Advertisement

Characteristics of Dolphin Sonar Signals

  • Whitlow W. L. Au

Abstract

The sonar task for dolphins perceiving their environment involves detection, localization, discrimination, and recognition of objects of interest. Target information such as range, azimuth, direction of movement, speed, and size should also be of interest. The ability of dolphins to accurately perceive their environment and to perform difficult recognition and discrimination tasks depends to a large extent on the characteristics of their sonar signals and how these signals are emitted. The signals must have sufficient energy to detect small targets at large ranges. They must also have sufficient information-carrying capacity so that fine features and characteristics of objects and targets can be determined by analyzing their sonar echoes. At a minimum, a dolphin sonar system should be able to detect and recognize prey, obstacles, and predators. The sonar task is usually performed in a noisy or highly reverberant environment associated with shallow waters, or during searches near the bottom or in the presence of many obstacles.

Keywords

Bottlenose Dolphin Target Strength Source Level Beluga Whale Finless Porpoise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Au, W.W.L. (1980). Echolocation signals of the Atlantic bottlenose dolphin (Tursiops truncatus) in open waters. In: R.G. Busnel and J.F. Fish, eds., Animal Sonar Systems. New York: Plenum Press, pp. 251–282.Google Scholar
  2. Au, W.W.L., and Pawloski, D.A. (1988). Detection of complex echoes in noise by an echolocating dolphin. J. Acoust. Soc. Am. 83: 662–668.PubMedCrossRefGoogle Scholar
  3. Au, W.W.L., and Penner, R.H. (1981). Target detection in noise by echolocating Atlantic bottlenose dolphins. J. Acoust. Soc. Am. 70: 251–282.CrossRefGoogle Scholar
  4. Au, W.W.L., and Turl, C.W. (1983). Target detection in reverberation by an echolocating Atlantic bottlenose dolphin (Tursiops truncatus). J. Acoust. Soc. Am. 73: 1676–1681.PubMedCrossRefGoogle Scholar
  5. Au, W.W.L., Floyd, R.W., Penner, R.H., and Murchison, A.E. (1974). Measurement of echolocation signals of the Atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open waters. J. Acoust. Soc. Am. 54: 1280–1290.CrossRefGoogle Scholar
  6. Au, W.W.L., Schusteruran, R.J., and Kersting, D.A. (1980). Sphere-cylinder discrimination via echolocation by Tursiops truncatus. In: R.G. Busnel and J.F. Fish, eds., Animal Sonar Systems, edited by New York: Plenum Press, pp. 859–862.Google Scholar
  7. Au, W.W.L., Penner, R.H., and Kadane, J. (1982). Acoustic behavior of echolocating Atlantic bottlenose dolphin. J. Acoust. Soc. Am. 71: 1269–1275.CrossRefGoogle Scholar
  8. Au, W.W.L., Carder, D.A., Penner, R.H., and Scronce, B.L. (1985). Demonstration of adaptation in beluga whale echolocation signals. J. Acoust. Soc. Am. 77: 726–730.PubMedCrossRefGoogle Scholar
  9. Au, W.W.L., Penner, R.H., and Turl, C.W. (1987). Propagation of beluga echolocation signals. J. Acoust. Soc. Am. 82: 807–813.PubMedCrossRefGoogle Scholar
  10. Awbrey, F.T., Norris, J.C., Hubbard, A.B., and Evans, W.E. (1979). The bioacoustics of the Dall’s porpoise-salmon drift net interaction. H/SWRI Techn. Rep. 79–120, pp. 79–120.Google Scholar
  11. Babkin, V.P., and Dubrovskiy, N.A. (1971). Range of action and noise stability of the echolocation system of the bottlenose dolphin in detection of various targets. Tr. Akust. Inst. 17: 29–42.Google Scholar
  12. Bel’kovich, V.M., and Dubrovskiy, N.A. (1977). Sensory bases of cetacean orientation. U.S. Joint Publication Research Service JPRSL/7157, May 27, 1977.Google Scholar
  13. Dawson, S.M. (1988). The high frequency sounds of free-ranging Hector’s Dolphin, Cephalorhynchus hectori. Rep. Int. Whal. Commn. (Spec. Iss. 9), 339–341.Google Scholar
  14. Dziedzic, Z.-A. (1978). Etude experimentale des emissions sonar de certains delphinides et notamment de D. Delphis et T Truncatus. These de Doctorat D’Etat Es-Sciences Appliquees, l’Universite de Paris V II.Google Scholar
  15. Dziedzic, A., and Alcuri, G. (1977). Reconnaissance acoustique des formes et caracteristiques des signaux sonars chez Tursiops truncatus, famille des delphinides. C.R. Acad. Sc. Paris 285, Series D, 981–984.Google Scholar
  16. Ellis, R. (1989). Dophins and Porpoises, New York: Alfred Knopf.Google Scholar
  17. Evans, W.E. (1973). Echolocation by marine delphinids and one species of fresh-water dolphin. J. Acoust. Soc. Am. 54: 191–199.CrossRefGoogle Scholar
  18. Evans, W.W., and Powell, B.A. (1967). Discrimination of different metallic plates by an echolocating delphinid. In: R.G. Busnel, ed., Animal Sonar Systems: Biology and Bionics. Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France, pp. 363–382.Google Scholar
  19. Evans, W.E., Aubrey, F.T., and Hackbarth, H. (1988). High frequency pulse produced by free ranging Commerson’s dolphin (Cephalorhynchus commersonii) compared to those of phocoenids. Rep. Int. Whal. Commn. ( Spec. Iss. 9 ), 173–181.Google Scholar
  20. Hatakeyama, Y., Ishii, K., Soeda, H., and Shimamura, T. (1988). Observation of harbor porpoise’s behavior to salmon gillnet, (Document submitted to the International North Pacific Fisheries Commission.), 17 p. Fisheries Agency of Japan, Tokyo, Japan.Google Scholar
  21. Hatakeyama, Y., and Soeda, H. (1990). Studies on echolocation of porpoises taken in salmon gillnet fisheries. In: J.A. Thomas and R. Kastelein, eds., Sensory Abilities of Cetaceans. New York: Plenum Press, pp. 269–281.Google Scholar
  22. Herald, E.S., Brownell, R.L., Jr., Frye, F.L., Morris, E.J., Evans, W.E., and Scott, A.B. (1969). Blind river dolphin: first side-swimming cetacean. Science 166: 1408–1410.PubMedCrossRefGoogle Scholar
  23. Johnson, C.S. (1967). Discussion. In: R.G. Busnel ed., Animal Sonar Systems: Biology and Bionics. Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France, pp. 384–398.Google Scholar
  24. Kamminga, C. (1988). Echolocation signal types of odontocetes. In: P.E. Nachtigall and P.W.B. Moore, eds., Animal Sonar: Processes and Performance. New York: Plenum Press, pp. 9–22.Google Scholar
  25. Kamminga, C., and Wiersma, H. (1981). Investigations on cetacean sonar II. Acoustical similarities and differences in odontocete sonar signals. Aquatic Mamml. 8: 41–62.Google Scholar
  26. Kamminga, C., and Wiersma, H. (1982). Investigations on cetacean sonar V. The true nature of the sonar sound of Cephaloryncus Commersonii. Aquatic Mamml. 9: 95–104.Google Scholar
  27. Kamminga, C., Dudok van Hell, W.H., and Tas’an, G. (1983). Investigations on cetacean sonar VI. Sonar sounds in Orcaella Brevirostris of the Makaham River, East Kalimanta, Indonesia; first descriptions of acoustic behaviour. Aquatic Mamml. 10: 83–104.Google Scholar
  28. Kamminga, C., Engelsma, F.J., and Terry, R.P. (1989). Acoustic observations and comparison on wild, captive and open water Sotalia, and riverine Inia. 8th Biennial Conf. Biol. of Mar. Mamm., Pacific Grove, Cal.Google Scholar
  29. Mohl, B., and Andersen, S. (1973). Echolocation: high frequency component in the click of the harbour porpoise (Phocoena phocoena L.), J. Acoust. Soc. Am. 54: 1368–1372.PubMedCrossRefGoogle Scholar
  30. Mohl, B., Surlykke, A., and Miller, L.A. (1990). High intensity narwhal clicks. In: J.A. Thomas and R.A. Kastelein, eds., Sensory Abilities of Cetaceans. New York: Plenum Press, pp. 295–303.Google Scholar
  31. Moore, P.W.B., and Pawloski, D. (1990). Investigation of the control of echolocation pulses in the dolphin (Tursiops truncatus). In: J.A. Thomas and R.A. Kasterlein, eds., Cetacean Sensory Systems: Field and Laboratory Evidences. New York: Plenum Press, pp. 305–316.Google Scholar
  32. Morozov, B.P., Akapiam, A.E., Burdin, V.I., Zaitseva, K.A., and Y.A. Solovykh. (1972). Tracking frequency of the location signals of dolphins as a function of distance to the target. Biofiika 17: 139–145.Google Scholar
  33. Norris, K.S., and Evans, W.E. (1966). Directionality of echolocation clicks in the rough-tooth porpoise, Steno Bredanensis (Lesson). In: W.N. Tavolga, ed., Marine Bio-Acoustics. New York: Pergamon Press, pp. 305–324.Google Scholar
  34. Penner, R.H. (1988). Attention and detection in dolphin echolocation. In: P.E. Nachtigall and P.W.B. Moore, eds., Animal Sonar: Processes and Performance. New York: Plenum Press, pp. 707–713.Google Scholar
  35. Thomas, J.A., and Turl, C.W. (1990). Echolocation characteristics and range detection by a false killer whale (Pseudorca crassidens). In: J.A. thomas and R. Kasterlein, eds., Cetacean Sensory Systems: Field and Laboratory Evidences. New York: Plenum Press, pp. 321–334.Google Scholar
  36. Thompson, R.K.R., and Herman, L.M. (1975). Underwater frequency discrimination in the bottlenose dolphin (1–140 kHz) and the human (1–8 kHz). J. Acoust. Soc. Am. 57: 943–948.PubMedCrossRefGoogle Scholar
  37. Turl, C.W., Penner, R.H., and Au, W.W.L. (1987). Comparison of target detection capabilities of the beluga and bottlenose dolphin. J. Acoust. Soc. Am. 82: 1487–1491.Google Scholar
  38. Turl, C.W., and Penner, R.H. (1989). Differences in echolocation click patterns of the beluga (Delphinapterus leucas) and the bottlenose dolphin (Tursiops truncatus). J. Acoust. Soc. Am. 68: 497–502.CrossRefGoogle Scholar
  39. Urick, R.J. (1983). Principles of underwater sound. New York: McGraw-Hill.Google Scholar
  40. Wiersma, H. (1982). Investigations on cetacean sonar IV, a comparison of wave shapes of odontocete sonar signls. Aquat. Mamm. 9: 57–67.Google Scholar
  41. Youfu, X., and Rongcai, J. (1989). Underwater acoustic signals of the baiji, Lipotes vexillifer. In: W.R. Perrin et al., eds., Biology and Conservation of the River Dolphins. IUCN Species Survival Commission, Gland, Switzerland, pp. 129–136.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Whitlow W. L. Au
    • 1
  1. 1.Hawaii Institute of Marine BiologyUniversity of HawaiiKailuaUSA

Personalised recommendations