (pp. 270–282). New York: Van Nostrand Reinhold Company.Google Scholar
  22. Rogers, L. J. (1986). Lateralization of learning in chicks. Advances in the study of behavior, 16, 147–189.CrossRefGoogle Scholar
  23. Schwartzman, R. J. (1978). A behavioral analysis of complete unilateral section of the pyramidal tract at the medullary level in Macaca mulatta. Annals of Neurology, 4, 234–244.Google Scholar
  24. Sechzer, J. A. (1970). Prolonged learning and split-brain cats. Science, 169, 889–892.PubMedCrossRefGoogle Scholar
  25. Steele Russell, I., & Ochs, S. (1963). Localization of a memory trace in one cortical hemisphere and transfer to the other hemisphere. Brain, 86, 37–54.CrossRefGoogle Scholar
  26. Trope, I., Fishman, B., Gur, R.C., Sussman, N.M., & Gur, R.E. (1987). Contralateral and ipsilateral control of fingers following callosotomy. Neuropsychologia, 25, 287–291.PubMedCrossRefGoogle Scholar
  27. Tuller, B., & Kelso, J. A. S. (1989). Environmentally-specified patterns of movement coordination in normal and split-brain subjects. Experimental Brain Research, 75, 306.CrossRefGoogle Scholar
  28. Van Hof, M. W. (1970). Interocular transfer in the rabbit. Experimental Neurology, 26, 103–108.PubMedCrossRefGoogle Scholar
  29. Wiesendanger, M., & Hepp-Reymond, M. C. (1970). Cerebrale Organisation der Motorik und Fertigkeitsbewegungen. In K. Bättig (Hg.), Psychologische Experimente (pp. 110–116). Bern: Huber.Google Scholar
  30. Young, G., Corter, C.M., Segalowitz, S.J., & Trehub, S. E. (1983). Manual specialization and the developing brain: An overview. In G. Young, S. J. Segalowitz, C. M. Corter, & S. E. Trehub (Eds.), Manual specialization and the developing brain (pp. 3–12). New York: Academic Press.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Bruno Preilowski

There are no affiliations available

Personalised recommendations